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Theory £ / Derivability +

A literal L is an atom A or a negated atom —A.

The negation symbol “=” provides an interface to the applica-
tion context, but is not active in the notion of derivability.
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Let /7 be a set of rules of the form L [<: Lo N ... NL|.

The theory £ is inductively defined to contain
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Theory £ / Derivability +

A literal L is an atom A or a negated atom —A.
The negation symbol “=” provides an interface to the applica-
tion context, but is not active in the notion of derivability.

Let /7 be a set of rules of the form L [<: Lo N ... NL|.

The theory £ is inductively defined to contain
all instances of literals from 77, and

all literals L for which there is a conjunction C' of literals
from £ ;7 such that L < C' is an instance of a rule in 1.

For ¢ C £, we also write 17 + £.
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Specifications will always be given by 3 Sets:

1" of literals —
Facts of the concrete situation under consideration
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Specifications will always be given by 3 Sets:

1Y of literals —
Facts of the concrete situation under consideration

[1% of rules —
General rules that hold in all possible worlds

A of rules — Defeasible /
Default rules that hold in most situations

The set I := IT¥ U II is the set of strict rules that
— contrary to the defeasible rules — are
considered to be safe and
not doubted in the concrete situation.
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Specificity [Quasi- ]| Orderings on Arguments

(A, L) is an argument if A is a set of ground instances of A,
Lis aliteral,and A+ L.
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Lis aliteral,and AF L.

Non-Transitive Specificity Relations:

<p; David Poole’s original
<ps Guillermo R. Simari’'s minor correction of <p;
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Specificity [Quasi- ]| Orderings on Arguments

(A, L) is an argument if A is a set of ground instances of A,
Lis aliteral,and A+ L.

Non-Transitive Specificity Relations:

NI

Sp2

Sp3

David Poole’s original
Guillermo R. Simari’s minor correction of <p,
Our minor correction of <p,

Transitive Specificity Relations (Quasi-Orderings!):

Scpi

~CP2

Compared to <pjs:

— Reduction from £r eua 10 e me.

— Admission of II after completed
defeasible argumentations.

Efficiency improvement of <cp,
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Defeasible Parts of Derivationw.r.t.  (IT, 1%, A)

FUTI&

A A
AUTIC AUTIC
H H

H C F =
Pl, P2, P3 SHFUHGUA H
CP1, CP2 S LG I
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Example 1 of [Poole, 1985]

—flies(edna) flies(edna) flies(tweety)
[ 42 T
\ bird(edna) bird (tweety)
/
emu(edna)

1" := {bird(tweety), emu(edna)},

[1¢ := {bird(x) < emu(z), —flies(x) < emu(x)},
A := {flies(z) < bird(x)}.

Ay := {flies(edna) < bird(edna)}.

(0, —flies(edna)) <p1.p2.p3.cp1.cpe (As, flies(edna)).
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Ex.2 of [Poole,1985]. Pref. of “More Concise”

—flies(edna) flies(edna) flies(tweety)
[ T
f\ bird(edna) bird (tweety)
/
emu(edna)

1" := {bird(tweety), emu(edna)}, II¢ := {bird(z) < emu(z)},
A := {flies(x) « bird(x), —flies(z) < emu(x)}.

Ay := {—flies(edna) « emu(edna)}.

A, = {flies(edna) « bird(edna)}.

(Ay, —flies(edna)) <p1p2ps.cpi.cp2 (As,flies(edna)).
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Example 3 of [Poole, 1985] (renamed)

—flies(edna) flies(edna)
[ 42
f\ bird(edna)
A
emu(edna)

[T" := {emu(edna)}, TII¢ :=(

A := {flies(z) « bird(x), —flies(x) < emu(x), bird(z) « emu(z)}.
Ay := {—flies(edna) « emu(edna)}.

A, := {flies(edna) < bird(edna), bird(edna) < emu(edna)}.

(Ay, —flies(edna)) ~cp1.cp2 (As, flies(edna)).

(Ay, ~flies(edna)) <p1pops (As, flies(edna)).
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Defeasible Parts of Derivationw.r.t.  (IT, 1%, A)

FUTI&

A A
AUTIC AUTIC
H H

H C F =
Pl, P2, P3 SHFUHGUA H
CP1, CP2 S LG I

Wirth & Stolzenburg, July 21, 2014 — p.1C



Computing Specificity Relations

(phasel) Derive the literals that provide the basis for specifi-
city considerations. CP1/2. Sqr pe. P1-3. Tprimeua.
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Computing Specificity Relations

(phasel) Derive the literals that provide the basis for specifi-
city considerations. CP1/2: Sqr pe. P1-3. Tgr e a.

