Poole's Specificity Revised

Claus-Peter Wirth & Frieder Stolzenburg wirth@logic.at,fstolzenburg@hs-harz.de FB AI, Hochschule Harz, 38855 Wernigerode, Germany

Specificity of Explanations in Logic Programm.

 [Poole, 1985]: David L. Poole.
 On the Comparison of Theories: Preferring the Most Specific Explanation.
 IJCAI9, pp. 144–147. Binary Specificity Relation

 [Simari & Loui, 1992]: Guillermo R. Simari, Ronald P. Loui.
 A Mathematical Treatment of Defeasible Reasoning and its Implementation.

Artificial Intelligence 53, pp. 125–157.

Specificity Relation is an Ordering

 [Stolzenburg &al., 2003]: Frieder Stolzenburg, Alejandro J. García, Carlos I. Chesñevar, Guillermo R. Simari. *Computing Generalized Specificity*.
 J. Applied Non-Classical Logics 13, pp. 87–113.

Theory \mathfrak{T}_{Π} / Derivability \vdash

A *literal* L is an atom A or a negated atom $\neg A$.

The negation symbol " \neg " provides an interface to the application context, but is not active in the notion of derivability.

Theory \mathfrak{T}_{Π} / Derivability \vdash

A *literal* L is an atom A or a negated atom $\neg A$.

The negation symbol " \neg " provides an interface to the application context, but is not active in the notion of derivability.

Let Π be a set of *rules* of the form $L \models L'_0 \land \ldots \land L'_n \mid$.

A *literal* L is an atom A or a negated atom $\neg A$.

The negation symbol " \neg " provides an interface to the application context, but is not active in the notion of derivability.

Let Π be a set of *rules* of the form $L = \begin{bmatrix} \leftarrow L'_0 \land \ldots \land L'_n \end{bmatrix}$.

The theory \mathfrak{T}_{\varPi} is inductively defined to contain

- **all** instances of literals from Π , and
- all literals *L* for which there is a conjunction *C* of literals from \mathfrak{T}_{Π} such that $L \Leftarrow C$ is an instance of a rule in Π .

A *literal* L is an atom A or a negated atom $\neg A$.

The negation symbol " \neg " provides an interface to the application context, but is not active in the notion of derivability.

Let Π be a set of *rules* of the form $L \models L'_0 \land \ldots \land L'_n$.

The theory \mathfrak{T}_{\varPi} is inductively defined to contain

- **all** instances of literals from Π , and
- all literals *L* for which there is a conjunction *C* of literals from \mathfrak{T}_{Π} such that $L \Leftarrow C$ is an instance of a rule in Π .

For $\mathfrak{L} \subseteq \mathfrak{T}_{\Pi}$, we also write $\Pi \vdash \mathfrak{L}$.

Specifications will always be given by 3 Sets:

• Π^{F} of literals —

<u>Facts of the concrete situation under consideration</u>

Specifications will always be given by 3 Sets:

- Π^{F} of literals
 - <u>Facts of the concrete situation under consideration</u>
- Π^{G} of rules
 - <u>General rules that hold in all possible worlds</u>
- Δ of rules <u>D</u>efeasible /
 - Default rules that hold in most situations

Specifications will always be given by 3 Sets:

- Π^{F} of literals
 - <u>Facts of the concrete situation under consideration</u>
- Π^{G} of rules
 - <u>General rules that hold in all possible worlds</u>
- Δ of rules <u>D</u>efeasible /
 <u>D</u>efault rules that hold in most situations

The set $\Pi := \Pi^F \cup \Pi^G$ is the set of *strict* rules that

- contrary to the defeasible rules are
 - considered to be safe and
 - not doubted in the concrete situation.

Specificity [Quasi-] Orderings on Arguments

 (\mathcal{A}, L) is an *argument* if \mathcal{A} is a set of ground instances of Δ , L is a literal, and $\mathcal{A} \vdash L$.

Specificity [Quasi-] Orderings on Arguments

 (\mathcal{A}, L) is an *argument* if \mathcal{A} is a set of ground instances of Δ , L is a literal, and $\mathcal{A} \vdash L$.

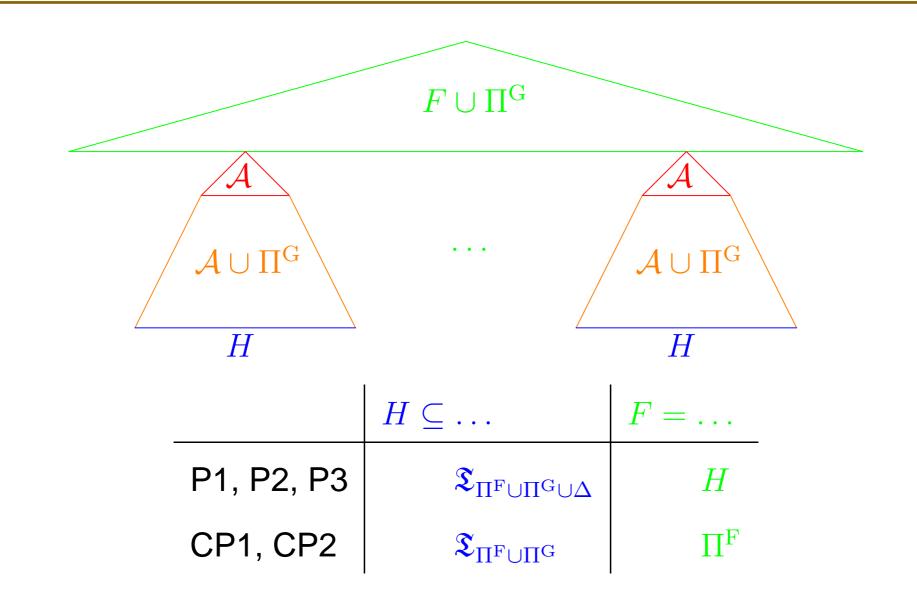
- Non-Transitive Specificity Relations:
 - \lesssim_{P1} David Poole's original
 - \lesssim_{P2} Guillermo R. Simari's minor correction of \lesssim_{P1}
 - \lesssim_{P3} Our minor correction of \lesssim_{P2}

