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VorwortDie vorliegende Arbeit ist die Quintessenz meiner Ideen und Erfahrungen, die ihin den letzten Jahren bei meiner Forshung auf dem Gebiet der Gr�obnerbasengemaht habe. Meine geistige Heimat war dabei die Arbeitsgruppe von Profes-sor Klaus Madlener an der Tehnishen Universit�at Kaiserslautern. Hier habe ihbereits im StudiumBekanntshaft mit der Theorie der Gr�obnerbasen gemaht undmih w�ahrend meiner Promotion mit dem Spezialfall dieser Theorie f�ur Monoid-und Gruppenringe besh�aftigt. Nah der Promotion konnte ih im Rahmen einesDFG-Forshungsstipendiums zus�atzlih Problemstellungen und Denkweisen an-derer Arbeitsgruppen kennenlernen - die Arbeitsgruppe von Professor JoahimNeub�user in Aahen und die Arbeitsgruppe von Professor Theo Mora in Genua.Meine Aufenthalte in diesen Arbeitsgruppen haben meinen Blikwinkel f�ur weit-ergehende Fragestellungen erweitert. An dieser Stelle m�ohte ih mih bei allenjenen bedanken, die mih in dieser Zeit begleitet haben und so zum Entstehenund Gelingen dieser Arbeit beigetragen haben.Mein besonderer Dank gilt meinem akademishen Lehrer Professor KlausMadlener, der meine akademishe Ausbildung shon seit dem Grundstudium be-gleitet und meine Denk- und Arbeitsweise wesentlih gepr�agt hat. Durh ihnhabe ih gelernt, mih intensiv mit diesem Thema zu besh�aftigen und mihdabei nie auf nur einen Blikwinkel zu beshr�anken. Insbesondere sein weitre-ihenden Literaturkenntnisse und die dadurh immer neu ausgel�osten Fragen ausvershiedenenThemengebieten bewahrten meine Untersuhungen vor einer gewis-sen Einseitigkeit. Er hat mih gelehrt, selbst�andig zu arbeiten, Ideen und Papierezu hinterfragen, mir meine eigene Meinung zu bilden, diese zu veri�zieren undauh zu vertreten.Professor Teo Mora und Professor Volker Weispfenning danke ih f�ur die�Ubernahme der weiteren Begutahtungen dieser Arbeit. Professor Teo Moradanke ih insbesondere auh f�ur die fruhtbare Zeit in seiner Arbeitsgruppein Genua. Seine Arbeiten und seine Fragen haben meine Untersuhungenzum Zusammenhang zwishen Gr�obnerbasen in Gruppenringen und dem Todd-Coxeter Ansatz f�ur Gruppen und die Fragestellungen dieser Arbeit wesentlihgepr�agt.Meinen Kollegen aus unserer Arbeitsgruppe danke ih f�ur ihre Diskussionsbe-reitshaft und ihre geduldige Anteilnahme an meinen Gedanken. Insbesondere
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Chapter 1IntrodutionOne of the amazing features of omputers is the ability to do extensive omputa-tions impossible to be done by hand. This enables to overome the boundaries ofonstrutive algebra as proposed by mathematiians as Kroneker. He demandedthat de�nitions of mathematial objets should be given in suh a way that it ispossible to deide in a �nite number of steps whether a de�nition applies to anobjet. While in the beginning omputers were used to do inredible numerialalulations, a new dimension was added when they were used to do symboli-al mathematial manipulations substantial to many �elds in mathematis andphysis. These new possibilities led to open up whole new areas of mathematisand omputer siene. In the wake of these developments has ome a new aessto abstrat algebra in a omputational fashion { omputer algebra. One impor-tant ontribution to this �eld whih is the subjet of this work is the theory ofGr�obner bases { the result of Buhberger's algorithm for manipulating systemsof polynomials.1.1 The History of Gr�obner BasesIn 1965 Buhberger introdued the theory of Gr�obner bases1 for polynomial idealsin ommutative polynomial rings over �elds [Bu65, Bu70℄. Let K[X1; : : : ;Xn℄ bea polynomial ring over a omputable �eld K and i an ideal in K[X1 ; : : : ;Xn℄. Thenthe quotient K[X1 ; : : : ;Xn℄=i is a K-algebra. If this quotient is zero-dimensionalthe algebra has a �nite basis onsisting of power produts X i11 : : :X inn . This wasthe starting point for Buhberger's PhD thesis. His advisor Wolfgang Gr�obnerwanted to ompute the multipliation table and had suggested a proedure forzero-dimensional ideals, for whih termination onditions were laking. The resultof Buhberger's studies then was a terminating algorithm whih turned a basis ofan ideal into a speial basis whih allowed to solve Gr�obner's question of writing1Note that similar onepts appear in a paper of Hironaka where the notion of a ompleteset of polynomials is alled a standard basis [Hir64℄.







2 Chapter 1 - Introdutiondown an expliit multipliation for the multipliation table of the quotient in thezero-dimensional ase and was even appliable to arbitrary polynomial ideals.Buhberger alled these speial bases of ideals Gr�obner bases.1.2 Two De�nitions of Gr�obner BasesIn literature there are two main ways to de�ne Gr�obner bases in polynomial ringsover �elds. They both require an admissible2 ordering on the set of terms. Withrespet to suh an ordering, given a polynomial f the maximal term ourring inf is alled the head term denoted by HT(f).One way to haraterize Gr�obner bases in an algebrai fashion is to use the on-ept of term division: A termX i11 : : :X inn is said to divide another termXj11 : : :Xjnnif and only if il � jl for all 1 � l � n. Then a set G of polynomials is alled aGr�obner basis of the ideal i it generates if and only if for every f in i there existsa polynomial g 2 G suh that HT(g) divides HT(f).Another way to de�ne Gr�obner bases in polynomial rings is to establish a rewritingapproah to the theory of polynomial ideals. Polynomials an be used as rules byusing the largest monomial aording to the admissible ordering as a left hand sideof a rule. Then a term is reduible by a polynomial as a rule if the head term ofthe polynomial divides the term. A Gr�obner basis G then is a set of polynomialssuh that every polynomial in the polynomial ring has a unique normal form withrespet to this redution relation using the polynomials in G as rules (espeiallythe polynomials in the ideal generated by G redue to zero using G).Of ourse both de�nitions oinide for polynomial rings sine the redution rela-tion de�ned by Buhberger an be ompared to division of one polynomial by aset of �nitely many polynomials.1.3 Appliations of Gr�obner BasesThe method of Gr�obner bases allows to solve many problems related to poly-nomial ideals in a omputational fashion. It was shown by Hilbert (ompareHilbert's basis theorem) that every ideal in a polynomial ring has a �nite gen-erating set. However, an arbitrary �nite generating set need not provide muhinsight into the nature of the ideal. Let f1 = X21 +X2 and f2 = X21 +X3 be twopolynomials in the polynomial ring3 Q[X1;X2;X3℄. Then i = ff1 � g1 + f2 � g2 jg1; g2 2 Q[X1;X2;X3℄g is the ideal they generate and it is not hard to see that2An ordering � on the set of terms is alled an admissible term ordering if for every terms; t; u, s � 1 holds, and s � t implies s Æ u � t Æ u. An ordering ful�lling the latter ondition isalso said to be ompatible with the respetive multipliation Æ.3Q denotes the rational numbers.







1.4 Generalizations of Gr�obner Bases 3the polynomial X2 �X3 belongs to i sine X2 �X3 = f1 � f2. But what an besaid about the polynomial f = X33 +X1 +X3? Does it belong to i or not?The problem to deide whether a given polynomial lies in a given ideal is alledthe membership problem for ideals. In ase the generating set is a Gr�obner basisthis problem beomes immediately deidable, as the membership problem thenredues to heking whether the polynomial redues to zero using the elementsof the Gr�obner basis for redution.In our example the set fX21 + X3;X2 � X3g is a generating set of i whih is infat a Gr�obner basis. Now returning to the polynomial f = X33 + X1 + X3 we�nd that it annot belong to i sine neither X21 nor X2 is a divisor of a term inf and hene f annot be redued to zero using the polynomials in the Gr�obnerbasis as rules.The terms X i11 X i22 X i33 whih are not reduible by the set fX21 + X3;X2 � X3gform a basis of the Q-algebra Q[X1;X2;X3℄=i. By inspeting the head terms X21and X2 of the Gr�obner basis we �nd that the (in�nite) set fX i3;X1X i3 j i 2 Ngis suh a basis. Moreover, an ideal is zero-dimensional, i.e. this set is �nite, ifand only if for eah variable Xi the Gr�obner basis ontains a polynomial withhead term Xkii for some ki 2 N+. Similarly the form of the Gr�obner basis revealswhether the ideal is trivial: i = K[X1 ; : : : ;Xn℄ if and only if every4 Gr�obner basisontains an element from K.Further appliations of Gr�obner bases ome from areas as widespread as robotis,omputer vision, omputer-aided design, geometri theorem proving, Petrie netsand many more. More details an be found e.g. in Buhberger [Bu87℄, or thebooks of Beker and Weispfenning [BW92℄, Cox, Little and O'Shea [CLO92℄, andAdams and Loustaunau [AL94℄.1.4 Generalizations of Gr�obner BasesIn the last years, the method of Gr�obner bases and its appliations have beenextended from ommutative polynomial rings over �elds to various types of al-gebras over �elds and other rings. In general for suh rings arbitrary �nitelygenerated ideals will not have �nite Gr�obner bases. Nevertheless, there are in-teresting lasses for whih every �nitely generated (left, right or even two-sided)ideal has a �nite Gr�obner basis whih an be omputed by appropriate variantsof ompletion based algorithms.First suessful generalizations were extensions to ommutative polynomialrings over oeÆient domains other than �elds. It was shown by several au-thors inluding Buhberger, Kandri-Rody, Kapur, Narendran, Lauer, Stifter,and Weispfenning that Buhberger's approah remains valid for polynomial4Notie that if one Gr�obner basis ontains an element from K so will all the others.







4 Chapter 1 - Introdutionrings over the integers, or even Eulidean rings, and over regular rings (seee.g. [Bu83, Bu85, KRK84, KRK88, KN85, Lau76, Sti87, Wei87b℄). For reg-ular rings Weispfenning has to deal with the situation that zero-divisors in theoeÆient domain have to be onsidered. He uses a tehnique he alls Booleanlosure to repair this problem and this tehnique an be regarded as a speialsaturating proess5. We will later on see how suh saturating tehniques beomeimportant ingredients of Gr�obner basis methods in many algebrai strutures.Sine the development of omputer algebra systems for ommutative algebrasmade it possible to perform tedious alulations using omputers, attempts togeneralize suh systems and espeially Buhberger's ideas to non-ommutative al-gebras followed. Originating from speial problems in physis, Lassner in [Las85℄suggested how to extend existing omputer algebra systems in order to addition-ally handle speial lasses of non-ommutative algebras, e.g. Weyl algebras. Hestudied strutures where the elements ould be represented using the usual rep-resentations of polynomials in ommutative variables and the non-ommutativemultipliation ould be performed by a so-alled \twisted produt" whih requiredonly proedures involving ommutative algebra operations and di�erentiation.Later on together with Apel he extended Buhberger's algorithm to enveloping�elds of Lie algebras [AL88℄. Beause these ideas use representations of the ele-ments by ommutative polynomials, Dikson's Lemma6 an be arried over. Bythis the existene and onstrution of �nite Gr�obner bases for �nitely generatedleft ideals an be ensured using the same arguments as in the original approah.On the other hand, Mora gave a onept of Gr�obner bases for a lass of non-ommutative algebras by saving an other property of the ommutative polynomialring { admissible orderings { while losing the validity of Dikson's Lemma. Theusual polynomial ring an be viewed as a monoid ring where the monoid is a�nitely generated free ommutative monoid. Mora studied the lass where thefree ommutative monoid is substituted by a free monoid { the lass of �nitelygenerated free monoid rings (ompare e.g. [Mor85, Mor94℄). The ring operationsare mainly performed in the oeÆient domain while the terms are treated likewords, i.e., the variables no longer ommute with eah other and multipliationis onatenation. The de�nitions of (one- and two-sided) ideals, redution andGr�obner bases are arried over from the ommutative ase to establish a similartheory of Gr�obner bases in \free non-ommutative polynomial rings over �elds".But these rings are no longer Noetherian if they are generated by more thanone variable. Mora presented a terminating ompletion proedure for �nitelygenerated one-sided ideals and an enumeration proedure for �nitely generatedtwo-sided ideals with respet to some term ordering in free monoid rings. For5Saturation tehniques are used in various �elds to enrih a generating set of a struture insuh a way, that the new set still desribes the same struture but allows more insight. Forexample symmetrization in groups an be regarded as suh a saturating proess.6Dikson's Lemma in the ontext of ommutative terms is as follows: For every in�nitesequene of terms ts, s 2 N, there exists an index k 2 N suh that for every index i > k thereexists an index j � k and a term w suh that ti = tjw.