(phase2) On the basis of
a subset H of the literals derived in phase 1,
the first item A of a given argument (A, L), and
the general rules II%,
we derive a further set of literals ¢: H U AUIIY - &
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Computing Specificity Relations

(phasel) Derive the literals that provide the basis for specifi-
city considerations. CP1/2: Sqr pe. P1-3. Tgr e a.

(phase2) On the basis of
a subset H of the literals derived in phase 1,
the first item A of a given argument (A, L), and
the general rules II%,
we derive a further set of literals ¢: H U AUIIY - &

(phase3) On the basis of ¢, the literal of the argument is
derived: ¢UTI" UTI® + {L}.
P1-3: phase3is empty: ¢={L}.
CP1/2: It is admitted to use the facts from II' in phase 3,
in addition to the general rules from II%.
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Definition [Minimal J[Simplified | Activation Set

Let A be a set of ground instances of rules from A, and
let L be a literal.

H is a simplified activation set for (A, L) if L € £y aumc -

H is an activation set for (A, L) if, forsome £ C £y, 4umc

L E SQUHFUHG .
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Definition | ][ Simplified | Activation Set

Let A be a set of ground instances of rules from A, and
let L be a literal.

H is a simplified activation set for (A, L) if L € £y aumc -

H is an activation set for (A, L) if, forsome £ C £y, 4umc

L E SQUHFUHG .

His a [simplified ] activation set for (A, L) if
H is an [simplified] activation set for (A, L),
but no proper subset of A Is an [simplified] activation set
for (A, L).
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Definitions of <cpy and <ps

(A1, L1) S<cp1 (Ag, L) if (Ay, Ly) and (As, Ly) are arguments, and
we have
1. Iy EgnFUHG or
2. Lo ggnFUnG and
every H C $pr e thatisan [minimal] activation setfor (A;, L)
IS also an activation set for (A2, Lo).

Wirth & Stolzenburg, July 21, 2014 — p.13



Definitions of <epy and <ps

(A1, L1) S<cp1 (Ag, L) if (Ay, Ly) and (As, Ly) are arguments, and
we have
1. 14 EsHFUnG or
2. Lo §Z$HFU1-[G and
every H C £r e thatis an [minimal] activation setfor (A1, L1)
IS also an activation set for (As, Lo).

(A1, L) <pz (Ag, L) if (A, L1) and (A, Ly) are arguments,
Lq € SHFUnG implies L; € SHFUnG, and,

forevery H C Tqr qea

that is a [minimal] simplified activation set for (.4, L)

but not a simplified activation set for (0, L1),

H is also a simplified activation set for (As, Lo).
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Example Not Transitive. Pref. of “More Precise”

Propose%Klss = Kiss Smile
/ h

Promising(Jo) Bol

.AlT A1 \
HAkimbo(Jo) '

0 Smiles(Jo) Sexy(Jo)

Propose < Promising(Jo) ABold
Ay :={Kiss «— Bold ASmiles(Jo)ASexy(Jo)},
Ay = {Smile « Sexy(Jo)}. II% := {Kiss < Promising(G)}.
1" := {Bold, HAkimbo(Jo), Smiles(Jo), Sexy(Jo)}.

(Ay, Propose) <P1-3,CP1/2 (As, Kiss) <P1-3,CP1/2 (A, Smile), but
(Ay, Propose) <cpi/2 (Ajs, Smile) Zp1—s (A1, Propose).
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A {Promising(Jo) - HAkimbo(Jo)/\Smiles(Jo)/\Sexy(Jo),}
1= :



Conclusion: Novel Specificity Relations are. . .

Transitive!

Monotonic w.r.t. Conjunction!
Even More Intuitive!

Slightly More Efficient!

More Comparing?
Theorem: <p3; C <cp;.
Corollary: Acp; € Aps.

