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Theory TΠ / Derivability ⊢

A literal L is an atom A or a negated atom ¬A.

The negation symbol “¬” provides an interface to the applica-
tion context, but is not active in the notion of derivability.
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Theory TΠ / Derivability ⊢

A literal L is an atom A or a negated atom ¬A.

The negation symbol “¬” provides an interface to the applica-
tion context, but is not active in the notion of derivability.

Let Π be a set of rules of the form L
[
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Theory TΠ / Derivability ⊢

A literal L is an atom A or a negated atom ¬A.

The negation symbol “¬” provides an interface to the applica-
tion context, but is not active in the notion of derivability.

Let Π be a set of rules of the form L
[

⇐ L′
0
∧ . . . ∧ L′

n

]

.

The theory TΠ is inductively defined to contain

all instances of literals from Π, and

all literals L for which there is a conjunction C of literals
from TΠ such that L⇐ C is an instance of a rule in Π.
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Theory TΠ / Derivability ⊢

A literal L is an atom A or a negated atom ¬A.

The negation symbol “¬” provides an interface to the applica-
tion context, but is not active in the notion of derivability.

Let Π be a set of rules of the form L
[

⇐ L′
0
∧ . . . ∧ L′

n

]

.

The theory TΠ is inductively defined to contain

all instances of literals from Π, and

all literals L for which there is a conjunction C of literals
from TΠ such that L⇐ C is an instance of a rule in Π.

For L ⊆ TΠ , we also write Π ⊢ L.
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Specifications will always be given by 3 Sets:

ΠF of literals —
Facts of the concrete situation under consideration
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Specifications will always be given by 3 Sets:

ΠF of literals —
Facts of the concrete situation under consideration

ΠG of rules —
General rules that hold in all possible worlds

∆ of rules — Defeasible /
Default rules that hold in most situations

The set Π := ΠF ∪ ΠG is the set of strict rules that
— contrary to the defeasible rules — are

considered to be safe and
not doubted in the concrete situation.
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Specificity [Quasi- ] Orderings on Arguments

(A, L) is an argument if A is a set of ground instances of ∆,

L is a literal, and A ⊢ L.
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Specificity [Quasi- ] Orderings on Arguments

(A, L) is an argument if A is a set of ground instances of ∆,

L is a literal, and A ⊢ L.

Non-Transitive Specificity Relations:

.P1 David Poole’s original

.P2 Guillermo R. Simari’s minor correction of .P1

.P3 Our minor correction of .P2
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Specificity [Quasi- ] Orderings on Arguments

(A, L) is an argument if A is a set of ground instances of ∆,

L is a literal, and A ⊢ L.

Non-Transitive Specificity Relations:

.P1 David Poole’s original

.P2 Guillermo R. Simari’s minor correction of .P1

.P3 Our minor correction of .P2

Transitive Specificity Relations (Quasi-Orderings!):

.CP1 Compared to .P3:
– Reduction from TΠF∪ΠG∪∆ to TΠF∪ΠG .
– Admission of ΠF after completed

defeasible argumentations.

.CP2 Efficiency improvement of .CP1
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Defeasible Parts of Derivation w.r.t. (ΠF, ΠG, ∆)

F ∪ ΠG

. . .

A

A ∪ ΠG

H

A

A ∪ ΠG

H

H ⊆ . . . F = . . .

P1, P2, P3 TΠF∪ΠG∪∆ H

CP1, CP2 TΠF∪ΠG ΠF
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Example 1 of [Poole, 1985]

¬flies(edna) flies(edna) flies(tweety)

bird(edna) bird(tweety)

emu(edna)

A2

ΠF := {bird(tweety), emu(edna)},
ΠG := {bird(x)⇐ emu(x), ¬flies(x)⇐ emu(x)},
∆ := {flies(x)← bird(x)}.
A2 := {flies(edna)← bird(edna)}.
(∅,¬flies(edna)) <P1,P2,P3,CP1,CP2 (A2, flies(edna)).
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Ex.2 of [Poole,1985]. Pref. of “More Concise”

¬flies(edna) flies(edna) flies(tweety)

bird(edna) bird(tweety)

emu(edna)

A2

A1

ΠF := {bird(tweety), emu(edna)}, ΠG := {bird(x)⇐ emu(x)},

∆ := {flies(x)← bird(x), ¬flies(x)← emu(x)}.