1.4 Generalizations of Gr�obner Bases 5the speial instane of ideals generated by bases of the restrited form f`i �ri j `i; ri words; 1 � i � ng, Mora's proedure oinides with Knuth-Bendixompletion for string rewriting systems and the one-sided ases an be related topre�x respetively suÆx rewriting [MR98d, MR98℄. Hene many results knownfor �nite string rewriting systems and their ompletion arry over to �nitelygenerated ideals and the omputation of their Gr�obner bases. Espeially theundeidability of the word problem yields non-termination for Mora's generalproedure (see also [Mor87℄).Gr�obner bases and Mora's proedure have been generalized to path algebras (see[FCF93, Kel98℄); free non-ommutative polynomial rings are in fat a partiularinstane of path algebras.Another lass of non-ommutative rings where the elements an be represented bythe usual polynomials and whih allow the onstrution of �nite Gr�obner basesfor arbitrary ideals are the solvable polynomial rings, a lass intermediate be-tween ommutative and general non-ommutative polynomial rings. They werestudied by Kandri-Rody, Weispfenning and Kredel [KRW90, Kre93℄. Solvablepolynomial rings an be desribed by ordinary polynomial rings K[X1 ; : : : ;Xn℄provided with a \new" de�nition of multipliation whih oinides with the or-dinary multipliation exept for the ase that a variable Xj is multiplied with avariable Xi with lower index, i.e., i < j. In the latter ase multipliation anbe de�ned by equations of the form Xj ? Xi = ijXiXj + pij where ij lies inK� = Knf0g and pij is a polynomial \smaller" than XiXj with respet to a �xedadmissible term ordering on the polynomial ring.The more speial ase of twisted semi-group rings, where ij = 0 is possible, hasbeen studied in [Ape88, Mor89℄.In [Wei87a℄ Weispfenning showed the existene of �nite Gr�obner bases for arbi-trary �nitely generated ideals in non-Noetherian skew polynomial rings over twovariablesX;Y where a \new" multipliation ? is introdued suh thatX?Y = XYand Y ? X = XeY for some �xed e in N+.Ore extensions have been suessfully studied by Pesh in his PhD Thesis [Pes97℄and his results on two-sided Gr�obner bases are also presented in [Pes98℄.Most of the results ited so far assume admissible well-founded orderings on theset of terms so that in fat the redution relations an be de�ned by onsideringthe head monomials mainly (ompare the algebrai de�nition of Gr�obner bases inSetion 1.2). This is essential to haraterize Gr�obner bases in the respetive ringwith respet to the orresponding redution relation7 in a �nitary manner and toenable to deide whether a �nite set is a Gr�obner basis by heking whether thes-polynomials are reduible to zero8.7These redution relations are based on divisibility of terms, namely the term to be reduedis divisible by the head term of the polynomial used as rule for the redution step.8Note that we always assume that the redution relation in the ring is e�etive.







6 Chapter 1 - IntrodutionThere are rings ombined with redution relations where admissible well-foundedorderings annot be aomplished and, therefore, other onepts to haraterizeGr�obner bases have been developed. For example in ase the ring ontains zero-divisors a well-founded ordering on the ring is no longer ompatible with the ringmultipliation9. This phenomenon has been studied for the ase of zero-divisorsin the oeÆient domain by Kapur and Madlener [KM89℄ and by Weispfenningfor the speial ase of regular rings [Wei87b℄. In his PhD thesis [Kre93℄, Kre-del desribed problems ourring when dropping the axioms guaranteeing theexistene of admissible orderings in the theory of solvable polynomial rings byallowing ij = 0 in the de�ning equations above. He skethed the idea of usingsaturation tehniques to repair some of them. Saturation enlarges the generatingsets of ideals in order to ensure that enough head terms exist to do all neessaryredution steps and this proess an often be related to additional speial ritialpairs. Similar ideas an be found in the PhD thesis of Apel [Ape88℄. For speialases, e.g. for the Grassmann (exterior) algebras, positive results an be ahieved(ompare the paper of Stokes [Sto90℄).Another important lass of rings where redution relations an be introduedand ompletion tehniques an be applied to enumerate and sometimes omputeGr�obner bases are monoid and group rings. They have been studied in detail byvarious authors, e.g. free group rings ([Ros93℄), monoid and group rings ([MR93a,MR97a, Rei95, Rei96, MR98a℄) (inluding �nite and free monoids and �nite, free,plain and polyyli groups), and polyyli group rings ([Lo98℄). In this settingwe again need saturation tehniques to repair a severe defet due to the fat thatin general we annot expet the ordering on the set of terms (here of ourse nowthe monoid or group elements) to be both, well-founded and admissible. Let F bethe free group generated by one element a. Then for the polynomial a+1 in Q[F ℄we have (a+1) � a�1 = 1+ a�1, i.e., after multipliation with the inverse elementa�1 the largest term of the new polynomial no longer results from the largest oneof the original polynomial. Moreover, assuming our ordering is well-founded, itannot be ompatible with the group multipliation10.All approahes ited in this setion an be basially divided into twomain streams:One extension was to study strutures whih still allow to present their elementsby ordinary \ommutative" polynomials. The advantage of this generalization isthat Dikson's Lemma, whih is essential in proving termination for Buhberger'salgorithm, arries over. The other idea of generalization was to view the polyno-mial ring as a speial monoid ring and to try to extend Buhberger's approahto other monoid and group rings. Sine then in general Dikson's Lemma nolonger holds, other ways to prove termination, if possible, have to be established.9When studying monoid rings over redution rings it is possible that the ordering on thering is not ompatible with salar multipliation as well as with multipliation with monomialsor polynomials.10Assuming a � 1 ompatibility with multipliation would imply 1 � a�1 giving rise to anin�nite desending hain a�1 � a�2 � : : : ontraditing the well-foundedness of the ordering.On the other hand for 1 � a ompatibility with multipliation immediately gives us an in�nitedesending hain a � a2 � : : :.







1.5 Gr�obner Bases in Funtion Rings { A Guide for Introduing Redution Relations to Algebrai Strutures 7Notie that solvable rings, skew-polynomial rings and arbitrary quotients of non-ommutative polynomial rings annot be interpreted as monoid rings. Hene to�nd a generalization whih will subsume all results ited here, a more generalsetting is needed. In his habilitation thesis [Ape98℄, Apel provides one gener-alization whih basially extends the �rst one of these two in suh a way thatMora's approah an be inorporated. He uses an abstration of graded stru-tures whih needs admissible well-founded orderings. Hene he annot deal withgroup rings and many ases of monoid rings where suh orderings annot exists.On the other hand he is muh more interested in algebrai haraterizations ofGr�obner bases and the division algorithms assoiated to them.In order to haraterize strutures where the well-founded ordering is no longeradmissible, we extend Gr�obner basis tehniques to an abstrat setting alledfuntion rings.1.5 Gr�obner Bases in Funtion Rings { A Guidefor Introduing Redution Relations to Al-gebrai StruturesThe aim of this work is to give a general setting whih omprises all generalizationsmentioned above and whih is a basis for studying further strutures in the lightof introduing redution relations and Gr�obner basis tehniques. All struturesmentioned so far an be viewed as rings of funtions with �nite support. For suhrings we introdue the familiar onepts of polynomials, (right) ideals, standardrepresentations, standard bases, redution relations and Gr�obner bases. A generalharaterization of Gr�obner bases in an \algorithmi fashion" is provided. It isshown that in fat polynomial rings, solvable polynomial rings, free respetively�nite monoid rings, and free, �nite, plain, respetively polyyli group ringsare examples of our generalization where �nite Gr�obner bases an be omputed.While most of the examples ited above are presented in the literature as ringsover �elds we will here also present the more general onept of funtion ringsover redution rings (ompare [Mad86, Rei95, MR98b℄) and the impotant speialase of funtion rings over the integers.1.6 Appliations of Gr�obner Bases Generalizedto Funtion RingsFor polynomial rings over �elds many algebrai questions related to ideals anbe solved using Gr�obner bases and their assoiated redution relations. Henethe question arises whih of these appliations an be extended to more generalsettings. While some questions e.g. onerning algebrai geometry are strongly







8 Chapter 1 - Introdutiononneted to polynomial rings over �elds, many other appliations arry over.They inlude natural ones suh as the membership problem for ideals, as wellas speial tehniques suh as elimination theory or the treatment of systems oflinear equations.1.7 Organization of the ContentsChapter 2 introdues some of the basi themes of this book. We need somebasi notions from the theory of algebra as well as from the theory of rewritingsystems. Furthermore, as the aim of this book is to provide a systemati studyof Gr�obner basis methods, a short introdution to the original ase of Gr�obnerbases in polynomial rings over �elds is presented.Chapter 3 onentrates on rings with redution relations, whih are studied withregard to the existene of Gr�obner bases. They are alled redution rings in asethey allow �nite Gr�obner bases for �nitely generated ideals. Moreover, speialring onstrutions are presented, whih in many ases preserve the existene ofGr�obner bases. These onstrutions inlude quotients and sums of redution ringsas well as modules and polynomial rings over redution rings. Many strutureswith redution relations allowing Gr�obner bases an already be found in thissetting. For example knowing that the integers Zfor ertain redution relationsallow �nite Gr�obner bases, using the results of this hapter, we an onlude thatthe module Zk as well as the polynomial rings Z[X1; : : : ;Xn℄ and Zk[X1; : : : ;Xn℄allow the omputation of �nite Gr�obner bases.Chapter 4 is the heart of this book. It establishes a generalizing frameworkfor strutures enrihed with redution relations and studied with respet to theexistene of Gr�obner bases in the literature. Redution relations are de�ned forthe setting of funtion rings over �elds and later on generalized to redution rings.De�nitions for terms suh as variations of standard representations, standardbases and Gr�obner bases are given and ompared to the known terms from thetheory of Gr�obner bases over polynomial rings. It turns out that while ompletionproedures will still involve equivalents to s-polynomials or the more generalonept of g- and m-polynomials for the ring ase, these situations are no longersuÆient to haraterize Gr�obner bases. Saturation tehniques, whih enrih thebases by additional polynomials, are needed. Moreover, for funtion rings overredution rings the haraterizations no longer desribe Gr�obner bases but onlyweak11 Gr�obner bases, sine the Translation Lemma12 no longer holds. Sine the11Weak Gr�obner bases are bases suh that any polynomial in the ideal they generate an beredued to zero. For �elds this property already haraterizes Gr�obner bases as the TranslationLemma holds. In general this is not true and while weak Gr�obner bases allows to solve theideal membership problem they no longer guarantee the existene of unique normal forms forelements of the quotient.12The Translation Lemma establishes that if for two polynomials f; g we have that f � gredues to zero, both polynomials redue to the same normal form.







1.7 Organization of the Contents 9ring of integers viewed as a redution ring is of speial interest in the literatureand allows more insight into the respetive hosen redution relations, this speialase is studied.Chapter 5 outlines how some appliations known for Gr�obner bases in the liter-ature arry over to funtion rings. These appliations inlude natural ones suhas the ideal membership problem, representation problems, the ideal inlusionproblem, the ideal triviality problem, and many more. Another fous is on doingomputations in quotient rings using Gr�obner bases. The powerful eliminationmethods are also generalized. One of their appliations to study polynomialmappings is outlined. Finally solutions for linear equations over funtion rings interms of Gr�obner bases are provided.







10 Chapter 1 - Introdution







Chapter 2Basi De�nitionsAfter introduing the neessary de�nitions required from algebra we fous on thesubjet of this book | Gr�obner bases. One way of haraterizing Gr�obner basesis in terms of algebrai simpli�ation or redution. The aim of this hapter is tointrodue an abstrat onept for the notion of redution whih is the basis ofmany syntatial methods for studying strutures in mathematis or theoretialomputer siene in Setion 2.2. It is the foundation for e.g. term rewriting andstring rewriting and we introdue a redution relation for polynomials in theommutative polynomial ring over a �eld in a similar fashion. Gr�obner basesthen arise naturally when doing ompletion in this setting in Setion 2.3.2.1 AlgebraMathematial theories are losely related with the study of two objets, namelysets and funtions. Algebra an be regarded as the study of algebrai operationson sets, i.e., funtions that take elements from a set to the set itself. Certainalgebrai operations on sets ombined with ertain axioms are again the objets ofindependent theories. This hapter is a short introdution to some of the algebraisystems used later on: monoids, groups, rings, �elds, ideals and modules.De�nition 2.1.1A non-empty set of elementsM together with a binary operation ÆM is said toform a monoid, if for all �; �;  inM1. M is losed under ÆM, i.e., � ÆM � 2 M,2. the assoiative law holds for ÆM, i.e., � ÆM (� ÆM ) =M (� ÆM �) ÆM ,and3. there exists 1M 2 M suh that � ÆM 1M =M 1M ÆM � =M �. The element1M is alled identity. �







12 Chapter 2 - Basi De�nitionsFor simpliity of notation we will heneforth drop the index M and write Ærespetively = if no onfusion is likely to arise. Furthermore, we will often talkabout a monoid without mentioning its binary operation expliitly. The monoidoperation will often be alled multipliation or addition. Sine the algebraioperation is assoiative we an omit brakets, hene the produt �1 Æ : : : Æ �n isuniquely de�ned.Example 2.1.2Let � = fa1; : : : ; ang be a set of letters. Then �� denotes the set of words overthis alphabet. For two words u; v 2 �� we de�ne u Æ v = uv, i.e., the wordwhih arises from onatenating the two words u and v. Then �� is a monoidwith respet to this binary operation and its identity element is the empty word,i.e., the word ontaining no letters. This monoid is alled the free monoid overthe alphabet �. �For some n in N1 the produt of n times the same element � is alled the n-thpower of � and will be denoted by �n, where �0 = 1.De�nition 2.1.3An element � of a monoid M is said to have in�nite order in ase for alln;m 2 N, �n = �m implies n = m. We say that � has �nite order in ase theset f�n j n 2 N+g is �nite and the ardinality of this set is then alled the orderof �. �A subset of a monoidM whih is again a monoid is alled a submonoid ofM.Other speial subsets of monoids are (one-sided) ideals.De�nition 2.1.4For a subset S of a monoidM we all1. idealMr (S) = f� Æ � j � 2 S; � 2 Mg the right ideal,2. idealMl (S) = f� Æ � j � 2 S; � 2 Mg the left ideal, and3. idealM(S) = f� Æ � Æ �0 j � 2 S; �; �0 2 Mg the idealgenerated by S inM. �A monoid M is alled ommutative (Abelian) if we have � Æ � = � Æ � forall elements �; � in M. A natural example for a ommutative monoid are theintegers together with multipliation or addition. Another example whih will beof interest later on is the set of terms.1In the following N denotes the set of natural numbers inluding zero and N+ = Nnf0g.