Butin general: <p3 € <cp1- Luckily!
(Otherwise monotonicity w.r.t. A would be lost.)
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[Poole,1985,Example 6]: Monotonicity w.rt. A

g1

g2

—C C / \ f
\ P
a % \AQ d

(Ay,7c)<p1—3(Aaz,c), (A1,~f)<pi—3(Az,f), but (A;,g1) Ap1—3(A2,82).
(Ala_'c)%CPl/Z(A%C)a (A1ﬁf)%cpl/2(¢427f)a SO (A17g1)%CP1/2(A27g2)-
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1st Variation of [Poole,1985,Example 6]

g1

g2

c c / \ f
\ T
a / \AQ d

(Ay,7c)<p1—3(Aaz,c), (A1,~f)<pi—3(Az,f), but (A;,g1) Ap1—3(A2,82).
(A1ﬁC)<CP1/2(A2,C), (A1ﬁf)%cp1/2(«427f), SO (A17g1)<CP1/2(A27g2)-
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“More Precise”

—lovely lovely
W W
grandpa grandma
% Nl TAQ
noisy somebody

(Aj,—lovely) <pi—g (As,lovely).
(Al 7_'|O\/e|y) <CP1/2 (AQ,IOVely) '
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“More Precise’, 2 ™ Var. of [Poole,1985,EX. 6]

g1

C f

—C
TAQ TAQ
Al b €
a

(«41ﬁC)<P1—3(«427C)7 but («41,,9;1)&131—3(«42@2)-
(Ai,7c)=cp1/2(Asz,c), but (A1,g1)>cp1/2(A2,82), “more precise”.
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“Precise vs. Concise” 3 "Var.[Poole,1985,EX. 6]

g1

. (A1, 81) Api—s,cri/2 (A2, 82)
2

—1C C /
\ lAQ lAQ
/ N

The conflict between a being “more concise” than b and
bAd being “more precise” than a is indeed irresolvable.
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[Stolzenbg, 2003, Ex.11]: No Pruningfor  <p;!

1" := {c,d,e}, TI® := {x < anf},
A=AUAU AU AU A
Al := {x < aAbAc}.

A? := {—x < aAb}.

At .= {a «— d}.
A° = {b «— e}.

b
A5T
g

(A'UA'UA®, x) <cp1j2 (APUA'UA®, =x) =copr/e (ATUAY X). Al
<pi_sz-incomparable! For (A'UA*UA® x) €p3 (A*UA*UA® —x)
we have to consider (implicitly via {d, f} C ggr neua) the
defeasible rule of which is not part of any of the two

arguments under comparison. No pruning possible for <p, - .

Wirth & Stolze



Variation of [Stolzenbg, 2003, Ex.11]

1" := {c,d, e},
[1¢ ;= {x < aAf, f < e},
A=A"UA*U AU A
Al := {x + aAbAc}.
A? := {—x «+ aAb}.

b f
A5T / A* = {a — d}.
C

c € A° = {b «— e}.

(A%, x) =cp1/2 (AUAUA® X) >cp1j2 (A2UATUA®, —x).

Makes sense because d/Ae is more precise (specific) than d.
cAdAe Is Irrelevant because approach is model-theoretic.
(A, x) <pi_3 (AUAIUA®, x) Api_g (A2UAYUA®, —x) Api_3
(Bullshit!) (A%, x).
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[Stolzenburg, 2003, Ex. p.95]: Global Effect!

—lpA(a) p<a)
s
s(a) Aq A
\q<a> 7 = {q(a)}, 11% := {s(z) < q(x)},

— A= {p(z) < q(z), ~p(x) < a(z)As(x)}.
Ay == {-p(a) < q(a)As(a)}.

Az = {p(a) < q(a)}.

(A1, —p(a)) ~pP1-3,CP1/2 (A2,p(a)).
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<cp1 VS. 5(}})2

Y

drink alarm=alarm [T := {thirst, danger},
A \ T““B 116 -— @7 A=A U As,
danger
» Ap := {drink < thirst},
thirst Ay := {alarm « danger}.

As .= Ay U {danger < thirst}.