Specificity [Quasi-] Orderings on Arguments

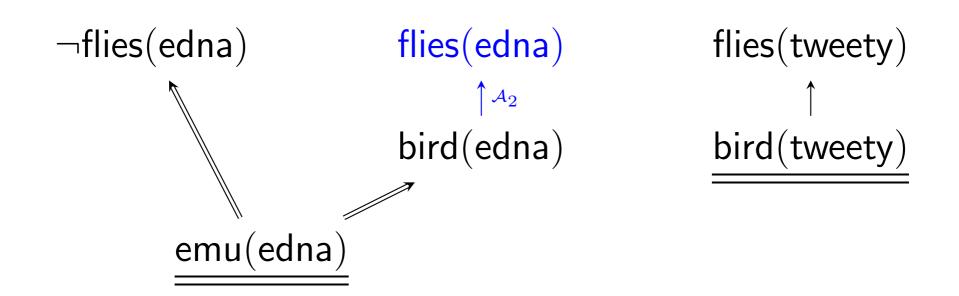
 (\mathcal{A}, L) is an *argument* if \mathcal{A} is a set of ground instances of Δ , L is a literal, and $\mathcal{A} \vdash L$.

- Non-Transitive Specificity Relations:
 - $\lesssim_{\rm P1}$ David Poole's original
 - \lesssim_{P2} Guillermo R. Simari's minor correction of \lesssim_{P1}
 - \lesssim_{P3} Our minor correction of \lesssim_{P2}
- Transitive Specificity Relations (Quasi-Orderings!):
 - $\lesssim_{\rm CP1}$ Compared to $\lesssim_{\rm P3}$:
 - Reduction from $\mathfrak{T}_{\Pi^{F}\cup\Pi^{G}\cup\Delta}$ to $\mathfrak{T}_{\Pi^{F}\cup\Pi^{G}}$.
 - Admission of $\Pi^{\rm F}$ after *completed* defeasible argumentations.
 - \lesssim_{CP2} Efficiency improvement of \lesssim_{CP1}

Defeasible Parts of Derivation w.r.t. $(\Pi^{\rm F}, \Pi^{\rm G}, \Delta)$

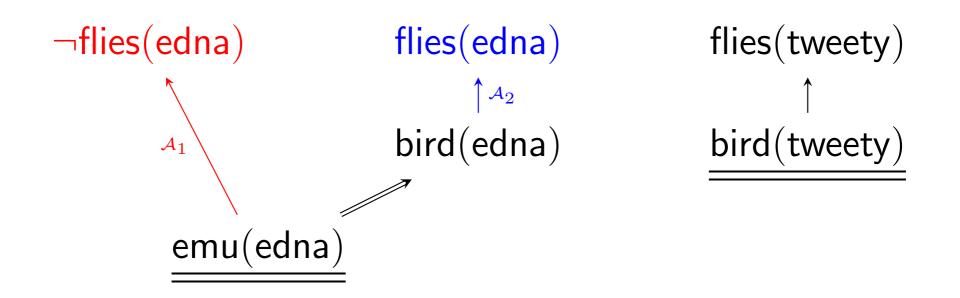


Example 1 of [Poole, 1985]



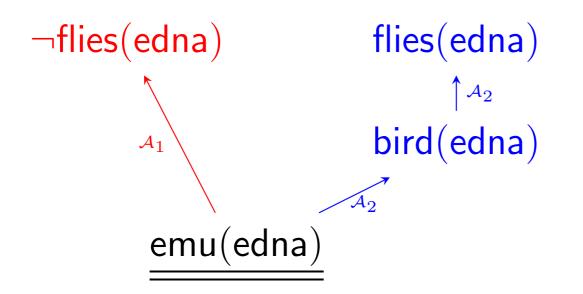
$$\Pi^{\mathrm{F}} := \{ \mathsf{bird}(\mathsf{tweety}), \mathsf{emu}(\mathsf{edna}) \}, \\ \Pi^{\mathrm{G}} := \{ \mathsf{bird}(x) \Leftarrow \mathsf{emu}(x), \neg \mathsf{flies}(x) \Leftarrow \mathsf{emu}(x) \}, \\ \Delta := \{ \mathsf{flies}(x) \leftarrow \mathsf{bird}(x) \}. \\ \mathcal{A}_2 := \{ \mathsf{flies}(\mathsf{edna}) \leftarrow \mathsf{bird}(\mathsf{edna}) \}. \\ (\emptyset, \neg \mathsf{flies}(\mathsf{edna})) <_{\mathrm{P1},\mathrm{P2},\mathrm{P3},\mathrm{CP1},\mathrm{CP2}} (\mathcal{A}_2, \mathsf{flies}(\mathsf{edna})). \end{cases}$$

Ex.2 of [Poole,1985]. Pref. of "More Concise"