2.1 Algebra 13Example 2.1.5Let X1; : : : ;Xn be a set of (ordered) variables. Then T = fX i11 : : :X inn j i1; : : : in 2Ng is alled the set of terms over these variables. The multipliation Æ is de�nedas X i11 : : :X inn Æ Xj11 : : :Xjnn = X i1+j11 : : :X in+jnn . The identity is the empty term1T = X01 : : :X0n . �A mapping � from one monoidM1 to another monoidM2 is alled a homomor-phism, if �(1M1) = 1M2 and for all �; � inM1, �(� ÆM1 �) = �(�) ÆM2 �(�). Inase � is surjetive we all it an epimorphism, in ase � is injetive amonomor-phism and in ase it is both an isomorphism. The fat that two strutures S1,S2 are isomorphi will be denoted by S1 �= S2.A monoid is alled left-anellative (respetively right-anellative) if for all�; �;  inM,  Æ � =  Æ � (respetively � Æ  = � Æ ) implies � = �. In asea monoid is both, left- and right-anellative, it is alled anellative. In ase� Æ  = � we say that � is a left divisor of � and  is alled a right divisor ofb. If  Æ�ÆÆ = � then � is alled a divisor of �. A speial lass of monoids ful�llthat for all �; � inM there exist ; Æ inM suh that �Æ = � and Æ Æ� = �, i.e.,right and left divisors always exist. These strutures are alled groups and theyan be spei�ed by extending the de�nition of monoids and we do so by addingone further axiom.De�nition 2.1.6A monoid M together with its binary operation Æ is said to form a group ifadditionally4. for every � 2 M there exists an element inv(�) 2 M (alled inverse of �)suh that � Æ inv(�) = inv(�) Æ � = 1. �Obviously, the integers form a group with respet to addition, but this is nolonger true for multipliation.A subset of a group G whih is again a group is alled a subgroup of M. Asubgroup H of a group G is alled normal if for eah � in G we have �H = H�where �H = f� Æ � j � 2 Hg and H� = f� Æ � j � 2 Hg.We end this setion by briey introduing some more algebrai strutures thatwill be used throughout.De�nition 2.1.7A nonempty set R is alled an (assoiative) ring (with unit element) if thereare two binary operations + (addition) and ? (multipliation) suh that for all�; �;  in R1. R together with + is an Abelian group with zero element 0 and inverse ��,







14 Chapter 2 - Basi De�nitions2. R is losed under ?, i.e., � ? � 2 R,3. ? is assoiative, i.e., � ? (� ? ) = (� ? �) ? ,4. the distributive laws hold, i.e., � ? (�+ ) = � ?�+� ?  and (�+ ) ? � =� ? �+  ? �,5. there is an element 1 2 R (alled unit) suh that 1 ? � = � ? 1 = �. �A ring is alled ommutative (Abelian) if � ? � = � ? � for all �; � in R. Theintegers together with addition and multipliation are a well-known example ofa ring. Other rings whih will be of interest later on are monoid rings.Example 2.1.8Let Zbe the ring of integers andM a monoid. Further let Z[M℄ denote the setof all mappings f :M �! Zwhere the sets supp(f) = f� 2 M j f(�) 6= 0g are�nite. We all Z[M℄ the monoid ring ofM over Z. The sum of two elementsf and g is denoted by f + g where (f + g)(�) = f(�) + g(�). The produt isdenoted by f ? g where (f ? g)(�) =P�Æ=� f(�) ? g().Polynomial rings are a speial ase of monoid rings namely over the set of termsas de�ned in Example 2.1.5.A ring R is said to ontain zero-divisors, if there exist not neessarily di�erentelements �; � in R suh that � 6= 0 and � 6= 0, but � ? � = 0. Then � is alled aleft zero-divisor and � is alled a right zero-divisor.De�nition 2.1.9A ommutative ring is alled a �eld if its non-zero elements form a group undermultipliation. �Similar to our proeeding in group theory we will now look at subsets of a ringR. For a subset U � R to be a subring of R with the operations + and ? it isneessary and suÆient that1. U is a subgroup of (R;+), i.e., for a; b 2 U we have a� b 2 U , and2. for all �; � 2 U we have � ? � 2 U .We will now take a loser look at speial subrings that play a role similar tonormal subgroups in group theory.De�nition 2.1.10A nonempty subset i of a ring R is alled a right (left) ideal of R, if1. for all �; � 2 i we have � � � 2 i, and







2.1 Algebra 152. for every � 2 i and � 2 R, the element � ? � (respetively � ? �) lies in i.A subset that is both, a right and a left ideal, is alled a (two-sided) ideal ofR. �For eah ring the sets f0g and R are trivial ideals. Similar to subgroups, idealsan be desribed in terms of generating sets.Lemma 2.1.11Let F be a non-empty subset of R. Then1. idealR(F ) = fPni=1 �i ? �i ? �i j �i 2 F; �i; �i 2 R; n 2 Ng is an ideal of R,2. idealRr (F ) = fPni=1 �i ? �i j �i 2 F; �i 2 R; n 2 Ng is a right ideal of R, and3. idealRl (F ) = fPni=1 �i ? �i j �i 2 F; �i 2 R; n 2 Ng is a left ideal of R. �Notie that the empty sumP0i=1 �i is zero.We will simply write ideal(F ), idealr(F ) and ideall(F ) if the ontext is lear. Manyalgebrai problems for rings are related to ideals and we will lose this setion bystating two of them2.The Ideal Membership ProblemGiven: An element � 2 R and a set of elements F � R.Question: Is � in the ideal generated by F ?De�nition 2.1.12Two elements �; � 2 R are said to be ongruent modulo ideal(F ), denoted by� �ideal(F ) �, if � = � + � for some � 2 ideal(F ), i.e., �� � 2 ideal(F ). �The Congruene ProblemGiven: Two elements �; � 2 R and a set of elements F � R.Question: Are � and � ongruent modulo the ideal generated by F ?Note that both problems an similarly be spei�ed for left and right ideals.We have seen that a non-empty subset of R is an ideal if it is losed underaddition and losed under multipliation with arbitrary elements of R. Modulesnow an be viewed as a natural generalization of the onept of ideals to arbitraryommutative groups.2For more information on suh problems in the speial ase of ommutative polynomial ringssee e.g. [Bu87℄.







16 Chapter 2 - Basi De�nitionsDe�nition 2.1.13Let R be a ring. A left R-moduleM is an additive ommutative group with anadditional operation � : R�M �!M , alled salar multipliation, suh that forall �; � 2 R and a; b 2M , the following hold:1. � � (a+ b) = � � a+ � � b,2. (�+ �) � a = � � a+ � � a,3. (� ? �) � a = � � (� � a), and4. 1 � a = a. �We an de�ne right R-modules and (two-sided) R-modules (also alled R-bimodules) in a similar fashion.Notie that a (left, right) ideal i � R forms a (left, right) R-module with respetto the addition and multipliation in R. This obviously holds for the trivial (left,right) ideals f0g and R of R.Another example of (left, right) R-modules we will study are the �nite diretproduts of the ring alled free (left, right) R-modules Rk, k 2 R.An additive subset of a (left, right) R-module is alled a (left, right) submoduleif it is losed under salar multipliation with elements of R. For a subset F �Mlet hF i denote the submodule generated by F in M .The Submodule Membership ProblemGiven: An element a 2M and a set of elements F �M .Question: a 2 hF i?Similar to the ongruene problem for ideals we an speify the ongruene prob-lem for submodules as follws:De�nition 2.1.14Two elements a; b 2 R are said to be ongruent modulo the submodule hF i forsome F �M , denoted by a �hF i b, if a� b 2 hF i. �The Congruene Problem for submodulesGiven: Two elements a; b 2 R and a set of elements F �M .Question: a �hF i b?







2.2 The Notion of Redution 172.2 The Notion of RedutionThis setion summarizes some important notations and de�nitions of redutionrelations and basi properties related to them, as an be found more expliitlyfor example in the work of Huet or Book and Otto ([Hue80, Hue81, BO93℄).Let E be a set of elements and �! a binary relation on E alled redution. Fora; b 2 E we will write a�! b in ase (a; b) 2 �!. A pair (E;�!) will be alleda redution system. Then we an expand the binary relation as follows:0�! denotes the identity on E, � denotes the inverse relation for �!,n+1�! := n�!Æ �! where Æ denotes omposition of relations and n 2 N,�n�! :=S0�i�n i�! ,+�! :=Sn>0 n�! denotes the transitive losure of �!,��! := +�! [ 0�! denotes the reexive transitive losure of �!, ! := � [ �! denotes the symmetri losure of �!,+ ! denotes the symmetri transitive losure of �!,� ! denotes the reexive symmetri transitive losure of �!.A well-known deision problem related to a redution system is the word problem.De�nition 2.2.1The word problem for a redution system (E;�!) is to deide for a; b in E,whether a � ! b holds. �Instanes of this problem are well-known in the literature and undeidable ingeneral. In the following we will outline suÆient onditions suh that a redutionsystem (E;�!) has solvable word problem.An element a 2 E is said to be reduible (with respet to �!) if there existsan element b 2 E suh that a �! b. All elements b 2 E suh that a ��! b arealled suessors of a and in ase a +�! b they are alled proper suessors.An element whih has no proper suessors is alled irreduible. In ase a ��! band b is irreduible, b is alled a normal form of a. Notie that for an elementa in E there an be no, one or many normal forms.De�nition 2.2.2A redution system (E;�!) is said to be Noetherian (or terminating) in asethere are no in�nitely desending redution hains a0 �! a1 �! : : : , with ai 2 E,i 2 N. �In ase a redution system (E;�!) is Noetherian every element in E has at leastone normal form.







18 Chapter 2 - Basi De�nitionsDe�nition 2.2.3A redution system (E;�!) is alled onuent, if for all a; a1; a2 2 E, a ��!a1and a ��! a2 implies the existene of a3 2 E suh that a1 ��!a3 and a2 ��! a3,and a1, a2 are alled joinable. �In ase a redution system (E;�!) is onuent every element has at most onenormal form. We an ombine these two properties to give suÆient onditionsfor the solvability of the word problem.De�nition 2.2.4A redution system (E;�!) is said to be omplete (or onvergent) in ase itis both, Noetherian and onuent. �Complete redution systems with e�etive or omputable3 redution relationshave solvable word problem, as every element has a unique normal form and twoelements are equal if and only if their normal forms are equal. Of ourse weannot always expet (E;�!) to be omplete. Even worse, both properties {termination and onuene { are undeidable in general. Nevertheless, there areweaker onditions whih guarantee ompleteness.De�nition 2.2.5A redution system (E;�!) is said to be loally onuent, if for all a; a1; a2 2E, a�! a1 and a�! a2 implies the existene of an element a3 2 E suh thata1 ��! a3 and a2 ��! a3. �I.e. loal onuene is a speial instane of onuene, namely a loalization ofonuene to one-redution-step suessors of elements only. The next lemmagives an important onnetion between loal onuene and onuene.Lemma 2.2.6 (Newman)Let (E;�!) be a Noetherian redution system. Then (E;�!) is onuent if andonly if (E;�!) is loally onuent.To prove Newman's lemma we need the onept of Noetherian indution whihis based on the following de�nition.De�nition 2.2.7Let (E;�!) be a redution system. A prediate P on E is alled �!-omplete,in ase for every a 2 E the following impliation holds: if P(b) is true for allproper suessors of a, then P(a) is true. �3By e�etive or omputable we mean that given an element we an always onstrut asuessor in ase one exists.







2.2 The Notion of Redution 19The Priniple of Noetherian Indution:In ase (E;�!) is a Noetherian redution system and P is a prediate that is�!-omplete, then for all a 2 E, P(a) is true.Proof of Newman's lemma:Suppose, �rst, that the redution system (E;�!) is onuent. This immediatelyimplies the loal onuene of (E;�!) as a speial ase. To show the onverse,sine (E;�!) is Noetherian we an apply the priniple of Noetherian indutionto the following prediate: P(a)if and only iffor all a1; a2 2 E, a ��!a1 and a ��!a2 implies that a1 and a2 are joinable.All we have to do now is to show that P is �!-omplete. Let a 2 E and letP(b) be true for all proper suessors b of a. We have to prove that P(a) istrue. Suppose a ��!a1 and a ��!a2. In ase a = a1 or a = a2 there is nothingto show. Therefore, let us assume a 6= a1 and a 6= a2, i.e., a �! ~a1 ��!a1 anda �! ~a2 ��!a2. Then we an dedue the following �gurea	�� ��R~a1 ~a2	��� ���R 	��� ���Ra1 b0 a2���R 	��� 	�������b1 ���R bwhere b0 exists, as (E;�!) is loally onuent and b1 and b exist by our indutionhypothesis sine a1, b0 as well as a2, b1 are proper suessors of a. Hene a1 anda2 must be joinable, i.e., the redution system (E;�!) is onuent. q.e.d.Therefore, if the redution system is terminating, a hek for onuene an beredued to a hek for loal onuene. The onept of ompletion then is basedon two steps:1. Chek the system for loal onuene.If it is loally onuent, then it is also omplete.2. Add new relations arising from situations where the system is not loallyonuent.







20 Chapter 2 - Basi De�nitionsFor many redution systems, e.g. string rewriting systems or term rewriting sys-tems, the hek for loal onuene again an be loalized, often to �nite test setsof so-alled ritial pairs. The relations arising from suh ritial situations areeither onuent or give rise to new relations whih stay within the ongruenedesribed by the redution system. Hene adding them in order to inrease thedesriptive power of the redution system is orret. This an be done until aomplete set is reahed. If fair strategies are used in the test for loal onuene,the limit system will be omplete.We lose this setion by providing suÆient onditions to ensure a redutionsystem (E;�!) to be Noetherian.De�nition 2.2.8A binary relation � on a set M is said to be a partial ordering, if for all a; b; in M :1. � is reexive, i.e., a � a,2. � is transitive, i.e., a � b and b �  imply a � , and3. � is anti-symmetrial, i.e., a � b and b � a imply a = b. �A partial ordering is alled total, if for all a; b 2 M either a � b or b � a holds.Further a partial ordering � de�nes a transitive irreexive ordering �, wherea � b if and only if a � b and a 6= b, whih is often alled a proper or stritordering. We all a partial ordering � well-founded, if the orresponding stritordering � allows no in�nite desending hains a0 � a1 � : : : , with ai 2 M ,i 2 N. Now we an give a suÆient ondition for a redution system to beterminating.Lemma 2.2.9Let (E;�!) be a redution system and suppose there exists a partial ordering �on E whih is well-founded suh that �! � �. Then (E;�!) is Noetherian.Proof :Suppose the redution system (E;�!) is not Noetherian. Then there is an in�nitesequene a0 �! a1 �! : : : , ai 2 E, i 2 N. As �! � � this sequene gives us anin�nite sequene a0 � a1 � : : : , with ai 2 E, i 2 N ontraditing our assumptionthat � is well-founded on E. q.e.d.