A1 := {¬flies(edna)← emu(edna)}.

A2 := {flies(edna)← bird(edna)}.

(A1,¬flies(edna)) <P1,P2,P3,CP1,CP2 (A2, flies(edna)).
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Example 3 of [Poole, 1985] (renamed)

¬flies(edna) flies(edna)

bird(edna)

emu(edna)

A2

A2

A1

ΠF := {emu(edna)}, ΠG := ∅
∆ := {flies(x)← bird(x), ¬flies(x)← emu(x), bird(x)← emu(x)}.
A1 := {¬flies(edna)← emu(edna)}.
A2 := {flies(edna)← bird(edna), bird(edna)← emu(edna)}.
(A1,¬flies(edna)) ≈CP1,CP2 (A2, flies(edna)).
(A1,¬flies(edna)) <P1,P2,P3 (A2, flies(edna)).
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Defeasible Parts of Derivation w.r.t. (ΠF, ΠG, ∆)

F ∪ ΠG

. . .

A

A ∪ ΠG

H

A

A ∪ ΠG

H

H ⊆ . . . F = . . .

P1, P2, P3 TΠF∪ΠG∪∆ H

CP1, CP2 TΠF∪ΠG ΠF
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Computing Specificity Relations

(phase 1) Derive the literals that provide the basis for specifi-
city considerations. CP1/2: TΠF∪ΠG . P1–3: TΠF∪ΠG∪∆.
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Computing Specificity Relations

(phase 1) Derive the literals that provide the basis for specifi-
city considerations. CP1/2: TΠF∪ΠG. P1–3: TΠF∪ΠG∪∆.

(phase 2) On the basis of
a subset H of the literals derived in phase 1,
the first item A of a given argument (A, L), and
the general rules ΠG,

we derive a further set of literals L : H ∪ A ∪ ΠG ⊢ L.
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Computing Specificity Relations

(phase 1) Derive the literals that provide the basis for specifi-
city considerations. CP1/2: TΠF∪ΠG. P1–3: TΠF∪ΠG∪∆.

(phase 2) On the basis of
a subset H of the literals derived in phase 1,
the first item A of a given argument (A, L), and
the general rules ΠG,

we derive a further set of literals L : H ∪ A ∪ ΠG ⊢ L.
(phase 3) On the basis of L, the literal of the argument is

derived: L ∪ ΠF ∪ ΠG ⊢ {L}.
P1–3: phase 3 is empty: L= {L}.
CP1/2: It is admitted to use the facts from ΠF in phase 3,
in addition to the general rules from ΠG.
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Definition [Minimal ] [Simplified ] Activation Set

Let A be a set of ground instances of rules from ∆, and
let L be a literal.

H is a simplified activation set for (A, L) if L ∈ TH ∪A∪ΠG .

H is an activation set for (A, L) if, for some L ⊆ TH ∪A∪ΠG ,

L ∈ T L∪ΠF∪ΠG .
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Definition [Minimal ] [Simplified ] Activation Set

Let A be a set of ground instances of rules from ∆, and
let L be a literal.

H is a simplified activation set for (A, L) if L ∈ TH ∪A∪ΠG .

H is an activation set for (A, L) if, for some L ⊆ TH ∪A∪ΠG ,

L ∈ T L∪ΠF∪ΠG .

H is a minimal [simplified ] activation set for (A, L) if
H is an [simplified] activation set for (A, L),

but no proper subset of H is an [simplified] activation set
for (A, L).
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Definitions of .CP1 and .P3

(A1, L1) .CP1 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and

we have

1. L1 ∈TΠF∪ΠG or

2. L2 6∈TΠF∪ΠG and

every H ⊆ TΠF∪ΠG that is an [minimal] activation set for (A1, L1)

is also an activation set for (A2, L2).