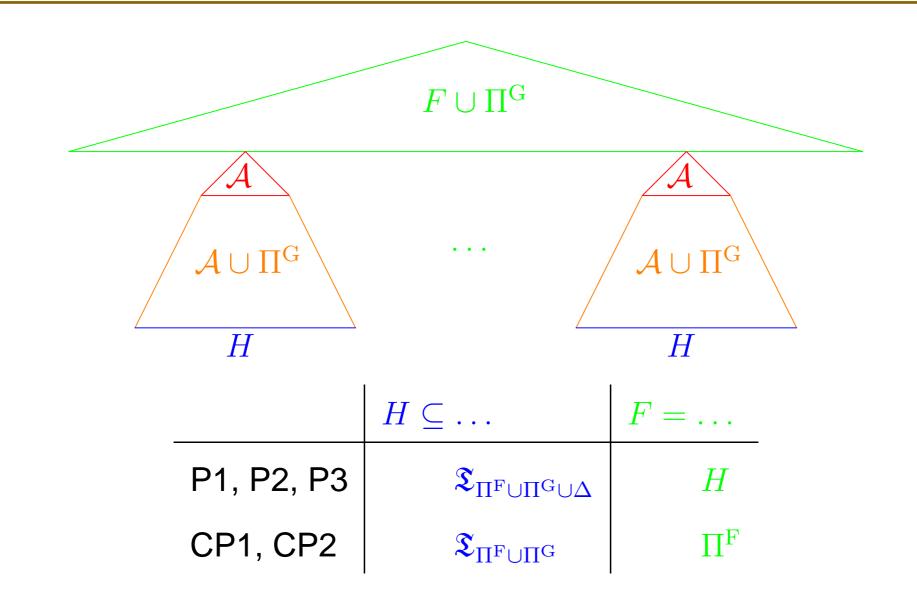
 $\Pi^{\mathrm{F}} := \{ \mathsf{bird}(\mathsf{tweety}), \mathsf{emu}(\mathsf{edna}) \}, \quad \Pi^{\mathrm{G}} := \{ \mathsf{bird}(x) \leftarrow \mathsf{emu}(x) \}, \\ \Delta := \{ \mathsf{flies}(x) \leftarrow \mathsf{bird}(x), \ \neg \mathsf{flies}(x) \leftarrow \mathsf{emu}(x) \}. \\ \mathcal{A}_1 := \{ \neg \mathsf{flies}(\mathsf{edna}) \leftarrow \mathsf{emu}(\mathsf{edna}) \}. \\ \mathcal{A}_2 := \{ \mathsf{flies}(\mathsf{edna}) \leftarrow \mathsf{bird}(\mathsf{edna}) \}. \\ (\mathcal{A}_1, \neg \mathsf{flies}(\mathsf{edna})) <_{\mathrm{P1},\mathrm{P2},\mathrm{P3},\mathrm{CP1},\mathrm{CP2}} (\mathcal{A}_2, \mathsf{flies}(\mathsf{edna})). \end{cases}$

Example 3 of [Poole, 1985] (renamed)



$$\begin{split} \Pi^{\mathrm{F}} &:= \{\mathsf{emu}(\mathsf{edna})\}, \quad \Pi^{\mathrm{G}} := \emptyset \\ \Delta &:= \{\mathsf{flies}(x) \leftarrow \mathsf{bird}(x), \ \neg \mathsf{flies}(x) \leftarrow \mathsf{emu}(x), \ \mathsf{bird}(x) \leftarrow \mathsf{emu}(x)\}. \\ \mathcal{A}_1 &:= \{\neg \mathsf{flies}(\mathsf{edna}) \leftarrow \mathsf{emu}(\mathsf{edna})\}. \\ \mathcal{A}_2 &:= \{\mathsf{flies}(\mathsf{edna}) \leftarrow \mathsf{bird}(\mathsf{edna}), \ \mathsf{bird}(\mathsf{edna}) \leftarrow \mathsf{emu}(\mathsf{edna})\}. \\ (\mathcal{A}_1, \neg \mathsf{flies}(\mathsf{edna})) \approx_{\mathrm{CP1},\mathrm{CP2}} (\mathcal{A}_2, \mathsf{flies}(\mathsf{edna})). \\ (\mathcal{A}_1, \neg \mathsf{flies}(\mathsf{edna})) <_{\mathrm{P1},\mathrm{P2},\mathrm{P3}} (\mathcal{A}_2, \mathsf{flies}(\mathsf{edna})). \end{split}$$

Defeasible Parts of Derivation w.r.t. $(\Pi^{\rm F}, \Pi^{\rm G}, \Delta)$



Computing Specificity Relations

(phase 1) Derive the literals that provide the basis for specificity considerations. CP1/2: $\mathfrak{T}_{\Pi^{F}\cup\Pi^{G}}$. P1–3: $\mathfrak{T}_{\Pi^{F}\cup\Pi^{G}\cup\Delta}$.

Computing Specificity Relations

(phase 1) Derive the literals that provide the basis for specificity considerations. CP1/2: $\mathfrak{T}_{\Pi^{F}\cup\Pi^{G}}$. P1–3: $\mathfrak{T}_{\Pi^{F}\cup\Pi^{G}\cup\Delta}$.

(phase 2) On the basis of

- \blacksquare a subset *H* of the literals derived in phase 1,
- the first item \mathcal{A} of a given argument (\mathcal{A}, L) , and
- the general rules Π^{G} ,

we derive a further set of literals $\mathfrak{E}: H \cup \mathcal{A} \cup \Pi^{G} \vdash \mathfrak{E}$.

Computing Specificity Relations

(phase 1) Derive the literals that provide the basis for specificity considerations. CP1/2: $\mathfrak{T}_{\Pi^{F}\cup\Pi^{G}}$. P1–3: $\mathfrak{T}_{\Pi^{F}\cup\Pi^{G}\cup\Delta}$.

(phase 2) On the basis of

a subset H of the literals derived in phase 1,

- the first item \mathcal{A} of a given argument (\mathcal{A}, L) , and
- the general rules Π^{G} ,

we derive a further set of literals $\mathfrak{E}: H \cup \mathcal{A} \cup \Pi^{G} \vdash \mathfrak{E}$.

(phase 3) On the basis of \mathfrak{E} , the literal of the argument is derived: $\mathfrak{E} \cup \Pi^{\mathrm{F}} \cup \Pi^{\mathrm{G}} \vdash \{L\}.$

P1–3: phase 3 is empty: $\mathfrak{L} = \{L\}$.

CP1/2: It is admitted to use the facts from Π^F in phase 3, in addition to the general rules from Π^G .

Definition [Minimal] [Simplified] Activation Set

Let \mathcal{A} be a set of ground instances of rules from Δ , and let L be a literal.

H is a simplified activation set for (\mathcal{A}, L) if $L \in \mathfrak{T}_{H \cup \mathcal{A} \cup \Pi^{G}}$.

H is an *activation set* for (\mathcal{A}, L) if, for some $\mathfrak{L} \subseteq \mathfrak{T}_{H \cup \mathcal{A} \cup \Pi^{G}}$, $L \in \mathfrak{T}_{\mathfrak{E} \cup \Pi^{F} \cup \Pi^{G}}$.

Definition [Minimal] [Simplified] Activation Set

Let \mathcal{A} be a set of ground instances of rules from Δ , and let L be a literal.

H is a simplified activation set for (\mathcal{A}, L) if $L \in \mathfrak{T}_{H \cup \mathcal{A} \cup \Pi^{G}}$.