2.3 Gr�obner Bases in Polynomial Rings 212.3 Gr�obner Bases in Polynomial RingsThe main interest in this setion is the study of ideals in polynomial rings over�elds. Let K[X1 ; : : : ;Xn℄ denote a polynomial ring over the (ordered) variablesX1; : : : ;Xn and the omputable �eld K. By T = fX i11 : : :X inn j i1; : : : in 2 Ngwe de�ne the set of terms in this struture. A polynomial then is a formalsum Pni=1 �i � ti with non-zero oeÆients �i 2 Knf0g and terms ti 2 T . Theproduts � � t for � 2 K, t 2 T are alled monomials and will often be denotedas m = � � t. We reall that a subset F of K[X1; : : : ;Xn℄ generates an idealideal(F ) = fPki=1 fi � gi j k 2 N; fi 2 F; gi 2 K[X1; : : : ;Xn℄g and F is alled abasis of this ideal. It was shown by Hilbert using non-onstrutive argumentsthat every ideal in K[X1 ; : : : ;Xn℄ in fat has a �nite basis, but suh a generat-ing set need not allow algorithmi solutions for the membership or ongrueneproblem related to the ideal as we have seen in the introdution. It was Buh-berger who developed a speial type of basis, namely the Gr�obner basis, whihallows algorithmi solutions for several algebrai problems onerning ideals. Heintrodued a redution relation to K[X1 ; : : : ;Xn℄ by transforming polynomialsinto \rules" and gave a terminating proedure to \omplete" an ideal basis inter-preted as a redution system. This proedure is alled Buhberger's algorithm inthe literature. We will give a sketh of his approah below.Let � be a total well-founded ordering on the set of terms T , whih is admissible,i.e., t � 1, and s � t implies s Æ u � t Æ u for all s; t; u in T . The latterproperty is alled ompatibility with the multipliation Æ. In this ontext Ædenotes the multipliation in T , i.e.,X i11 : : :X inn ÆXj11 : : :Xjnn = X i1+j11 : : :X in+jnn .With respet to this multipliation we say that a term s = X i11 : : :X inn divides aterm t = Xj11 : : :Xjnn , if for all 1 � l � n we have il � jl. The least ommonmultiple LCM(s; t) of the terms s and t is the term Xmaxfi1;j1g1 : : :Xmaxfin;jngn .Note that T an be interpreted as the free ommutative monoid generated byX1; : : : ;Xn with the same multipliation Æ as de�ned above and identity 1 =X01 : : :X0n (reall Example 2.1.5). We proeed to give an example for a totalwell-founded admissible ordering on the set of terms T .Example 2.3.1A total degree ordering � on T is spei�ed as follows: X i11 : : :X inn �Xj11 : : :Xjnn if and only if Pns=1 is > Pns=1 js or Pns=1 is = Pns=1 js and thereexists k suh that ik > jk and is = js; 1 � s < k. �Heneforth, let � denote a total admissible ordering on T whih is of oursewell-founded.De�nition 2.3.2Let p = Pki=1 �i � ti be a non-zero polynomial in K[X1 ; : : : ;Xn℄ suh that �i 2K� = Knf0g, ti 2 T and t1 � : : : � tn. Then we let HM(p) = �1 � t1 denotethe head monomial, HT(p) = t1 the head term and HC(p) = �1 the head







22 Chapter 2 - Basi De�nitionsoeÆient of p. RED(p) = p � HM(p) stands for the redutum of p. We allp moni in ase HC(p) = 1. These de�nitions an be extended to sets F ofpolynomials by setting HT(F ) = fHT(f) j f 2 Fg, HC(F ) = fHC(f) j f 2 Fg,respetively HM(F ) = fHM(f) j f 2 Fg. �Using the notions of this de�nition we an reursively extend � from T to apartial well-founded admissible ordering � on K[X1 ; : : : ;Xn℄.De�nition 2.3.3Let p; q be two polynomials in K[X1; : : : ;Xn℄. Then we say p is greater than qwith respet to a total well-founded admissible ordering � on T , i.e., p > q, if1. HT(p) � HT(q) or2. HM(p) = HM(q) and RED(p) > RED(q). �Now one �rst speialization of right ideal bases in terms of the representationsthey allow an be given aording to standard representations as introdued e.g. in[BW92℄ for polynomial rings over �elds.De�nition 2.3.4Let F be a set of polynomials in K[X1; : : : ;Xn℄ and g a non-zero polynomial inideal(F ) � K[X1; : : : ;Xn℄. A representations of the formg = nXi=1 fi ? mi; fi 2 F;mi = �i � ti; �i 2 K; ti 2 T ; n 2 N (2.1)where additionally HT(g) � HT(fi ? mi) holds for 1 � i � n is alled a stan-dard representation of g in terms of F . If every g 2 ideal(F )nf0g has suh arepresentation in terms of F , then F is alled a standard basis of ideal(F ). �What distinguishes an arbitrary representation from a standard representation isthe fat that the former may ontain polynomial multiples with head terms largerthan the head term of the represented polynomial. For example let f1 = X1+X2,f2 = X1 +X3 and F = ff1; f2g in Q[X1;X2℄ with X1 � X2 � X3. Then for thepolynomial g = X2 �X3 we have the representation g = f1 + (�1) � f2 whih isno standard one as HT(g) = X2 � HT(f1) = HT(f2) = X1. Obviously the largerhead terms have to vanish in the sum. Therefore, in order to hange an arbitraryrepresentation into one ful�lling our additional ondition (2.1) we have to dealwith speial sums of polynomials related to suh situations.De�nition 2.3.5Let F be a set of polynomials in K[X1 ; : : : ;Xn℄ and t an element in T . Thenwe de�ne the set of ritial situations C(t; F ) related to t and F to ontain alltuples of the form (t; f1; : : : ; fk;m1; : : : ;mk), k 2 N, f1; : : : ; fk 2 F 4, mi = �i � ti,suh that4Notie that f1; : : : ; fk are not neessarily di�erent polynomials from F .







2.3 Gr�obner Bases in Polynomial Rings 231. HT(fi ? mi) = t, 1 � i � k, and2. Pki=1HM(fi ? mi) = 0.We set C(F ) = St2T C(t; F ). �In our example the tuple (X1; f1; f2; 1;�1) is an elements of the ritial setC(X1; F ). We an haraterize standard bases using these speial sets.Theorem 2.3.6Let F be a set of polynomials in K[X1 ; : : : ;Xn℄nf0g. Then F is a standard basis ofideal(F ) if and only if for every tuple (t; f1; : : : ; fk;m1; : : : ;mk) in C(F ) as spei�edin De�nition 2.3.5 the polynomialPki=1 fi?mi has a standard representation withrespet to F .Proof :In ase F is a standard basis sine these polynomials are all elements of ideal(F )they must have standard representations with respet to F .To prove the onverse, it remains to show that every element in ideal(F ) has astandard representation with respet to F . Hene, let g = Pmj=1 fj ? mj be anarbitrary representation of a non-zero polynomial g 2 ideal(F ) suh that fj 2 F ,and mj = �j � tj with �j 2 K, tj 2 T . Depending on this representation ofg and the well-founded total ordering � on T we de�ne t = max�fHT(fj ?tj) j 1 � j � mg and K as the number of polynomials fj ? tj with head termt. Then t � HT(g) and in ase HT(g) = t this immediately implies that thisrepresentation is already a standard representation. Else we proeed by indutionon the term t. Without loss of generality let f1; : : : ; fK be the polynomials in theorresponding representation suh that t = HT(fi ? ti), 1 � i � K. Then thetuple (t; f1; : : : ; fK;m1; : : : ;mK) is in C(F ) and let h =PKi=1 fi ?mi. We will nowhange our representation of g in suh a way that for the new representation of gwe have a smaller maximal term. Let us assume h is not 05. By our assumption, hhas a standard representation with respet to F , sayPnj=1 hj ? nj, where hj 2 F ,and nj = �j � sj with �j 2 K, sj 2 T and all terms ourring in the sum arebounded by t � HT(h) as PKi=1 HM(fi ? mi) = 0. This gives us:g = KXi=1 fi ? mi + mXi=K+1 fi ? mi= nXj=1 hj ? nj + mXi=K+1 fi ? mi5In ase h = 0, just substitute the empty sum for the representation of h in the equationsbelow.







24 Chapter 2 - Basi De�nitionswhih is a representation of g where the maximal term is smaller than t. q.e.d.In fat for the ase of polynomial rings over �elds one an show that it is suÆientto onsider ritial sets for subsets of F of size 2 and we an restrit the terms tothe least ommon multiples of the head terms of the respetive two polynomials.These sets then orrespond to the onept of s-polynomials used to haraterizeGr�obner bases whih will be introdued later on.Reviewing our example on page 22 we �nd that the set F = fX1+X2;X1+X3g isno standard basis as the polynomial g = X2�X3 has no standard representationalthough it is an elements of ideal(F ). However the set F [fgg then is a standardbasis of ideal(F ).In the literature standard representations in K[X1 ; : : : ;Xn℄ are losely related toredution relations based on the divisibility of terms and standard bases are in fatGr�obner bases. Here we want to introdue Gr�obner bases in terms of rewriting.Hene we ontinue by introduing the onept of redution to K[X1 ; : : : ;Xn℄.We an split a non-zero polynomial p into a rule HM(p) �! �RED(p) and wehaveHM(p) > �RED(p). Therefore, a set of polynomials gives us a binary relation�! on K[X1 ; : : : ;Xn℄ whih indues a one-step redution relation as follows.De�nition 2.3.7Let p; f be two polynomials in K[X1 ; : : : ;Xn℄. We say f redues p to q at amonomial m = � � t of p in one step, denoted by p�!bf q, if(a) HT(f) Æ u = t for some u 2 T , i.e., HT(f) divides t, and(b) q = p � � � HC(f)�1 � f � u.We write p�!bf if there is a polynomial q as de�ned above and p is then alledreduible by f . Further, we an de�ne ��!b ; +�!b , and n�!b as usual. Redutionby a set F � K[X1 ; : : : ;Xn℄ is denoted by p�!bF q and abbreviates p�!bf q forsome f 2 F , whih is also written as p�!bf2F q. �Note that if f redues p to q at a monomial m = � � t then t is no longer amongthe terms of q. We all a set of polynomials F � K[X1; : : : ;Xn℄ interredued,if no f 2 F is reduible by a polynomial in Fnffg.In the lassial ase of polynomial rings over �elds the existene of a standardrepresentation for a polynomial immediately implies reduibility of the headmonomial of the polynomial by any redution relation based on divisibility ofterms, hene by the redution relation de�ned here. This is due to the fatthat if a polynomial g has a standard representation in terms of a set of poly-nomials F for at least one polynomial f in F and some term t in T we have







2.3 Gr�obner Bases in Polynomial Rings 25HT(g) = HT(f ? t) = HT(f) Æ t and hene g is reduible at the monomial HM(g)by f . Notie that this is no longer true for polynomial rings over the integers.Let F = f3 � X2 + X; 2 � X2 + Xg be a subset of Z[X℄. Then the polynomialg = (3 �X2 +X) � (2 �X2 +X) = X2 has a standard representation in terms ofF but neither 3 �X2 nor 2 �X2 are divisors of the monomial X2 as neither 3 nor2 devide 1 in Z.Notie that we have �! � > and indeed one an show that our redutionrelation on K[X1 ; : : : ;Xn℄ is Noetherian. Therefore, we an restrit ourselves toensuring loal onuene when desribing a ompletion proedure to omputeGr�obner bases later on. But �rst we have to provide a de�nition of Gr�obnerbases in the ontext of rewriting.De�nition 2.3.8A set G � K[X1; : : : ;Xn℄ is said to be a Gr�obner basis of the ideal it generates,if 1. � !bG = �ideal(G), and2. �!bG is onuent. �The �rst statement expresses that the redution relation desribes the ideal on-gruene. It holds for any basis of an ideal in K[X1; : : : ;Xn℄ and is hene normallyomitted in the de�nitions provided in the literature. However, when generalizingthe onept of Gr�obner bases to other strutures it is no longer guaranteed andhene we have inluded it in our de�nition. The seond statement ensures theexistene of unique normal forms. If we additionally require a Gr�obner basis tobe interredued, suh a basis is unique in ase we assume that the polynomialsare moni, i.e., their head oeÆients are 1. The following lemma gives someproperties of the redution relation, whih are essential in giving a onstrutivedesription of a Gr�obner basis not only in the setting of ommutative polynomialrings over �elds.Lemma 2.3.9Let F be a set of polynomials and p; q; h some polynomials in K[X1; : : : ;Xn℄.Then the following statements hold:1. Let p � q�!bF h. Then there are polynomials p0; q0 2 K[X1 ; : : : ;Xn℄ suhthat p ��!bF p0, q ��!bF q0 and h = p0 � q0.2. Let 0 be a normal form of p � q with respet to F . Then there exists apolynomial g 2 K[X1; : : : ;Xn℄ suh that p ��!bF g and q ��!bF g.3. p � !bF q if and only if p� q 2 ideal(F ).4. p ��!bF 0 implies � � p � u ��!bF 0 for all � 2 K and u 2 T .