(A, alarm) <cp1 ( Az, alarm) =cgpa (Ao, alarm)
(A1, drink) <cpy (A3, alarm) Acps (A1, drink)
(Al,drink) AcPpP1 (Ag,alarm) Acp2 (Al,drink)
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Example Not Transitive. Pref. of “More Precise”

beer wine wine vodka

AV

blessing alcohol

Ay := {e < alcoholAblessingAthirst, beer « e},
A5 := {wine « alcoholAblessing},

As := {vodka < alcohol}, A :=A;UA, U A;,
I1" := {alcohol, blessing, thirst}, II¢ := {wine < e},

(Ajy, beer) <pi—3cp1/2 (A2, wine) <pj—3cp1/2 (A3, vodka), but
(A, beer) <cpi/a (As, vodka) Zp1—s (A, beer).
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All you need is Quasi-Ordering

A quasi-ordering is a reflexive transitive relation.

An (irreflexive) ordering is an irreflexive transitive relation.
A reflexive ordering (also called: “partial ordering”) is an
anti-symmetric quasi-ordering.

An equivalence is a symmetric quasi-ordering.

We will use several binary relations <y
comparing arguments according to their specificity.

Corollary O If <y Is a quasi-ordering, then
Its equivalencex Is an equivalence,

Its ordering< y IS an ordering, and

its reflexive ordering< y Is a reflexive ordering.
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Abstract Specificity Orderings

For any relation written as <y
(“being more or equivalently specific w.r.t. N,

we define:

>y = {(X,Y)| Y <y X }(“less or equivalently specific”),
~y = SyN2N (“equivalently specific”),
<y = SN\ZN (“properly more specific”),
<y = <yU{(X,X)| Xisanargument }

(“more specific or equal”),

X, Y are arguments with

AN = < (X,Y) }
X %NyandX zN Y

(“iIncomparable w.r.t. specificity”).
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Efficiency Considerations

Let H be a set of hypotheses. Then, roughly speaking,

(A1, L1) < (As, L) if every activation set H for (A, L) is also
one for (As, Lo).

Naive procedure enumerates possible activation sets, which is

exponential in the number of possible hypothesis literals.

Clearly, the effort for computing <cp; Is lower than that of <pj
because of 1 C A

While checking <p, attention cannot be restricted to
derivations which make use only of defeasible rules given in
the arguments. Therefore, [Stolzenburgé&al, 2003] introduce
pruning derivation trees.
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Path Characterization for Specificity

(A1, L1) < (Ao, Ls) if (A1, L1) and (As, Ly) are two argu-
ments in the given specification and for each derivation tree T}
for L1 there is a derivation tree 15 for L, such that 77 < 7T5.

Let 77 and 75 be derivation trees. Then, T7; < T5 If for each
to € Paths(7T3) there is a path ¢t; € Paths(77) such that ¢; C ¢
(omitting the root nodes).

If the arguments involved in the comparison correspond to
exactly one and-tree, then <p, coincides with the path
characterization (< and <). Cf. Example 1 of [Poole, 1985].

Two and-trees can be compared efficiently w.r.t. <. It requires
pairwise comparison of all nodes in the trees for each path.
Hence, the respective complexity is polynomial in the size of
the derivation trees.
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Path vs. Argument Characterization

—lovely lovely
grandpa grandpa
/ N TAQ
noisy somebody

Poole’s specificity: (A;,—lovely) <pi—3 (As,lovely)
Corrected version: (Ay,—lovely)<cp1/2(Az,lovely)

Path characterization: (A;,—lovely) < (As,lovely)
{{noisy, grandpa}, {someb., grandpa}} {{someb., grandpa}}

Argument sets: (A;,—lovely) C (Asg,lovely)
{{noisy, somebody}, {grandpa}} {{somebody}, {grandpa}}
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Back to the Arguments

Characterization dual to < based on the rules in the
arguments:

Let (Ay, L1) and (As, Lo) be two arguments and R; (i = 1, 2)
be the set of (strict and defeasible) rule bodies used in the
respective proofs. We define: Ry C Ry if for all r1 € R; there
exists an ro € R, such that ro C r;.

Simplified version: Interpret C simply as subset (w.r.t.
complete rule sets).

This Is close to the notion more conservative than
[Besnard&Hunter, 2001]: A; € A, and Ly F Ly.

Checking C on ground literal sets can be done efficiently
(NP-complete for general literals).
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Further Conclusions

Computing <cpx can be done by a modified SLD-resolution
procedure, but has to enumerate all possible derivations for
each query.

Path (<) and argument (C) characterizations can be computed
efficiently. However, they coincide with specificity notion only in
special cases (e.g. no strict rules).

Further investigation is required . ..

Thank you very much for your attention!
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