H is an *activation set* for (\mathcal{A}, L) if, for some $\mathfrak{L} \subseteq \mathfrak{T}_{H \cup \mathcal{A} \cup \Pi^{G}}$, $L \in \mathfrak{T}_{\mathfrak{L} \cup \Pi^{F} \cup \Pi^{G}}$.

H is a *minimal* [*simplified*] *activation set for* (A, L) if *H* is an [simplified] activation set for (A, L), but no proper subset of *H* is an [simplified] activation set

for (\mathcal{A}, L) .

Definitions of \leq_{CP1} and \leq_{P3}

 $(A_1, L_1) \lesssim_{CP1} (A_2, L_2)$ if (A_1, L_1) and (A_2, L_2) are arguments, and we have

- 1. $L_1 \in \mathfrak{T}_{\Pi^{\mathrm{F}} \cup \Pi^{\mathrm{G}}}$ or
- 2. $L_2 \notin \mathfrak{T}_{\Pi^F \cup \Pi^G}$ and every $H \subseteq \mathfrak{T}_{\Pi^F \cup \Pi^G}$ that is an [minimal] activation set for (\mathcal{A}_1, L_1) is also an activation set for (\mathcal{A}_2, L_2) .

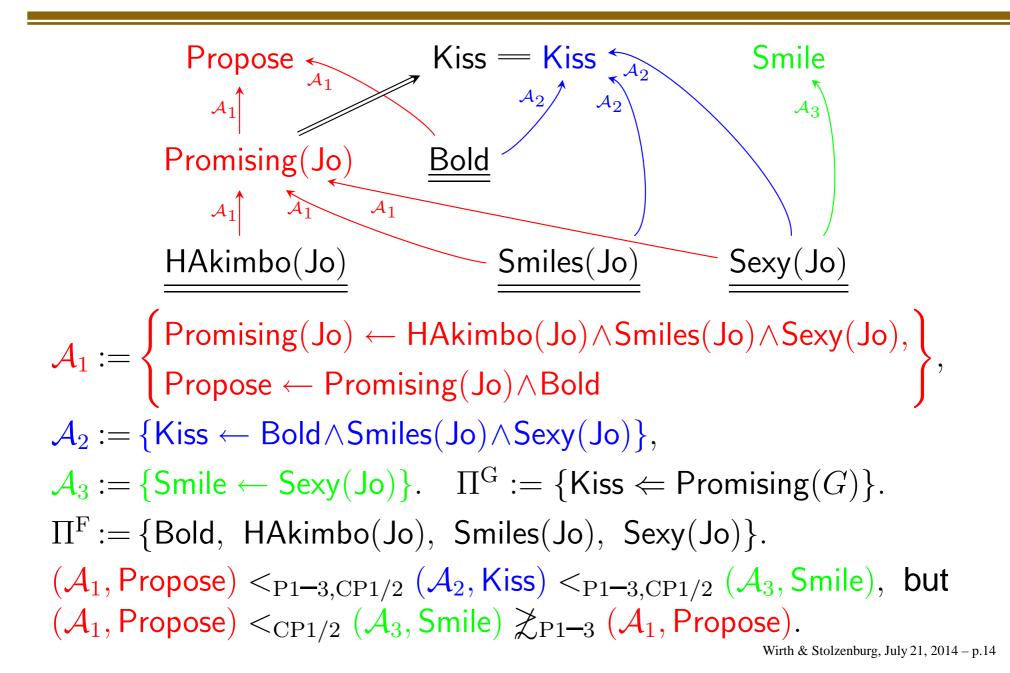
Definitions of \leq_{CP1} and \leq_{P3}

 $(A_1, L_1) \lesssim_{CP1} (A_2, L_2)$ if (A_1, L_1) and (A_2, L_2) are arguments, and we have

- 1. $L_1 \in \mathfrak{T}_{\Pi^{\mathrm{F}} \cup \Pi^{\mathrm{G}}}$ or
- 2. $L_2 \notin \mathfrak{T}_{\Pi^F \cup \Pi^G}$ and every $H \subseteq \mathfrak{T}_{\Pi^F \cup \Pi^G}$ that is an [minimal] activation set for (\mathcal{A}_1, L_1) is also an activation set for (\mathcal{A}_2, L_2) .

 $(\mathcal{A}_1, L_1) \lesssim_{\mathrm{P3}} (\mathcal{A}_2, L_2)$ if (\mathcal{A}_1, L_1) and (\mathcal{A}_2, L_2) are arguments, $L_2 \in \mathfrak{T}_{\Pi^F \cup \Pi^G}$ implies $L_1 \in \mathfrak{T}_{\Pi^F \cup \Pi^G}$, and, for every $H \subseteq \mathfrak{T}_{\Pi^F \cup \Pi^G \cup \Delta}$ that is a [minimal] simplified activation set for (\mathcal{A}_1, L_1) but not a simplified activation set for (\emptyset, L_1) , H is also a simplified activation set for (\mathcal{A}_2, L_2) .

Example Not Transitive. Pref. of "More Precise"



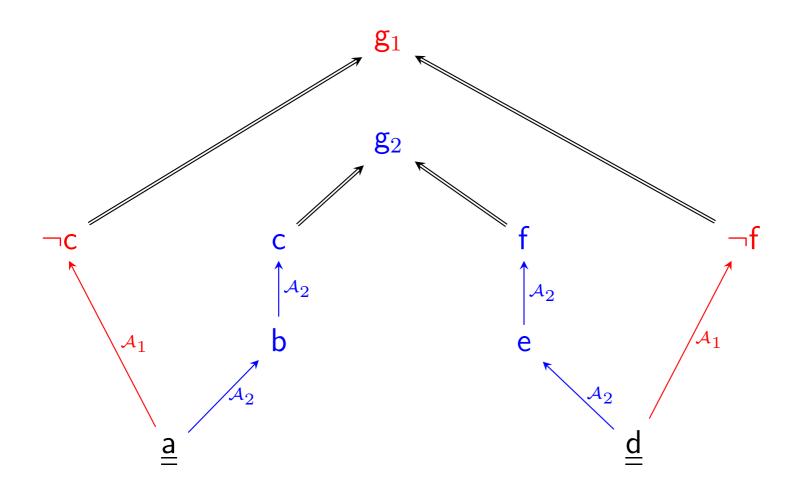
Conclusion: Novel Specificity Relations are ...