26 Chapter 2 - Basi De�nitions5. � � p � u�!bp 0 for all � 2 K� and u 2 T .The seond statement of this lemma is often alled the Translation Lemma inthe literature. Statement 3 shows that Buhberger's redution relation alwaysaptures the ideal ongruene. Statement 4 is onneted to the important fatthat redution steps are preserved under multipliation with monomials.The set F = fX1 +X2;X1 +X3g of polynomials in Q[X1;X2;X3℄ from page 22is an example of an ideal basis whih is not omplete, i.e. the redution relationis not omplete6. This follows as the polynomial X1 an be redued by �!bF to�X2 as well as to �X3 and the latter two polynomials annot be joined using�!bF .Of ourse we annot expet an arbitrary ideal basis to be omplete. But Buh-berger was able to show that in order to \omplete" a given basis one only has toadd �nitely many speial polynomials whih arise from ritial situations as de-sribed in the ontext of redution systems in the previous setion and De�nition2.3.5.The term X1 in our example desribes suh a ritial situation whih is in fatthe only one relevant for ompleting the set F .De�nition 2.3.10The s-polynomial for two non-zero polynomials p; q 2 K[X1; : : : ;Xn℄ is de�nedas spol(p; q) = HC(p)�1 � p � u� HC(q)�1 � q � v;where LCM(HT(p);HT(q)) = HT(p) Æ u = HT(q) Æ v for some u; v 2 T . �An s-polynomial will be alled non-trivial in ase it is not zero and notie that fornon-trivial s-polynomials we always have HT(spol(p; q)) � LCM(HT(p);HT(q)).The s-polynomial for p and q belongs to the set of ritial situationsC(LCM(HT(p);HT(q)); fp; qg).In our example we �nd spol(X1+X2;X1+X3) = X1+X2�(X1+X3) = X2�X3.Why are s-polynomials related to testing for loal onuene? To answer thisquestion we have to look at ritial situations related to the redution relationas de�ned in De�nition 2.3.7. Given two polynomials p; q 2 K[X1 ; : : : ;Xn℄ thesmallest situation where both of them an be applied as rules is the least ommonmultiple of their head terms. Let LCM(HT(p);HT(q)) = HT(p)Æu = HT(q)Æv = tfor some u; v 2 T . This gives us the following situation:LCM(HT(p);HT(q)) = t	�� q p ��Rt� HC(q)�1 � q � v t� HC(p)�1 � p � u= p0 = q06Note that we all a set of polynomials omplete (onuent, et.) if the redution relationindued by these polynomials used as rules is omplete (onuent, et.).







2.3 Gr�obner Bases in Polynomial Rings 27Then we get p0� q0 = t�HC(q)�1 � q � v� (t�HC(p)�1 � p �u) = HC(p)�1 � p �u�HC(q)�1 � q �v = spol(p; q), i.e., the s-polynomial is derived from the two one-stepsuessors by subtration. Now by Lemma 2.3.9 we know that spol(p; q) ��!bF 0implies the existene of a ommon normal form for the polynomials p0 and q0.Sine the redution relation based on De�nition 2.3.7 is terminating, the onu-ene test an hene be redued to heking whether all s-polynomials redue tozero. The following theorem now gives a onstrutive haraterization of Gr�obnerbases based on these ideas.Theorem 2.3.11For a set of polynomials F in K[X1; : : : ;Xn℄, the following statements are equiv-alent:1. F is a Gr�obner basis.2. For all polynomials g 2 ideal(F ) we have g ��!bF 0.3. For all polynomials fk; fl 2 F we have spol(fk; fl) ��!bF 0.Proof :1 =) 2 : Let F be a Gr�obner basis and g 2 ideal(F ). Then g is ongruent to 0modulo the ideal generated by F , i.e., g � !bF 0. Thus, as 0 is irreduible and Gis onuent, we get g ��!bF 0.2 =) 1 : By Lemma 2.3.9 3 we know � !bG = �ideal(G). Hene it remains toshow that redution with respet to F is onuent. Sine our redution is ter-minating it is suÆient to show loal onuene. Thus, suppose there are threedi�erent polynomials g; h1; h2 suh that g�!bF h1 and g�!bF h2. Then we knowh1 �ideal(F ) g �ideal(F ) h2 and hene h1 � h2 2 ideal(F ). Now by lemma 2.3.9(the translation lemma), h1 � h2 ��!bF 0 implies the existene of a polynomialh 2 K[X1; : : : ;Xn℄ suh that h1 ��!bF h and h2 ��!bF h. Hene, h1 and h2 are join-able.2 =) 3 : By de�nition 2.3.10 the s-polynomial for two non-zero polynomialsfk; fl 2 K[X1 ; : : : ;Xn℄ is de�ned asspol(fk; fl) = HC(fk)�1 � fk � u� HC(fl)�1 � fl � v;where LCM(HT(p);HT(q)) = HT(p) Æ u = HT(q) Æ v and, hene, spol(fk; fl) 2ideal(F ). Therefore, spol(fk; fl) ��!bF 0 follows immediately.3 =) 2 : We have to show that every g 2 ideal(F )nf0g is �!bF -reduible tozero. Remember that for h 2 ideal(F ), h�!bF h0 implies h0 2 ideal(F ). As�!bF is Noetherian, thus it suÆes to show that every g 2 ideal(F )nf0g is�!bF -reduible. Let g = Pmj=1 �j � fj � wj be an arbitrary representationof g with �j 2 K�, fj 2 F , and wj 2 T . Depending on this represen-tation of g and a total well-founded admissible ordering � on T we de�ne







28 Chapter 2 - Basi De�nitionst = maxfHT(fj) Æ wj j j 2 f1; : : : ;mgg and K is the number of polynomialsfj � wj ontaining t as a term. Then t � HT(g) and in ase HT(g) = t thisimmediately implies that g is �!bF -reduible. Thus we will prove that g has arepresentation where every ourring term is less or equal to HT(g), i.e., thereexists a representation suh that t = HT(g)7. This will be done by indutionon (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and K 0 < K)8.In ase t � HT(g) there are two polynomials fk; fl in the orresponding rep-resentation9 suh that HT(fk) Æ wk = HT(fl) Æ wl = t. By de�nition 2.3.10we have an s-polynomial spol(fk; fl) = HC(fk)�1 � fk � zk � HC(fl)�1 � fl � zl suhthat HT(fk) Æ zk = HT(fl) Æ zl = LCM(HT(fk);HT(fl)). Sine HT(fk) Æ wk =HT(fl) Æ wl there exists an element z 2 T suh that wk = zk Æ z and wl = zl Æ z.We will now hange our representation of g by using the additional informa-tion on this s-polynomial in suh a way that for the new representation of gwe either have a smaller maximal term or the ourrenes of the term t aredereased by at least 1. Let us assume that spol(fk; fl) is not trivial10. Thenthe redution sequene spol(fk; fl) ��!bF 0 results in a representation of the formspol(fk; fl) =Pni=1 Æi � hi � vi, where Æi 2 K� ; hi 2 F; vi 2 T . As the hi are due tothe redution of the s-polynomial, all terms ourring in the sum are bounded bythe term HT(spol(fk; fl)). Moreover, sine � is admissible on T this implies thatall terms of the sumPni=1 Æi �hi�vi�z are bounded by HT(spol(fk; fl))Æz � t, i.e.,they are stritly bounded by t11. We an now do the following transformations:�k � fk � wk + �l � fl � wl= �k � fk � wk + �0l � �k � fk � wk � �0l � �k � fk � wk| {z }=0 +�0l � �l � fl � wl= (�k + �0l � �k) � fk � wk � �0l � (�k � fk � wk � �l � fl � wl)| {z }= spol(fk;fl)�z= (�k + �0l � �k) � fk � wk � �0l � ( nXi=1 Æi � hi � (vi Æ z)) (2.2)where, �k = HC(fk)�1, �l = HC(fl)�1, and �0l � �l = �l. By substituting (2.2) inour representation of g either t disappears or K is dereased. q.e.d.7Suh representations are often alled standard representations in the literature (ompare[BW92℄).8Note that this ordering is well-founded sine � is well-founded on T and K 2 N.9Not neessarily fl 6= fk.10In ase spol(fk; fl) = 0, just substitute 0 for the sumPni=1 Æi �hi�vi in the equations below.11This an also be onluded by statement four of lemma2.3.9 sine spol(fk; fl) ��!bF 0 impliesspol(fk; fl) � z ��!bF 0 and HT(spol(fk; fl) � z) � t.







2.3 Gr�obner Bases in Polynomial Rings 29The seond item of this theorem immediately implies the orretness of the alge-brai de�nition of Gr�obner bases, whih is equivalent to De�nition 2.3.8.De�nition 2.3.12A set G of polynomials in K[X1 ; : : : ;Xn℄nf0g is said to be a Gr�obner basis, ifHT(ideal(G)) = fHT(g) � t j g 2 G; t 2 T g. �Remark 2.3.13A loser inspetion of the proof of 3 =) 2 given above reveals a onept whihis essential in the proofs of similar theorems for spei� funtion rings in thefollowing hapters. The heart of this proof onsists in transforming an arbitraryrepresentation of an element g belonging to the ideal generated by the set F insuh a way that we an dedue a top redution sequene for g to zero, i.e., aredution sequene where the redutions only take plae at the respetive headterm. Suh a representation of g then is a standard representation and Gr�obnerbases are standard bases. �As a onsequene of Theorem 2.3.11 it is deidable whether a �nite set of poly-nomials is a Gr�obner basis. Moreover, this theorem gives rise to the followingompletion proedure for sets of polynomials.Proedure: Buhberger's AlgorithmGiven: A �nite set of polynomials F � K[X1; : : : ;Xn℄.Find: Gb(F ), a Gr�obner basis of F .G := F ;B := f(q1; q2) j q1; q2 2 G; q1 6= q2g;while B 6= ; do(q1; q2) := remove(B);% Remove an element from the set Bh := normalform(spol(q1; q2); �!bG )% Compute a normal form of spol(q1; q2) with respet to �!bGif h 6= 0then B := B [ f(f; h) j f 2 Gg;G := G [ fhg;endifendwhileGb(F ) := GApplying this proedure to our example F = fX1 +X2;X1 +X3g from page 22gives us h = X2 �X3 and G = F [ fhg is a Gr�obner basis as all other ritialsituations are resolvable.







30 Chapter 2 - Basi De�nitionsTermination of the proedure an be shown by using a slightly di�erent hara-terization of Gr�obner bases (see Setion 1.2): A subset G of idealK[X1;:::;Xn℄(F ) isa Gr�obner basis of idealK[X1;:::;Xn℄(F ) if and only if HT(idealK[X1;:::;Xn℄(F )nf0g) =idealT (HT(G)), i.e., the set of the head terms of the polynomials in the ideal gen-erated by F in K[X1 ; : : : ;Xn℄ oinides with the ideal (in T ) generated by thehead terms of the polynomials in G. Reviewing the proedure, we �nd that everypolynomial added in the while loop has the property that its head term annotbe divided by the head terms of the polynomials already in G. By Dikson'sLemma or Hilbert's Basis Theorem, the head terms of the polynomials in G willat some step form a basis for the set of head terms of the polynomials of the idealgenerated by F whih itself is the ideal in T generated by the head terms of thepolynomials in G. From this time on for every new polynomial h omputed bythe algorithm the head term HT(h) must lie in this ideal. Therefore, its headterm must be divisible by at least one of the head terms of the polynomials in G,i.e., HT(h) and hene h annot be in normal form with respet to G unless it iszero.







Chapter 3Redution RingsIn this hapter we proeed to distinguish suÆient onditions, whih allow tode�ne a redution relation for a ring in suh a way that every �nitely generatedideal in the ring has a �nite Gr�obner basis with respet to that redution rela-tion. Suh rings will be alled redution rings. Often additional onditions anbe given to ensure e�etivity for the ring operations, the redution relation andthe omputation of the Gr�obner bases { the ring is then alled an e�etive redu-tion ring. Naturally the question arises, when and how the property of being aredution ring is preserved under various ring onstrutions. This an be studiedfrom an existential as well as from a onstrutive point of view. One main goal ofstudying abstrat redution rings is to provide universal methods for onstrutingnew redution rings without having to generalize the whole setting individuallyfor eah new struture: e.g. knowing that the integers Zare a redution ring andthat the property lifts to polynomials in one variable, we �nd that Z[X℄ is againa redution ring and we an immediately onlude that alsoZ[X1; : : : ;Xn℄ is a re-dution ring. Similarly, as sums of redution rings are again redution rings, wean diretly onlude that Zk[X1; : : : ;Xn℄ or even (Z[Y1; : : : ; Ym℄)k[X1; : : : ;Xn℄are redution rings. Moreover, sine Z is an e�etive redution ring it an beshown that these new redution rings again are e�etive. Commutative e�e-tive redution rings have been studied by Buhberger, Madlener, and Stifter in[Bu83, Mad86, Sti87℄.On the other hand, many rings of interest are non-ommutative, e.g. rings ofmatries, the ring of quaternions, Bezout rings and various monoid rings, andsine in many ases they an be regarded as redution rings, they are againandidates for applying ring onstrutions. More interesting examples of non-ommutative redution rings have been studied by Pesh in [Pes97℄.A general framework for redution rings and ring onstrutions inluding thenon-ommutative ase was presented at the Linz onferene \33 years of Gr�obnerBases" in [MR98b℄. Here we extend this framework by giving more details andinsight. Additionally, we add a setion on modules over redution rings, as thisonept arises naturally as a generalization of ideals in rings.