T T

T
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Definitions of .CP1 and .P3

(A1, L1) .CP1 (A2, L2) if (A1, L1) and (A2, L2) are arguments, and

we have

1. L1 ∈TΠF∪ΠG or

2. L2 6∈TΠF∪ΠG and

every H ⊆ TΠF∪ΠG that is an [minimal] activation set for (A1, L1)

is also an activation set for (A2, L2).

(A1, L1) .P3 (A2, L2) if (A1, L1) and (A2, L2) are arguments,

L2 ∈TΠF∪ΠG implies L1 ∈TΠF∪ΠG , and,

for every H ⊆ TΠF∪ΠG∪∆

that is a [minimal] simplified activation set for (A1, L1)

but not a simplified activation set for (∅, L1),

H is also a simplified activation set for (A2, L2).
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Example Not Transitive. Pref. of “More Precise”

Propose Kiss Kiss Smile

Promising(Jo) Bold

HAkimbo(Jo) Smiles(Jo) Sexy(Jo)

A1A1A1

A1

A1
A2

A2
A2 A3

A1 :=

{

Promising(Jo)← HAkimbo(Jo)∧Smiles(Jo)∧Sexy(Jo),

Propose← Promising(Jo)∧Bold

}

,

A2 := {Kiss← Bold∧Smiles(Jo)∧Sexy(Jo)},

A3 := {Smile← Sexy(Jo)}. ΠG := {Kiss⇐ Promising(G)}.

ΠF := {Bold, HAkimbo(Jo), Smiles(Jo), Sexy(Jo)}.

(A1, Propose) <P1–3,CP1/2 (A2, Kiss) <P1–3,CP1/2 (A3, Smile), but
(A1, Propose) <CP1/2 (A3, Smile) 6&P1–3 (A1, Propose).
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Conclusion: Novel Specificity Relations are . . .

Transitive!

Monotonic w.r.t. Conjunction!

Even More Intuitive!

Slightly More Efficient!

More Comparing?
Theorem: .P3 ⊆ .CP1.
Corollary: △CP1 ⊆ △P3.
But in general: <P3 * <CP1. Luckily!

(Otherwise monotonicity w.r.t. ∧ would be lost.)
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[Poole,1985,Example 6]: Monotonicity w.r.t. ∧

g1

g2

¬c c f ¬f

b e

a d

A2

A2

A1

A2

A2

A1

(A1,¬c)<P1–3(A2,c), (A1,¬f)<P1–3(A2,f), but (A1,g1)△P1–3(A2,g2).

(A1,¬c)≈CP1/2(A2,c), (A1,¬f)≈CP1/2(A2,f), so (A1,g1)≈CP1/2(A2,g2).
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1st Variation of [Poole,1985,Example 6]

g1

g2

¬c c f ¬f

b e

a d

A2

A1

A2

A2

A1

(A1,¬c)<P1–3(A2,c), (A1,¬f)<P1–3(A2,f), but (A1,g1)△P1–3(A2,g2).

(A1,¬c)<CP1/2(A2,c), (A1,¬f)≈CP1/2(A2,f), so (A1,g1)<CP1/2(A2,g2).
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“More Precise”

¬lovely lovely

grandpa grandma

noisy somebody

A1
A1 A2

(A1,¬lovely) <P1–3 (A2,lovely).

(A1,¬lovely)<CP1/2(A2,lovely).
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“More Precise”, 2 nd Var. of [Poole,1985,Ex. 6]

g1

g2

¬c c f

b e

a d

A2

A2

A1

A2

A2

(A1,¬c)<P1–3(A2,c), but (A1,g1)△P1–3(A2,g2).

(A1,¬c)≈CP1/2(A2,c), but (A1,g1)>CP1/2(A2,g2), “more precise”.
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“Precise vs. Concise”, 3 rdVar.[Poole,1985,Ex. 6]

g1

g2

¬c c f

b e

a d

A2

A1

A2

A2

(A1, g1) △P1−3,CP1/2 (A2, g2)

.