Transitive!

- Monotonic w.r.t. Conjunction!
- Even More Intuitive!
- Slightly More Efficient!
- More Comparing?

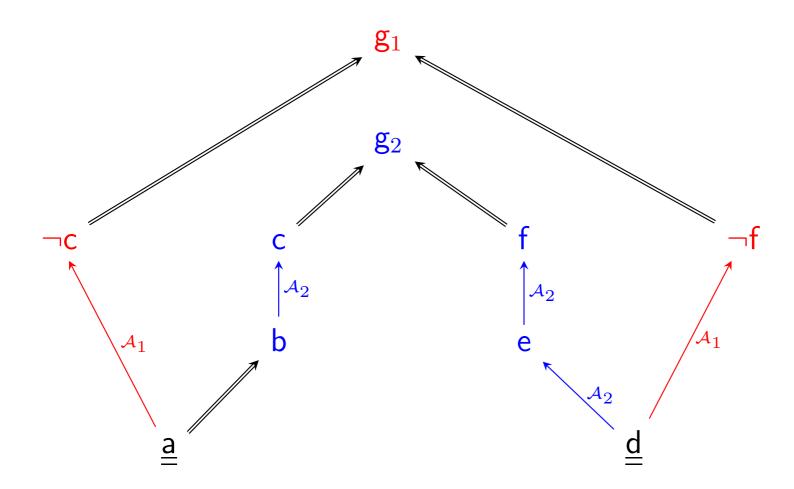
Theorem: $\leq_{P3} \subseteq \leq_{CP1}$. Corollary: $\Delta_{CP1} \subseteq \Delta_{P3}$. But in general: $<_{P3} \not\subseteq <_{CP1}$. Luckily! (Otherwise monotonicity w.r.t. \land would be lost.)

[Poole,1985,Example 6]: Monotonicity w.r.t. \land

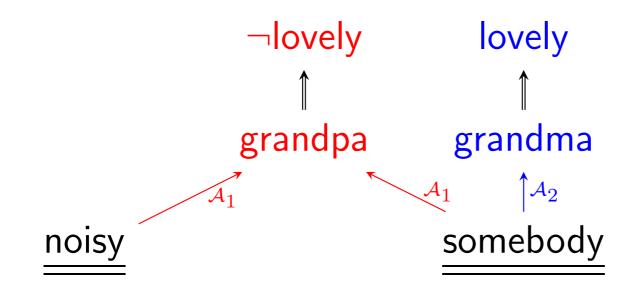


 $(\mathcal{A}_{1},\neg \mathsf{c}) <_{\mathrm{P1}-3}(\mathcal{A}_{2},\mathsf{c}), (\mathcal{A}_{1},\neg \mathsf{f}) <_{\mathrm{P1}-3}(\mathcal{A}_{2},\mathsf{f}), \mathsf{but}(\mathcal{A}_{1},\mathsf{g}_{1}) \triangle_{\mathrm{P1}-3}(\mathcal{A}_{2},\mathsf{g}_{2}).$ $(\mathcal{A}_{1},\neg \mathsf{c}) \approx_{\mathrm{CP1}/2} (\mathcal{A}_{2},\mathsf{c}), (\mathcal{A}_{1},\neg \mathsf{f}) \approx_{\mathrm{CP1}/2} (\mathcal{A}_{2},\mathsf{f}), \mathsf{so}(\mathcal{A}_{1},\mathsf{g}_{1}) \approx_{\mathrm{CP1}/2} (\mathcal{A}_{2},\mathsf{g}_{2}).$

1st Variation of [Poole,1985,Example 6]

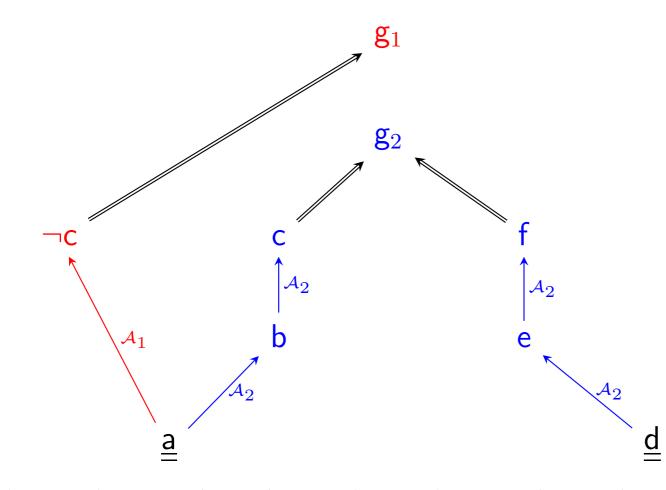


 $(\mathcal{A}_{1},\neg \mathsf{c}) <_{\mathrm{P1-3}}(\mathcal{A}_{2},\mathsf{c}), (\mathcal{A}_{1},\neg \mathsf{f}) <_{\mathrm{P1-3}}(\mathcal{A}_{2},\mathsf{f}), \mathsf{but}(\mathcal{A}_{1},\mathsf{g}_{1}) \triangle_{\mathrm{P1-3}}(\mathcal{A}_{2},\mathsf{g}_{2}).$ $(\mathcal{A}_{1},\neg \mathsf{c}) <_{\mathrm{CP1/2}}(\mathcal{A}_{2},\mathsf{c}), (\mathcal{A}_{1},\neg \mathsf{f}) \approx_{\mathrm{CP1/2}}(\mathcal{A}_{2},\mathsf{f}), \mathsf{SO}(\mathcal{A}_{1},\mathsf{g}_{1}) <_{\mathrm{CP1/2}}(\mathcal{A}_{2},\mathsf{g}_{2}).$



 $(\mathcal{A}_1, \neg \mathsf{lovely}) <_{\mathrm{P1-3}} (\mathcal{A}_2, \mathsf{lovely}).$ $(\mathcal{A}_1, \neg \mathsf{lovely}) <_{\mathrm{CP1/2}} (\mathcal{A}_2, \mathsf{lovely}).$