32 Chapter 3 - Redution RingsOf ourse there are also rings of interest, whih an be enrihed by a redutionrelation, but will not allow �nite Gr�obner bases for all ideals. Monoid and grouprings provide suh a setting. For suh strutures still many of the propertiesstudied here are of interest and an be shown in weaker forms, e.g. provided amonoid ring with a redution relation we an de�ne a redution relation for thepolynomial ring with one variable over the monoid ring.The hapter is organized as follows: In Setion 3.1 we introdue axioms for spe-ifying redution relations in rings and give two onepts involving speial formsof ideal bases { weak redution rings and redution rings. In Setion 3.2 { 3.5 westudy quotients, sums, modules, and polynomial rings of these strutures.3.1 Redution RingsLet R be a ring with unit 1 and a (not neessarily e�etive) redution relation=)B� R� R assoiated with subsets B � R satisfying the following axioms:(A1) =)B = S�2B =)�,=)B is terminating for all �nite subsets B � R.(A2) � =)�  implies ��  2 idealR(�).(A3) � =)� 0 for all � 2 Rnf0g.Part one of Axiom (A1) states how a redution relation using sets is de�nedin terms of a redution relation using elements of R and is hene appliableto arbitrary sets B � R. However, Axiom (A1) does not imply terminationof redution with respet to arbitrary sets: Just assume for example the ringR = Q[fXi j i 2 Ng℄, i.e., the polynomial ring with in�nitely many indetermi-nates, and the redution relation based on divisibility of head terms with respetto the length-lexiographial ordering indued by X1 � X2 � : : :. Then al-though redution when using a �nite set of polynomials is terminating, this isno longer true for in�nite sets. For example the in�nite set fXi �Xi+1 j i 2 Nggives rise to an in�nite redution sequene X1=)X1�X2 X2=)X2�X3 X3 : : :. Thisphenomenon of ourse has many onsequenes. Readers familiar with Gr�obnerbases in polynomial rings know that when proving that a set of polynomials is aGr�obner basis if and only if all ideal elements redue to zero using the set, thisis shown by proving that every ideal element is reduible by some element in theset (ompare Theorem 2.3.11). Unfortunately, this only implies reduibility tozero in ase the redution relation is terminating. Without this property othermethods have to be applied.In order to ensure termination for arbitrary subsets of R it is possible to give amore restrited form of Axiom (A1):







3.1 Redution Rings 33(A1') =)B = S�2B =)�,=)B is terminating for all subsets B � R.Then of ourse redution sequenes are always terminating and many additionalrestritions, whih we have to add later, are no longer neessary. Still we preferthe more general formulation of the axiom sine it allows to state more learlywhy and where termination is needed and how it an be ahieved.Axiom (A2) states how redution steps are related to the ideal ongruene, namelythat one redution step using an element � 2 R is aptured by the ongruenegenerated by idealR(�). We will later on see that this extends to the reexivetransitive symmetri losure �()B of any redution relation =)B for arbitrarysets B � R.Notie that in ase R is ommutative (A2) implies  = � � � � � for some �in R. In the non-ommutative ase using a single element � for redution � � 2 idealR(�) only implies  = ��Pki=1 �i1 � � � �i2 for some �i1; �i2 2 R, 1 �i � k, hene possibly involving � more than one with di�erent multipliers.This provides a large range of possibilities for de�ning redution steps, e.g. bysubtrating one or more appropriate multiples of � from �. Notie further thaton the onverse Axiom (A2) does not provide any information on how �,  2 Rwith � �  2 idealR(�) are related with respet to the redution relation =)f�g.As a onsequene many properties of speialized redution relations as knownfrom the literature, e.g. the useful Translation Lemma, annot be shown to holdin this general setting.We an de�ne one-sided (right or left) redution relations in rings by re�ningAxiom (A2) as follows:(A2r) � =)�  implies ��  2 idealRr (�), respetively(A2l) � =)�  implies ��  2 idealRl (�).In these speial ases again we always get  = ��� � � respetively  = �� � ��for some � 2 R.Remember that Axiom (A2) while not spei� on the exat form of the redutionstep ensures that redution steps \stay" within the ideal ongruene. Let us nowstudy the situation for a set B � R and let �i denote the ongruene generatedby the ideal i = ideal(B), i.e., � �i � if and only if � � � 2 i. Then (A1)1 and(A2) immediately imply �()B � �i. Hene, in ase the redution relation ise�etive one method for deiding the membership problem for a �nitely generatedideal i is to transform a �nite generating set B into a �nite set B0 suh that B01We only need the �rst part of Axiom (A1), namely how =)B is de�ned, and hene we donot have to restrit ourselves to �nite sets.







34 Chapter 3 - Redution Ringsstill generates i and =)B0 is onuent on i. Notie that 0 has to be irreduible2for all =)�, � 2 R. Therefore, 0 has to be the normal form of the ideal elements.Hene the goal is to ahieve � 2 i if and only if � �=)B0 0. In partiular i is oneequivalene lass of �()B0 . The di�erent de�nitions of redution relations forrings existing in literature show that for deiding the membership problem of anideal i it is not neessary to enfore �()B0 = �i. For example the D-redutionnotion given by Pan in [Pan85℄ does not have this property but is still suÆientto deide �i-equivalene of two elements beause � �i � if and only if �� � 2 i.It may even happen that D-redution is not only onuent on i but onuenteverywhere and still � �i � does not imply that the normal forms with respet toD-redution are the same. This phenomenon is illustrated in the next example.Example 3.1.1Let us look at di�erent ways of introduing redution relations for the ring ofintegers Z. For �; �;  2Zwe de�ne:� �=)�  if and only if � = � � j�j+ where 0 �  < j�j and � 2Z(divisionwith remainder),� �=)D� 0 if and only if � = � ��, i.e. � is a proper divisor of � (D-redution).Then for example we have 5=)4 1 but 5 6=)D4 .It is easy to show that both redution relations satisfy (A1) { (A3). Moreover, allelements in Zhave unique normal forms. An element belongs to ideal(4) if andonly if it is reduible to zero using 4. For =)-redution the normal forms areunique representatives of the quotientZ=ideal(4). This is no longer true for =)D-redution, sine e.g. 3 �ideal(4) 7 sine 7 = 3 + 4, but both are =)D-irreduible.On the other hand, as =)D� is only appliable to multiples � �� and then reduesthem to zero, =)D4 is onuent everywhere on Z. �Sine onuene of a redution relation on the ideal is already suÆient to solveits membership problem, bases with this property alled weak Gr�obner bases havebeen studied in the literature. We proeed here by de�ning suh weak Gr�obnerbases in our ontext.De�nition 3.1.2A subset B of R is alled a weak Gr�obner basis of the ideal i = ideal(B) itgenerates, if =)B is terminating and � �=)B 0 for all � 2 i. �Notie that in Theorem 2.3.11 this property was one way of haraterizingGr�obner bases in K[X1 ; : : : ;Xn℄. We will later on see why in polynomial ringsthe terms weak Gr�obner basis and Gr�obner basis oinide.20 annot be reduible by itself sine this would ontradit the termination property in(A1). Similarly, 0 =)� 0 and 0 =)� , both � and  not equal 0, give rise to in�nite redutionsequenes again ontraditing (A1).







3.1 Redution Rings 35De�nition 3.1.3A ring (R;=)) satisfying (A1) { (A3) is alled a weak redution ring if every�nitely generated ideal in R has a �nite weak Gr�obner basis. �As stated before suh a weak Gr�obner basis is suÆient to deide the ideal mem-bership problem in ase the redution relation is e�etive. However, if we wantunique normal forms for all elements in R suh that eah ongruene has oneunique representative we need a stronger kind of ideal basis.De�nition 3.1.4A subset B of R is alled a Gr�obner basis of the ideal i = ideal(B) it generates,if �()B = �i and =)B is omplete3. �Of ourse Gr�obner bases are also weak Gr�obner bases. This an be shown byindution on k, where for � 2 ideal(B) we have � k()B 0. In ase k = 1 weimmediately get that �=)B 0 must hold as 0 is irreduible. In ase k > 1 we�nd �()B � k�1()B 0 and by our indution hypothesis � �=)B 0 must hold. Noweither �=)B � and we are done or �=)B �. In the latter ase the ompletenessof our redution relation ombined with the irreduibility of zero then must yield� �=)B 0 and we are done.The onverse is not true. To see this let us review the de�nition of =)D-redutionfor Zas presented in Example 3.1.1. Then the set f2g is a weak Gr�obner basis ofthe ideal 2 �Z= f2 � � j � 2Zg as for every � 2 (2 �Z)nf0g we have � =)Df2g 0.On the other hand elements in Zn(2 �Z) are irreduible and hene 3 and 5 are innormal form with respet to =)Df2g. Therefore, 3 6 �()Df2g 5 although 5 �2�Z3 as5 = 3 + 1 � 2.However, for many rings as e.g. polynomial rings over �elds, weak Gr�obner basesare also Gr�obner bases. This is due to the fat that many rings with redutionrelations studied in the literature ful�ll a ertain property for the redution rela-tion alled the Translation Lemma (ompare Lemma 2.3.9 (2)). Rephrased in ourontext the Translation Lemma states that for a set F � R and for all �; � 2 R,�� � �=)F 0 implies the existene of  2 R suh that � �=)F  and � �=)F . Asmentioned before, the validity of this lemma for a redution relation in a ring hasonsequenes on the relation between weak Gr�obner bases and Gr�obner bases.3Notie that in the literature de�nitions of Gr�obner bases normally only require that =)Bis \onuent". This is due to the fat that in these ases =)B is terminating. In our ontext,however for arbitrary sets B � R we have seen that =)B need not be Noetherian. Hene wehave to inorporate this additional requirement into our de�nition, whih is done by demandingompleteness. Hene here we have a point where the weaker form (A1) demands more are inde�ning the term \Gr�obner basis". In rings where the redution relation using an arbitraryset of elements is always Noetherian, the weaker demand for (loal) onuene is of oursesuÆient.







36 Chapter 3 - Redution RingsTheorem 3.1.5Let R be a ring with a redution relation =) ful�lling (A1) { (A3). If additionallythe Translation Lemma holds for the redution relation =) in R, then weakGr�obner bases are also Gr�obner bases.Proof :Let R be a ring where the Translation Lemma holds for the redution relation=). Further let B be a weak Gr�obner basis of the ideal i = ideal(B). In orderto prove that B is in fat a Gr�obner basis we have to show two properties:1. �()B = �i:The inlusion �()B � �i follows by (A1) and (A2). To see the onverselet � �i �. Then ��� 2 i, and ��� �=)B 0, as B is a weak Gr�obner basis.But then the Translation Lemma yields that � and � are joinable by =)Band hene � �()B �.2. =)B is omplete:Sine =)B is terminating it suÆes to show loal onuene. Let�; �1; �2 2 R suh that �=)B �1 and �=)B �2. Then again �1��2 2 i, and�1 � �2 �=)B 0, sine B is a weak Gr�obner basis. As before the TranslationLemma yields that �1 and �2 are joinable by =)B and we are done.q.e.d.On the other hand, looking at proofs of variations of the Translation Lemmain the literature we �nd that in order to show this property for a ring with aredution relation we need more information on the redution step as is providedby the very general form of Axiom (A2). Hene in this general setting weakGr�obner bases and Gr�obner bases have to be distinguished.Rings where �nitely generated ideals have �nite Gr�obner bases are of partiularinterest.De�nition 3.1.6A ring (R;=)) satisfying (A1) { (A3) is alled a redution ring if every �nitelygenerated ideal in R has a �nite Gr�obner basis. �The onnetion between weak redution rings and redution rings follows fromTheorem 3.1.5.Corollary 3.1.7Let (R;=)) be a weak redution ring. If additionally the Translation Lemmaholds, then (R;=)) is a redution ring.







3.1 Redution Rings 37To simplify notations sometimes we will identify (R;=)) with R in ase =)is known or irrelevant. The notion of one-sided weak redution rings andone-sided redution rings is straightforward4.E�etive or omputable weak redution rings and e�etive or om-putable redution rings an be de�ned similar to Buhberger's ommutativeredution rings (see [Bu83, Sti87℄), in our ase by demanding that the ring op-erations are omputable, the redution relation is e�etive, and, additionally,Gr�obner bases an be omputed. Proedures whih ompute Gr�obner bases arenormally ompletion proedures based on e�etive tests for loal onuene todeide whether a �nite set is a Gr�obner basis and to enrih that set if not. But ofourse other proedures are also possible, e.g. when using division with remain-ders as redution relation inZthe Eulidean algorithm an be used for omputingGr�obner bases of ideals.Notie that De�nition 3.1.6 does not imply that Noetherian rings satisfying theAxioms (A1), (A2) and (A3) are indeed redution rings. This is due to the fatthat while of ourse all ideals then have �nite bases, the property of being aGr�obner basis strongly depends on the redution ring whih is of ourse itselfstrongly dependent on the redution relation hosen for the ring. Hene theexistene of �nite ideal bases does not imply the existene of �nite Gr�obner basesas the following example shows: Given an arbitrary Noetherian ring R we anassoiate a (very simple) redution relation to elements of R by de�ning for any� 2 Rnf0g, � =)� if and only if � = �. Additionally we de�ne � =)� 0.Then the Axioms (A1), (A2) and (A3) are ful�lled but although every ideal inthe Noetherian ring R has a �nite basis (in the sense of a generating set), in�niteideals will not have �nite Gr�obner bases, as for any ideal i � R in this setting theset inf0g is the only possible Gr�obner basis.Another interesting question onerns whih hanges to ideal bases preserve theproperty of being a Gr�obner basis. Extensions of (weak) Gr�obner bases by idealelements are not ritial5.Remark 3.1.8If B is a �nite (weak) Gr�obner basis of i and � 2 i, then B0 = B [ f�g is again a(weak) Gr�obner basis of i: First of all we �nd �()B � �()B0 � �i = �()B .Moreover, sine B0 is again a �nite set, =)B0 is terminating. Finally =)B0inherits its onuene from =)B sine � =)�  implies � �i , and hene � and have the same normal form with respet to =)B. �4An example for a one-sided weak redution ring whih is not a one-sided redution ring anbe given using the two di�erent redution relations =) and =)D for the integers provided inExample 3.1.1. Then the free monoid ring Z[fa; bg℄ with pre�x redution indued by =) is aone-sided redution ring while for pre�x redution indued by =)D we get a one-sided weakredution ring.5Extensions of (weak) Gr�obner bases by elements not belonging to the ideal make no sensein our ontext as then the redution relation no longer is a proper means for desribing theoriginal ideal ongruene.