The conflict between a being “more concise” than b and
b∧d being “more precise” than a is indeed irresolvable.
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[Stolzenbg, 2003, Ex.11]: No Pruning for .P3!

x x

¬x

a b f

d c e

A
1

A
1

A
1

A
2

A
2

A
3

A
4

A
5

ΠF := {c, d, e}, ΠG := {x⇐ a∧f},

∆ := A1 ∪ A2 ∪ A3 ∪ A4 ∪ A5.

A1 := {x← a∧b∧c}.

A2 := {¬x← a∧b}.

A3 := {f ← e}.

A4 := {a← d}.

A5 := {b← e}.

(A1∪A4∪A5, x) <CP1/2 (A2∪A4∪A5,¬x) ≈CP1/2 (A3∪A4, x). All
.P1−3-incomparable! For (A1∪A4∪A5, x) 6.P3 (A2∪A4∪A5,¬x)

we have to consider (implicitly via {d, f}⊆ TΠF∪ΠG∪∆) the
defeasible rule of A3, which is not part of any of the two
arguments under comparison. No pruning possible for .P1−3 .
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Variation of [Stolzenbg, 2003, Ex.11]

x x

¬x

a b f

d c e

A
1

A
1

A
1

A
2

A
2

A
4

A
5

ΠF := {c, d, e},

ΠG := {x⇐ a∧f, f ⇐ e},

∆ := A1 ∪ A2 ∪ A4 ∪ A5.

A1 := {x← a∧b∧c}.

A2 := {¬x← a∧b}.

A4 := {a← d}.

A5 := {b← e}.

(A4, x) ≈CP1/2 (A1∪A4∪A5, x) >CP1/2 (A2∪A4∪A5,¬x).

Makes sense because d∧e is more precise (specific) than d.

c∧d∧e is irrelevant because approach is model-theoretic.
(A4, x) <P1−3 (A1∪A4∪A5, x) △P1−3 (A2∪A4∪A5,¬x) △P1−3

(Bullshit!) (A4, x).
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[Stolzenburg, 2003, Ex. p.95]: Global Effect!

¬p(a) p(a)

s(a)

q(a)

A1

A1 A2

ΠF := {q(a)}, ΠG := {s(x)⇐ q(x)},

∆ := {p(x)← q(x),¬p(x)← q(x)∧s(x)}.

A1 := {¬p(a)← q(a)∧s(a)}.

A2 := {p(a)← q(a)}.

(A1,¬p(a)) ≈P1−3,CP1/2 (A2, p(a)).
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.CP1 vs. .CP2

drink alarm alarm

danger

thirst

A1

A2

A3

A3

ΠF := {thirst, danger},

ΠG := ∅, ∆ := A1 ∪ A3,

A1 := {drink← thirst},

A2 := {alarm← danger}.

A3 := A2 ∪ {danger← thirst}.

(A2, alarm) <CP1 (A3, alarm) ≈CP2 (A2, alarm)

(A1, drink) <CP1 (A3, alarm) △CP2 (A1, drink)

(A1, drink) △CP1 (A2, alarm) △CP2 (A1, drink)
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Example Not Transitive. Pref. of “More Precise”

beer wine wine vodka

e

thirst blessing alcohol

A1

A1

A1

A1

A2

A2 A3

A1 := {e← alcohol∧blessing∧thirst, beer← e},

A2 := {wine← alcohol∧blessing},

A3 := {vodka← alcohol}, ∆ := A1 ∪ A2 ∪ A3,

ΠF := {alcohol, blessing, thirst}, ΠG := {wine⇐ e},

(A1, beer) <P1–3,CP1/2 (A2, wine) <P1–3,CP1/2 (A3, vodka), but

(A1, beer) <CP1/2 (A3, vodka) 6&P1–3 (A1, beer).
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All you need is Quasi-Ordering

A quasi-ordering is a reflexive transitive relation.
An (irreflexive) ordering is an irreflexive transitive relation.
A reflexive ordering (also called: “partial ordering”) is an
anti-symmetric quasi-ordering.
An equivalence is a symmetric quasi-ordering.