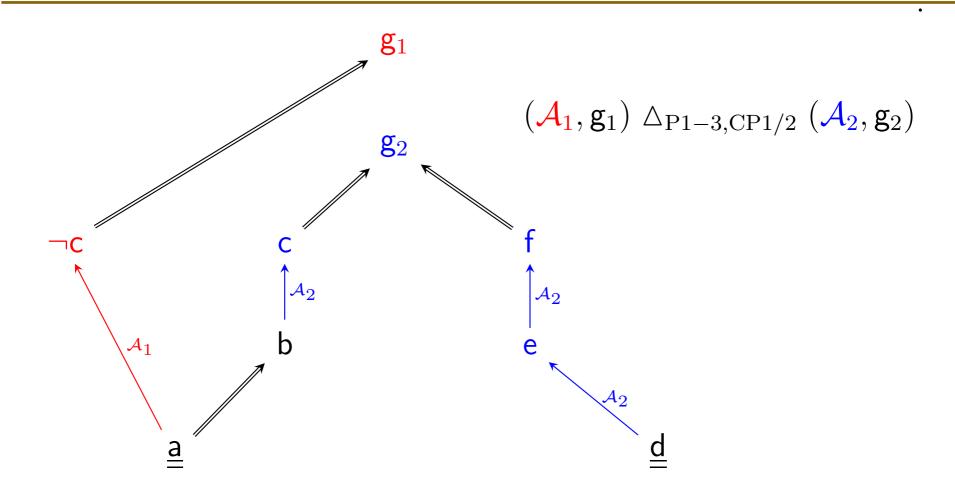
"More Precise", 2nd Var. of [Poole, 1985, Ex. 6]



 $(\mathcal{A}_1, \neg \mathsf{c}) <_{\mathrm{P1-3}} (\mathcal{A}_2, \mathsf{c}), \mathsf{but} (\mathcal{A}_1, \mathsf{g}_1) \triangle_{\mathrm{P1-3}} (\mathcal{A}_2, \mathsf{g}_2).$

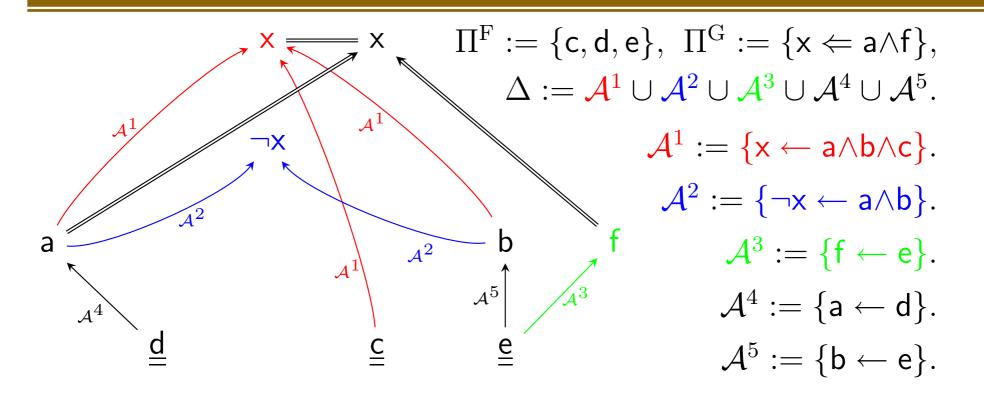
 $(\mathcal{A}_1,\neg c)\approx_{\mathrm{CP1/2}}(\mathcal{A}_2,c),$ but $(\mathcal{A}_1,g_1)>_{\mathrm{CP1/2}}(\mathcal{A}_2,g_2),$ "more precise".

"Precise vs. Concise", 3rd Var. [Poole, 1985, Ex. 6]



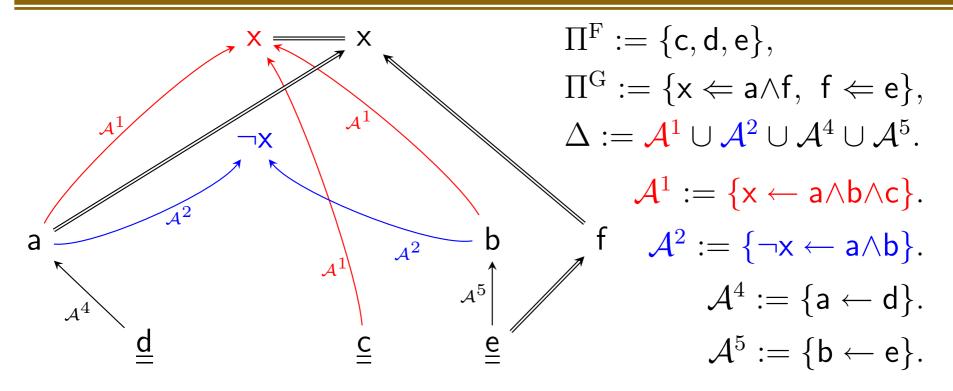
The conflict between a being "more concise" than b and $b \wedge d$ being "more precise" than a is indeed irresolvable.

[Stolzenbg, 2003, Ex.11]: No Pruning for \leq_{P3} !