38 Chapter 3 - Redution RingsHene, if B is a �nite Gr�obner basis of an ideal i and � 2 B is reduible byBnf�g to �, then B [ f�g is again a Gr�obner basis of i. The same is true forweak Gr�obner bases.Removing elements from a set is ritial as we might derease the set of elementswhih are reduible with respet to the set. Hene if the set is a Gr�obner basis,after removing elements the ideal elements might no longer redue to zero usingthe remaining set. Reviewing the example presented in Setion 1.3 we �nd thatwhile the set fX2; +X2;X21 +X3;X2 �X3g is a Gr�obner basis in Q[X1;X2;X3℄the subset fX2; + X2;X21 + X3g, although it generates the same ideal, is none.In order to remove � from a Gr�obner basis B without losing the Gr�obner basisproperty it is important for the redution relation =) to satisfy an additionalaxiom:(A4) � =)� and � =) Æ imply � =) or � =)Æ.It is not easy to give a simple example for a ring with a redution relation ful�lling(A1) { (A3) but not (A4) as the redution rings we have introdued so far allsatisfy (A4)6.Lemma 3.1.9Let (R;=)) be a redution ring satisfying (A4). Further let B � R be a (�nite)Gr�obner basis of a �nitely generated ideal in R and B0 � B suh that for all� 2 B, � �=)B0 0 holds. Then B0 is a Gr�obner basis of idealR(B). In partiular,for all � 2 R, � �=)B 0 implies � �=)B0 0.Proof :In this proof let �+B denote a normal form of � with respet to =)B and letIRR(=)B) denote the =)B-irreduible elements in R. Notie that by the Axioms(A1) and (A4) and our assumptions on B0, all elements reduible by B are alsoreduible by B0: We show a more general laim by indution on n: If �; � 2 Rsuh that � =)� and � n=)B0 0, then � =)B0. The base ase n = 1 is a diretonsequene of (A4), as � =)� and �=)�02B0 0 immediately imply � =)�02B0.6An example using a right redution relation in a monoid ring an be found in Example 3.6in [MR98d℄: Let � = fa; b; g and T = fa2 �! 1; b2 �! 1; 2 �! 1g be a monoid presentationof M with a length-lexiographial ordering indued by a � b � . For p; f 2 K[M℄ a (right)redution relation is de�ned by p�!sf q at a monomial � � t, if(a) HT(f �w) = t for some w 2M, and(b) q = p � � � HC(f �w)�1 � f �w.Looking at p = ba + b; q = b + 1 and r = a + b 2 Q[G℄ we get p�!sq p � q � a = �a + band q�!sr q � r �  = �a + 1 = q1, but p 6�!sfr;q1g . Trying to redue ba by r or q1 we getr �a = aa+ ba; r � aba = ba+ baba and q1 �aba = �ba+aba; q1� ba = �aba+ ba all violatingondition (a). Trying to redue b we get the same problem as r � ab = b+ bab; q1�ab = �b+aand q1 � b = �ab + b.







3.2 Quotients of Redution Rings 39In the indution step we �nd � =)�02B0 Æ n�1=)B0 0 and either � =)�02B0 or � =)Æand our indution hypothesis yields � =)B0.Hene we an onlude IRR(=)B0) � IRR(=)B). We want to show that B0 isa Gr�obner basis of idealR(B): Assuming � �=)B �+B but � �=)B0 �+B0 6= �+B, we�nd �+B02 idealR(B) and �+B02 IRR(=)B0) � IRR(=)B), ontraditing theonuene of =)B. Hene, �+B0= �+B, implying that =)B0 is also onuent, as�+B is unique. Now it remains to show that �()B � �()B0 holds. This followsimmediately, as for � �()B � we have �+B0= �+B= �+B= �+B0 whih implies� �()B0 �. q.e.d.This result arries over for weak Gr�obner bases.Corollary 3.1.10Let (R;=)) be a weak redution ring satisfying (A4). Further let B � R be a(�nite) weak Gr�obner basis of a �nitely generated ideal in R and B0 � B suhthat for all � 2 B, � �=)B0 0 holds. Then B0 is a weak Gr�obner basis of idealR(B).In partiular, for all � 2 R, � �=)B 0 implies � �=)B0 0.Proof :As in the proof of Lemma 3.1.9 we an onlude IRR(=)B0) � IRR(=)B). Heneassuming that � �=)B 0 while � �=)B0 �+B0 6= 0 would imply �+B02 IRR(=)B).As B0 � B this would give us a ontradition sine then � 2 idealR(B) would havetwo di�erent normal forms at least one of them not equal to zero with respet toB ontraditing the fat that B is supposed to be a weak Gr�obner basis. q.e.d.Remark 3.1.8 and Lemma 3.1.9 are losely related to interredution and redued(weak) Gr�obner bases. We all a (weak) Gr�obner basis B � R redued if noelement � 2 B is reduible by =)Bnf�g.The results of this setion arry over to rings with appropriate one-sided redutionrelations.In the remaining setions of this hapter we study the question whih ring on-strutions preserve the property of being a (weak) redution ring.3.2 Quotients of Redution RingsLet R be a ring with a redution relation =) ful�lling (A1) { (A3) and i a �nitelygenerated ideal in R with a �nite Gr�obner basis B. Then every element � 2 Rhas a unique normal form �+B with respet to =)B. We hoose the set of =)B-irreduible elements of R as representatives for the elements in the quotient R=i.







40 Chapter 3 - Redution RingsAddition is de�ned by �+� := (�+�)+B and multipliation by � �� := (� ��)+B.Then a natural redution relation an be de�ned on the quotient R=i as follows:De�nition 3.2.1Let �; �;  2 R=i. We say � redues � to  in one step, denoted by � �!� , ifthere exists 0 2 R suh that � =)� 0 and (0)+B= . �First we ensure that the Axioms (A1) { (A3) hold for the redution relation inR=i based on De�nition 3.2.1: �!S = Ss2S �!s is terminating for all �niteS � R=i sine otherwise =)B[S would not be terminating in R although B [ Sis �nite. Hene (A1) is satis�ed. If � �!�  for some �; �;  2 R=i we know� =)� 0 �=)B , i.e., � �  2 idealR(f�g [ B), and hene � �  2 idealR=i(�).Therefore, (A2) is also ful�lled. Finally Axiom (A3) holds sine � =)� 0 for all� 2 Rnf0g implies � �!� 0.Moreover, in ase (A4) holds in R this is also true for R=i: For �; �; ; Æ 2 R=i wehave that � �!� and � �! Æ imply � =)� and � =) Æ0 �=)B Æ and sine � is=)B-irreduible7 this implies � =)f;Æg and hene � �!f;Æg.Theorem 3.2.2If (R;=)) is a redution ring with (A4), then for every �nitely generated ideal ithe quotient (R=i;�!) again is a redution ring with (A4).Proof :Sine redution in R=i as de�ned above inherits (A1) { (A4) from R, it remainsto show that every �nitely generated ideal j � R=i has a �nite Gr�obner basis. LetjR = f� 2 R j �+B2 jg be an ideal8 in R orresponding to j. Then jR is �nitelygenerated as an ideal in R by its �nite basis in R=i viewed as elements of R andthe �nite basis of i. Hene jR has a �nite Gr�obner basis in R, say GR. ThenG = f�+Bj � 2 GRgnf0g is a �nite Gr�obner basis of j: If � 2 j we have � ��!G 0and idealR=i(G) = j, as every element whih is reduible with an element � 2 GRis also reduible with an element of G[B beause (A4) holds. Sine G[B is alsoa Gr�obner basis of jR and �!G � �=)G[B , when restrited to elements in R=iwe have IRR(�!G) = IRR(=)G[B) and �!G is onuent. Furthermore, sine7Remember that in the proof of Lemma 3.1.9 we have shown that � =)� and � �=)B0 0imply � =)B0 . This arries over to our situation in the form that � =)� and � =) Æ0 �=)B Æimplies � =)f;Æ0;Æg[B and using indution to � =)f;Æg[B .8jR is an ideal in R sine1. 0 2 jR as 0 2 j.2. �; � 2 jR implies �+B; �+B2 j, hene �+B +�+B= (�+ �)+B2 j and �+ � 2 jR.3. � 2 jR and  2 R implies �+B2 j and  � �+B= ( � �)+B2 j, �+B � = (� � )+B2 j,hene  � �; � �  2 jR.







3.2 Quotients of Redution Rings 41�j = �jR when restrited to R=i we get � !G = �j on R=i implying that R=i isa redution ring. q.e.d.In Example 3.1.1 we have seen how to assoiate the integers with a redutionrelation =) and in fat (Z;=)) is a redution ring. Theorem 3.2.2 then statesthat for every m 2 Zthe quotient Z=ideal(m) again is a redution ring with re-spet to the redution relation de�ned analogue to De�nition 3.2.1. In partiularredution rings with zero divisors an be onstruted in this way.Of ourse if we only assume that R is a weak redution ring we no longer haveunique normal forms for the elements in the quotient. Still omparing elementsis possible as � = � in R=i if and only if �� � 2 i if and only if �� � �=)B 0 fora weak Gr�obner basis B of i. Hene the elements in the quotient are no longergiven by unique elements but by the respetive sets of all representatives withrespet to the weak Gr�obner basis hosen for the ideal9.Corollary 3.2.3If (R;=)) is a weak redution ring with (A4), then for every �nitely generatedideal i the quotient (R=i;�!) again is a weak redution ring with (A4).Proof :It remains to show that every �nitely generated ideal j � R=i has a �nite weakGr�obner basis. Let B be a �nite weak Gr�obner basis of i in R and Bj a �nitegenerating set for the ideal j in R=i.Let jR = S�2jf� 2 R j � ()�B �g, be an ideal in R orresponding to j. Then jRis �nitely generated by the set B [ ~Bj where for eah element � 2 Bj the set ~Bjontains some ~� 2 f� 2 R j � ()�B �g. Moreover, jR has a �nite weak Gr�obnerbasis, say GR. Then the set G = f�+Bj � 2 GRgnf0g ontaining for eah � 2 GRone not neessarily unique normal form �+B is a �nite weak Gr�obner basis of j: If� 2 j we have � ��!G 0 and idealR=i(G) = j, as every element in j (i.e. in partiularirreduible with respet to B) whih is reduible with an element � 2 GR is alsoreduible with an element of G beause (A4) holds10. q.e.d.Now if (R;=)) is an e�etive redution ring, then B an be omputed andaddition and multipliation in R=i as well as the redution relation based onDe�nition 3.2.1 are omputable operations. Moreover, Theorem 3.2.2 an begeneralized:9Suh an element � in the quotient an be represented by any element whih is equivalent toit. When doing omputations then of ourse to deide whether � = � in R=i one has to hekif �� � �=)B 0 for a weak Gr�obner basis B of i.10Sine � 2 j is irreduible by B, we have � =)� Æ0 �=)GR Æ and � 62 B. Then looking at thesituation � =)� and � �=)GR �+B , (A4) yields � =)�+B .







42 Chapter 3 - Redution RingsCorollary 3.2.4If (R;=)) is an e�etive redution ring with (A4), then for every �nitely generatedideal i the quotient (R=i;�!) again is an e�etive redution ring with (A4).Proof :Given R, B and a �nite generating set F for an ideal j in R=i we an omputea �nite Gr�obner basis for j using the method for omputing Gr�obner bases in R:Compute a Gr�obner basis GR of the ideal generated by B [F in R. Then the setG = f�+Bj � 2 GRg, where �+B is the normal form of g with respet to =)B inR and hene an element of R=i, is a Gr�obner basis of j in R=i. q.e.d.The same is true for e�etive weak redution rings.Finally the results arry over to the ase of one-sided redution rings with (A4)provided that the two-sided ideal has a �nite right respetively left Gr�obner basis.3.3 Sums of Redution RingsLet R1;R2 be rings with redution relations =)1 respetively =)2 ful�lling (A1){ (A3). Then R = R1 � R2 = f(�1; �2) j �1 2 R1; �2 2 R2g is alled the diretsum of R1 and R2. Addition and multipliation are de�ned omponent wise, theunit is (11; 12) where 1i is the respetive unit in Ri. A natural redution relationan be de�ned on R as follows:De�nition 3.3.1Let � = (�1; �2), � = (�1; �2),  = (1; 2) 2 R. We say that � redues � to in one step, denoted by � �!� , if either (�1=)1�1 1 and �2 = 2) or (�1 = 1and �2=)2�2 2) or (�1=)1�1 1 and �2=)2�2 2). �Again we have to prove that the Axioms (A1) { (A3) hold for the redutionrelation in R: �!B= S�2B �!� is terminating for �nite sets B � R sine thisproperty is inherited from the termination of the respetive redution relations inRi. Hene (A1) holds. (A2) is satis�ed sine � �!�  implies ��  2 idealR(�).(A3) is true as � �!� (01; 02) holds for all � 2 Rnf(01; 02)g. Moreover, it is easyto see that if ondition (A4) holds for =)1 and =)2 then this is inherited by�!.Theorem 3.3.2If (R1; =)1 ), (R2; =)2 ) are redution rings, then (R = R1 � R2;�!) is again aredution ring.