We will use several binary relations .N

comparing arguments according to their specificity.

Corollary 0 If .N is a quasi-ordering, then

its equivalence≈N is an equivalence,

its ordering<N is an ordering, and

its reflexive ordering≤N is a reflexive ordering.
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Abstract Specificity Orderings

For any relation written as .N

(“being more or equivalently specific w.r.t. N ”),
we define:

&N := { (X,Y ) | Y .N X }(“less or equivalently specific”),

≈N := .N ∩&N (“equivalently specific”),

<N := .N \&N (“properly more specific”),

≤N := <N ∪ { (X,X) | X is an argument }

(“more specific or equal”),

△N :=







(X,Y )
X,Y are arguments with

X 6.N Y and X 6&N Y







(“incomparable w.r.t. specificity”).
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Efficiency Considerations

Let H be a set of hypotheses. Then, roughly speaking,

(A1, L1) . (A2, L2) if every activation set H for (A1, L1) is also

one for (A2, L2).

Naïve procedure enumerates possible activation sets, which is

exponential in the number of possible hypothesis literals.

Clearly, the effort for computing .CP1 is lower than that of .P3

because of TΠ ⊆ TΠ∪∆.

While checking .Px, attention cannot be restricted to

derivations which make use only of defeasible rules given in

the arguments. Therefore, [Stolzenburg&al, 2003] introduce

pruning derivation trees.
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Path Characterization for Specificity

(A1, L1) ≤ (A2, L2) if (A1, L1) and (A2, L2) are two argu-

ments in the given specification and for each derivation tree T1

for L1 there is a derivation tree T2 for L2 such that T1 E T2.

Let T1 and T2 be derivation trees. Then, T1 E T2 if for each

t2 ∈ Paths(T2) there is a path t1 ∈ Paths(T1) such that t1 ⊆ t2

(omitting the root nodes).

If the arguments involved in the comparison correspond to

exactly one and-tree, then .P2 coincides with the path

characterization (≤ and E). Cf. Example 1 of [Poole, 1985].

Two and-trees can be compared efficiently w.r.t. E. It requires

pairwise comparison of all nodes in the trees for each path.

Hence, the respective complexity is polynomial in the size of

the derivation trees.
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Path vs. Argument Characterization

¬lovely lovely

grandpa grandpa

noisy somebody

A1
A1 A2

Poole’s specificity: (A1,¬lovely) <P1–3 (A2,lovely)

Corrected version: (A1,¬lovely)<CP1/2(A2,lovely)

Path characterization: (A1,¬lovely) ≤ (A2,lovely)
{

{noisy, grandpa}, {someb., grandpa}
} {

{someb., grandpa}
}

Argument sets: (A1,¬lovely) ⊑ (A2,lovely)
{

{noisy, somebody}, {grandpa}
} {

{somebody}, {grandpa}
}
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Back to the Arguments

Characterization dual to E based on the rules in the

arguments:

Let (A1, L1) and (A2, L2) be two arguments and Ri (i = 1, 2)

be the set of (strict and defeasible) rule bodies used in the

respective proofs. We define: R1 ⊑ R2 if for all r1 ∈ R1 there

exists an r2 ∈ R2 such that r2 ⊆ r1.

Simplified version: Interpret ⊑ simply as subset (w.r.t.

complete rule sets).

This is close to the notion more conservative than

[Besnard&Hunter, 2001]: A1 ⊆ A2 and L2 ⊢ L1.

Checking ⊆ on ground literal sets can be done efficiently

(NP-complete for general literals).
Wirth & Stolzenburg, July 21, 2014 – p.31



Further Conclusions

Computing .CPx can be done by a modified SLD-resolution

procedure, but has to enumerate all possible derivations for

each query.

Path (E) and argument (⊑) characterizations can be computed

efficiently. However, they coincide with specificity notion only in

special cases (e.g. no strict rules).

Further investigation is required . . .

Thank you very much for your attention!
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