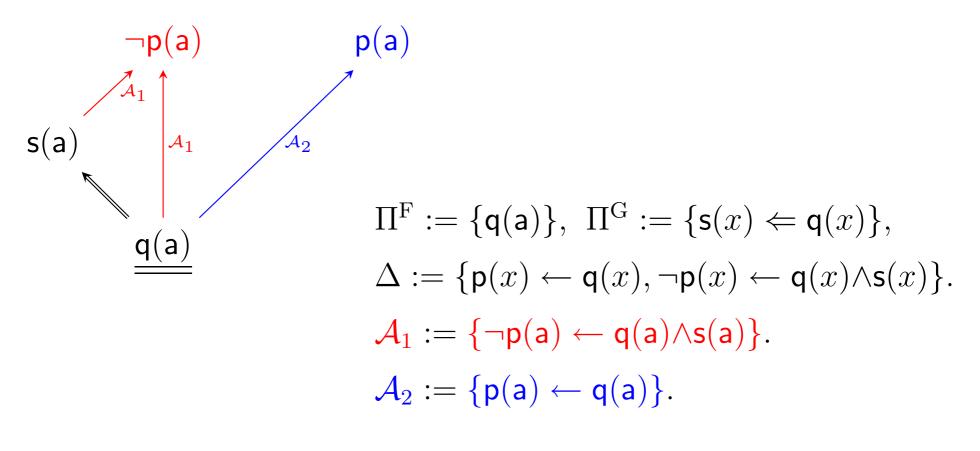
 $(\mathcal{A}^1 \cup \mathcal{A}^4 \cup \mathcal{A}^5, \mathbf{x}) <_{CP1/2} (\mathcal{A}^2 \cup \mathcal{A}^4 \cup \mathcal{A}^5, \neg \mathbf{x}) \approx_{CP1/2} (\mathcal{A}^3 \cup \mathcal{A}^4, \mathbf{x}).$ All \lesssim_{P1-3} -incomparable! For $(\mathcal{A}^1 \cup \mathcal{A}^4 \cup \mathcal{A}^5, \mathbf{x}) \not\leq_{P3} (\mathcal{A}^2 \cup \mathcal{A}^4 \cup \mathcal{A}^5, \neg \mathbf{x})$ we have to consider (implicitly via $\{d, f\} \subseteq \mathfrak{T}_{\Pi^F \cup \Pi^G \cup \Delta}$) the defeasible rule of \mathcal{A}^3 , which is not part of any of the two arguments under comparison. No pruning possible for \leq_{P1-3} -interval.

Variation of [Stolzenbg, 2003, Ex.11]



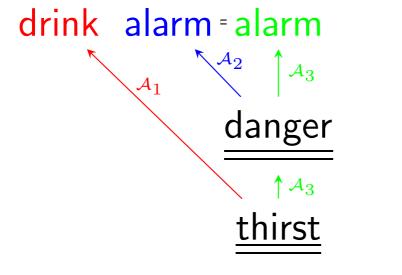
 $\begin{aligned} (\mathcal{A}^4, \mathsf{x}) \approx_{\mathrm{CP1/2}} (\mathcal{A}^1 \cup \mathcal{A}^4 \cup \mathcal{A}^5, \mathsf{x}) >_{\mathrm{CP1/2}} (\mathcal{A}^2 \cup \mathcal{A}^4 \cup \mathcal{A}^5, \neg \mathsf{x}). \\ \text{Makes sense because } d \wedge e \text{ is more precise (specific) than d.} \\ c \wedge d \wedge e \text{ is irrelevant because approach is model-theoretic.} \\ (\mathcal{A}^4, \mathsf{x}) <_{\mathrm{P1-3}} (\mathcal{A}^1 \cup \mathcal{A}^4 \cup \mathcal{A}^5, \mathsf{x}) \ \Delta_{\mathrm{P1-3}} (\mathcal{A}^2 \cup \mathcal{A}^4 \cup \mathcal{A}^5, \neg \mathsf{x}) \ \Delta_{\mathrm{P1-3}} \\ (\text{Bullshit!}) \\ \end{aligned}$

[Stolzenburg, 2003, Ex. p.95]: Global Effect!



 $(\mathcal{A}_1, \neg \mathsf{p}(\mathsf{a})) \approx_{\mathrm{P1}-3, \mathrm{CP1}/2} (\mathcal{A}_2, \mathsf{p}(\mathsf{a})).$

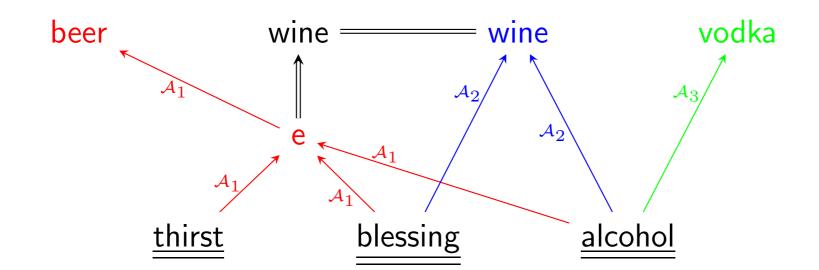
 $\leq_{\rm CP1}$ vs. $\leq_{\rm CP2}$



$$\begin{split} \Pi^{\mathrm{F}} &:= \{ \mathsf{thirst}, \mathsf{danger} \}, \\ \Pi^{\mathrm{G}} &:= \emptyset, \quad \Delta := \mathcal{A}_1 \cup \mathcal{A}_3, \\ \mathcal{A}_1 &:= \{ \mathsf{drink} \leftarrow \mathsf{thirst} \}, \\ \mathcal{A}_2 &:= \{ \mathsf{alarm} \leftarrow \mathsf{danger} \}. \\ \mathcal{A}_3 &:= \mathcal{A}_2 \cup \{ \mathsf{danger} \leftarrow \mathsf{thirst} \}. \end{split}$$

 $\begin{aligned} & (\mathcal{A}_{2}, \mathsf{alarm}) <_{\mathrm{CP1}} (\mathcal{A}_{3}, \mathsf{alarm}) \approx_{\mathrm{CP2}} (\mathcal{A}_{2}, \mathsf{alarm}) \\ & (\mathcal{A}_{1}, \mathsf{drink}) <_{\mathrm{CP1}} (\mathcal{A}_{3}, \mathsf{alarm}) \vartriangle_{\mathrm{CP2}} (\mathcal{A}_{1}, \mathsf{drink}) \\ & (\mathcal{A}_{1}, \mathsf{drink}) \bigtriangleup_{\mathrm{CP1}} (\mathcal{A}_{2}, \mathsf{alarm}) \bigtriangleup_{\mathrm{CP2}} (\mathcal{A}_{1}, \mathsf{drink}) \end{aligned}$

Example Not Transitive. Pref. of "More Precise"



 $\mathcal{A}_1 := \{ \mathsf{e} \leftarrow \mathsf{alcohol} \land \mathsf{blessing} \land \mathsf{thirst}, \mathsf{beer} \leftarrow \mathsf{e} \},\$ $\mathcal{A}_2 := \{ wine \leftarrow alcohol \land blessing \}, \}$ $\mathcal{A}_3 := \{ \mathsf{vodka} \leftarrow \mathsf{alcohol} \}, \quad \Delta := \mathcal{A}_1 \cup \mathcal{A}_2 \cup \mathcal{A}_3,$ $\Pi^{\mathrm{F}} := \{ \mathsf{alcohol}, \mathsf{blessing}, \mathsf{thirst} \}, \quad \Pi^{\mathrm{G}} := \{ \mathsf{wine} \leftarrow \mathsf{e} \},$ $(A_1, beer) <_{P1-3,CP1/2} (A_2, wine) <_{P1-3,CP1/2} (A_3, vodka), but$ $(\mathcal{A}_1, \mathsf{beer}) <_{\mathrm{CP1/2}} (\mathcal{A}_3, \mathsf{vodka}) \not\geq_{\mathrm{P1-3}} (\mathcal{A}_1, \mathsf{beer}).$

A *quasi-ordering* is a reflexive transitive relation. An *(irreflexive) ordering* is an irreflexive transitive relation. A *reflexive ordering* (also called: "partial ordering") is an anti-symmetric quasi-ordering.

An equivalence is a symmetric quasi-ordering.

We will use several binary relations \leq_N comparing arguments according to their specificity.

Corollary 0 If \leq_N is a quasi-ordering, then its equivalence \approx_N is an equivalence, its ordering $<_N$ is an ordering, and its reflexive ordering \leq_N is a reflexive ordering.

Abstract Specificity Orderings

For any relation written as \leq_N ("being more or equivalently specific w.r.t. *N*"), we define:

 $\gtrsim_N := \{ (X,Y) \mid Y \leq_N X \}$ ("less or equivalently specific"), $\approx_N := \leq_N \cap \geq_N$ ("equivalently specific"), $<_N$:= $\leq_N \setminus \geq_N$ ("properly more specific"), $\leq_N := \langle X \cup \{ (X, X) \mid X \text{ is an argument } \}$ ("more specific or equal"), $\Delta_N := \left\{ \begin{array}{c} (X,Y) \\ X \not\leq_N Y \text{ are arguments with} \\ X \not\leq_N Y \text{ and } X \not\geq_N Y \end{array} \right\}$

("incomparable w.r.t. specificity").

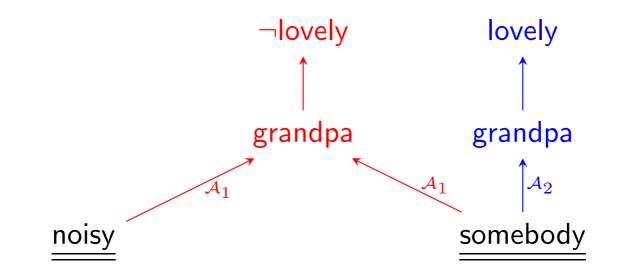
Efficiency Considerations

- Let *H* be a set of hypotheses. Then, roughly speaking, $(A_1, L_1) \leq (A_2, L_2)$ if every activation set *H* for (A_1, L_1) is also one for (A_2, L_2) .
- Naïve procedure enumerates possible activation sets, which is exponential in the number of possible hypothesis literals.
- Clearly, the effort for computing \leq_{CP1} is lower than that of \leq_{P3} because of $\mathfrak{T}_{\Pi} \subseteq \mathfrak{T}_{\Pi \cup \Delta}$.
- While checking S_{Px}, attention cannot be restricted to derivations which make use only of defeasible rules given in the arguments. Therefore, [Stolzenburg&al, 2003] introduce pruning derivation trees.

Path Characterization for Specificity

- $(\mathcal{A}_1, L_1) \leq (\mathcal{A}_2, L_2)$ if (\mathcal{A}_1, L_1) and (\mathcal{A}_2, L_2) are two arguments in the given specification and for each derivation tree T_1 for L_1 there is a derivation tree T_2 for L_2 such that $T_1 \leq T_2$.
- Let T_1 and T_2 be derivation trees. Then, $T_1 \leq T_2$ if for each $t_2 \in \text{Paths}(T_2)$ there is a path $t_1 \in \text{Paths}(T_1)$ such that $t_1 \subseteq t_2$ (omitting the root nodes).
- If the arguments involved in the comparison correspond to exactly one and-tree, then ≤_{P2} coincides with the path characterization (≤ and ≤). Cf. Example 1 of [Poole, 1985].
- Two and-trees can be compared efficiently w.r.t. <a>!. It requires pairwise comparison of all nodes in the trees for each path. Hence, the respective complexity is polynomial in the size of the derivation trees.

Path vs. Argument Characterization



- Poole's specificity: $(A_1, \neg \text{lovely}) <_{P1-3} (A_2, \text{lovely})$
- Corrected version: $(A_1, \neg \text{lovely}) <_{CP1/2} (A_2, \text{lovely})$
- Path characterization: (A₁,¬lovely) ≤ (A₂,lovely)
 {{noisy, grandpa}, {someb., grandpa}} {{someb., grandpa}}
 {{someb., grandpa}} {{someb., grandpa}}
 Argument sets: (A₁,¬lovely) ⊑ (A₂,lovely)
 {{noisy, somebody}, {grandpa}} {{somebody}, {grandpa}}

Back to the Arguments

- Characterization dual to ≤ based on the rules in the arguments:
- Let (A_1, L_1) and (A_2, L_2) be two arguments and R_i (i = 1, 2)be the set of (strict and defeasible) rule bodies used in the respective proofs. We define: $R_1 \sqsubseteq R_2$ if for all $r_1 \in R_1$ there exists an $r_2 \in R_2$ such that $r_2 \subseteq r_1$.
- Simplified version: Interpret
 simply as subset (w.r.t. complete rule sets).
- This is close to the notion *more conservative than* [Besnard&Hunter, 2001]: $A_1 \subseteq A_2$ and $L_2 \vdash L_1$.
- Checking ⊆ on ground literal sets can be done efficiently (NP-complete for general literals).

Further Conclusions

- Computing S_{CPx} can be done by a modified SLD-resolution procedure, but has to enumerate all possible derivations for each query.
- Path (⊴) and argument (□) characterizations can be computed efficiently. However, they coincide with specificity notion only in special cases (e.g. no strict rules).
- Further investigation is required ...
- Thank you very much for your attention!