3.3 Sums of Redution Rings 43Proof :Sine the redution relation in R as de�ned above inherits (A1) { (A3) respe-tively (A4) from the redution relations in the Ri, it remains to show thatevery �nitely generated ideal i � R has a �nite Gr�obner basis. To see thisnotie that the restritions i1 = f�1 j (�1; �2) 2 i for some �2 2 R2g andi2 = f�2 j (�1; �2) 2 i for some �1 2 R1g are �nitely generated ideals in R1respetively R2 and hene have �nite Gr�obner bases B1 respetively B2. Welaim that B = f(�1; 02); (01; �2) j �1 2 B1; �2 2 B2g is a �nite Gr�obner basis of i.Notie that i = i1� i2. Then ideal(B) = i and � 2 i implies � ��!B (01; 02) due tothe fat that for � = (�1; �2) we have �1 2 i1 and �2 2 i2 implying�1 �=)1B1 01 and�2 �=)2B2 02. Similarly �!B is onuent beause =)1B1 and =)2B2 are onu-ent. Finally � !B = �i sine (�1; �2) �i (�1; �2) implies �1 �i1 �1 respetively�2 �i2 �2 and hene �1 �()1B1 �1 respetively �2 �()2B2 �2. q.e.d.Speial regular rings as introdued by Weispfenning in [Wei87b℄ provide examplesof suh sums of redution rings, e.g. any diret sum of �elds.Corollary 3.3.3If (R1; =)1 ), (R2; =)2 ) are weak redution rings, then (R = R1 � R2;�!) isagain a weak redution ring.Proof :Reviewing the proof of Theorem 3.3.2 it remains to show that every �nitelygenerated ideal i � R has a �nite weak Gr�obner basis. Again we look at therestritions i1 = f�1 j (�1; �2) 2 i for some �2 2 R2g and i2 = f�2 j (�1; �2) 2i for some �1 2 R1g whih are �nitely generated ideals in R1 respetively R2and hene have �nite weak Gr�obner bases B1 respetively B2. We laim thatB = f(�1; 02); (01; �2) j �1 2 B1; �2 2 B2g is a �nite weak Gr�obner basis of i. Asbefore i = i1 � i2 and ideal(B) = i. Then � 2 i implies � ��!B (01; 02) due to thefat that for � = (�1; �2) we have �1 2 i1 and �2 2 i2 implying �1 �=)1B1 01 and�2 �=)2B2 02 as B1 and B2 are respetive weak Gr�obner bases, and we are done.q.e.d.Now if (R1; =)1 ), (R2; =)2 ) are e�etive redution rings, then addition andmultipliation in R as well as the redution relation based on De�nition 3.3.1 areomputable operations. Moreover, Theorem 3.3.2 an be generalized:Corollary 3.3.4If (R1; =)1 ), (R2; =)2 ) are e�etive redution rings, then (R = R1 �R2;�!) isagain an e�etive redution ring.







44 Chapter 3 - Redution RingsProof :Given a �nite generating set F = f(�i; �i) j 1 � i � k; �i 2 R1; �i 2 R2g aGr�obner basis of the ideal generated by F an be omputed using the respetivemethods for Gr�obner basis omputation in R1 and R2: Compute B1 a Gr�obnerbasis of the ideal generated by f�1; : : : ; �kg in R1 and B2 a Gr�obner basis of theideal generated by f�1; : : : ; �kg in R2. Then B = f(1; 02); (01; 2) j 1 2 B1; 2 2B2g is a �nite Gr�obner basis of the ideal generated by F in R. q.e.d.A similar result holds for e�etive weak redution rings.Due to the \simple" multipliation used when de�ning diret sums, Theorem3.3.2 and Corollary 3.3.4 extend diretly to one-sided redution rings. Moreompliated multipliations are possible and have to be treated individually.3.4 Modules over Redution RingsAnother struture whih an be studied by redution tehniques are modulesand their submodules. Given a ring R with unit 1 and a natural number k, letRk = fa = (�1; : : : ; �k) j �i 2 Rg be the set of all vetors of length k withoordinates in R. Obviously Rk is an additive ommutative group with respetto ordinary vetor addition and we denote the zero by 0. Moreover, Rk is an R-module for salar multipliation de�ned as � � (�1; : : : ; �k) = (� ��1; : : : ; � ��k)and (�1; : : : ; �k) � � = (�1 � �; : : : ; �k � �). Additionally Rk is alled free as ithas a basis11. One suh basis is the set of unit vetors e1 = (1; 0; : : : ; 0); e2 =(0; 1; 0; : : : ; 0); : : : ; ek = (0; : : : ; 0; 1). Using this basis the elements of Rk an bewritten uniquely as a =Pki=1 �i � ei where a = (�1; : : : ; �k).De�nition 3.4.1A subset of Rk whih is again an R-module is alled a submodule of Rk. �For example any ideal of R is an R-module and even a submodule of the R-moduleR1. Provided a set of vetors S = fa1; : : : ;ang the set fPni=1Pmij=1 �ij � ai � �ij0 j�ij; �ij 0 2 Rg is a submodule of Rk. This set is denoted as hSi and S is alled itsgenerating set.Now similar to the ase of modules over ommutative polynomial rings, beingNoetherian is inherited by Rk from R.Theorem 3.4.2Let R be a Noetherian ring. Then every submodule in Rk is also �nitely generated.11Here the term basis is used in the meaning of being a linearly independent set of generatingvetors.







3.4 Modules over Redution Rings 45Proof :Let S be a submodule of Rk. We show our laim by indution on k. For k = 1 we�nd that S is in fat an ideal in R and hene by our hypothesis must be �nitelygenerated. For k > 1 let us look at the set i = f�1 j (�1; : : : ; �k) 2 Sg whih isagain an ideal in R and hene �nitely generated by some set f1; : : : ; s j i 2 Rg.Choose12 H = f1; : : : ; sg � S suh that the �rst oordinate of i is i. Similarlythe set M = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2 Sg is a submodule in Rk�1 andtherefore �nitely generated by our indution hypothesis. Let f(Æi2; : : : ; Æik) j 1 �i � wg be suh a �nite generating set. Then di = (0; Æi2; : : : ; Æik) 2 S, 1 � i � wand the set G = f1; : : : ; sg [ fdi j 1 � i � wg is a �nite generating set for S.To see this assume t = (�1; : : : ; �k) 2 S. Then �1 = Psi=1Pnij=1 �ij � i � �ij 0 forsome �ij ; �ij 0 2 R and t0 = t�Psi=1Pnij=1 �ij � i � �ij 0 2 S with �rst oordinate 0.Hene t0 =Pwi=1Pmij=1 �ij � di � �ij 0 for some �ij; �ij 0 2 R giving rise tot = t0 + sXi=1 niXj=1 �ij � i � �ij 0 = wXi=1 miXj=1 �ij � di � �ij 0 + sXi=1 niXj=1 �ij � i � �ij 0:q.e.d.We will now study submodules of modules using redution relations. Let =) bea redution relation on R ful�lling (A1) { (A3). A natural redution relation onRk an be de�ned using the representations as polynomials with respet to thebasis of unit vetors as follows:De�nition 3.4.3Let a = Pki=1 �i � ei, b = Pki=1 �i � ei 2 Rk. We say that b redues a to  at�s � es in one step, denoted by a �!b , if(a) �j = 0 for 1 � j < s,(b) �s =)�s s with �s = s +Pni=1 Æi � �s � Æi0, Æi; Æi0 2 R, and()  = a�Pni=1 Æi�b�Æi0 = (�1; : : : ; �s�1; s; �s+1�Pni=1 Æi ��s+1 �Æi0; : : : ; �k�Pni=1 Æi � �k � Æi0). �The Axioms (A1) { (A3) hold for this redution relation on Rk: �!B=Sb2B �!b is terminating for �nite B � Rk sine this property is inherited fromthe termination of the respetive redution relation =) in R. Hene (A1) holds.(A2) is satis�ed now of ourse in the ontext of submodules sine a �!b  impliesa �  2 hfbgi. (A3) is true as a �!a 0 holds for all a 2 Rknf0g. Moreover, itis easy to see that if ondition (A4) holds for =) then this is inherited by �!as de�ned in De�nition 3.4.3 for Rk. First we show how the existene of weakGr�obner bases arries over for Noetherian R.12In this step we need the Axiom of Choie and hene the onstrution is not onstrutive.







46 Chapter 3 - Redution RingsDe�nition 3.4.4A subset B of Rk is alled a weak Gr�obner basis of the submodule S = hBi, if�!B is terminating and a ��!B 0 for all a 2 S. �Theorem 3.4.5Let R be a Noetherian ring with redution relation =) ful�lling (A1) { (A3).If in R every ideal has a �nite weak Gr�obner basis, then the same holds forsubmodules in (Rk;�!).Proof :Let S be a submodule of Rk. We show our laim by indution on k. For k = 1we �nd that S is in fat an ideal13 in R and hene by our hypothesis musthave a �nite weak Gr�obner basis. For k > 1 let us look at the set i = f�1 j(�1; : : : ; �k) 2 Sg whih is again an ideal14. Hene i must have a �nite weakGr�obner basis f1; : : : ; s j i 2 Rg. Choose H = f1; : : : ; sg � S suh that the�rst oordinate of i is i. Similarly the setM = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2Sg is a submodule15 in Rk�1 whih by our indution hypothesis must have a �niteweak Gr�obner basis f(Æi2; : : : ; Æik) j 1 � i � wg. Then the set G = f1; : : : ; sg [fdi = (0; Æi2; : : : ; Æik) j 1 � i � wg is a weak Gr�obner basis for S.That G is a generating set for S follows as in the proof of Theorem 3.4.2. Itremains to show that G is in fat a weak Gr�obner basis, i.e., for every t =(�1; : : : ; �k) 2 S we have t ��!G 0. Sine �1 �=)f1;:::;sg 0 with �1 =Psi=1Pnij=1 �ij �i � �ij 0, by the de�nition of G we get t ��!f1;:::;sg t�Psi=1Pnij=1 �ij � i � �ij 0 = t0where t0 = (0; �20; : : : ; �k0) 2 M. Hene, as (�20; : : : ; �k 0) ��!f(Æi2;:::;Æik)j1�i�wg 0, weget t ��!G 0 and are done. q.e.d.Now we turn our attention to Gr�obner bases of submodules in Rk.De�nition 3.4.6A subset B of Rk is alled a Gr�obner basis of the submodule S = hBi, if� !B = �S and �!B is omplete. �13At this point we ould also proeed with a muh weaker hypothesis, namely instead ofrequiring R to be Noetherian assuming that S is �nitely generated. Then still the fat that R issupposed to be a weak redution ring would imply the existene of a �nite weak Gr�obner basisfor S.14Here it still would be suÆient to require that S is �nitely generated as the �rst oordinatesof a �nite generating set for S then would generate i hene implying that the ideal is �nitelygenerated as well.15Now we really need that Rk�1 is Noetherian. Assuming that S is �nitely generated wouldnot help to dedue that M is �nitely generated.







3.4 Modules over Redution Rings 47Theorem 3.4.7Let R be a Noetherian ring with redution relation =) ful�lling (A1) { (A3). Ifin R every ideal has a �nite Gr�obner basis, then the same holds for submodulesin (Rk;�!).Proof :The andidate for the Gr�obner basis an be built similar to the set G in the proofof Theorem 3.4.5 now of ourse using Gr�obner bases in the onstrution insteadof weak Gr�obner bases: Let S be a submodule of Rk. We show our laim byindution on k. For k = 1 we �nd that S is in fat an ideal in R and heneby our hypothesis must have a �nite Gr�obner basis. For k > 1 let us look atthe set i = f�1 j (�1; : : : ; �k) 2 Sg whih is again an ideal in R. Hene i musthave a �nite Gr�obner basis f1; : : : ; s j i 2 Rg by our assumption. ChooseH = f1; : : : ; sg � S suh that the �rst oordinate of i is i. Similarly the setM = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2 Sg is a submodule in Rk�1 �nitely generatedas Rk�1 is Noetherian. Hene by our indution hypothesisM then must have a�nite Gr�obner basis f(Æi2; : : : ; Æik) j 1 � i � wg. Let G = f1; : : : ; sg [ fdi =(0; Æi2; : : : ; Æik) j 1 � i � wg. Sine G generates S (see the proof of Theorem 3.4.5)it remains to show that it is a Gr�obner basis.By the de�nition of the redution relation in Rk we immediately �nd � !G ��S . To see the onverse let r = (�1; : : : ; �k) �S s = (�1; : : : ; �k). Then as�1 �f�1jb=(�1;:::;�k)2Sg �1 by the de�nition of G we get �1 �()f1;:::;sg �1. But thisgives us r � !H r +Psi=1Pmij=1 �ij � i � �ij0 = r0 = (�1; �20; : : : ; �k0) and we get(�1; �20; : : : ; �k 0) �S (�1; : : : ; �k). Hene (�1; �20; : : : ; �k0)� (�1; : : : ; �k) = (0; �20��2; : : : ; �k0 � �k) 2 S, implying (�20 � �2; : : : ; �k0 � �k) 2 M. Now we have to bemore areful sine we annot onlude that (�20; : : : ; �k 0); (�2; : : : ; �k) 2 M. Butwe know (�1; �20; : : : ; �k0) = (�1; : : : ; �k)+(0; �20��2; : : : ; �k 0��k) = (�1; : : : ; �k)+Pwi=1Pnij=1 �ij�di��ij 0 where (0; �20��2; : : : ; �k0��k) =Pwi=1Pnij=1 �ij�di��ij 0 for�ij; �ij 0 2 R, i.e., (�1; �20; : : : ; �k0) �hd1;:::;dwi (�1; : : : ; �k). Hene, as f(Æi2; : : : ; Æik) j1 � i � wg is a Gr�obner basis ofM both vetors (�1; �20; : : : ; �k0) and (�1; : : : ; �k)must have a ommon normal form using fdi = (0; Æi2; : : : ; Æik) j 1 � i � wg forredution16 and we are done.The same argument applies to show loal onuene. Let us assume there are r,s1, s2 2 Rk suh that r �!G s1 and r �!G s2. Then by the de�nition of G, the�rst oordinates �11 and �21 of s1 respetively s2 are joinable by f1; : : : ; sg tosome element, say �, giving rise to the elements r1 = s1+Psi=1Pnij=1 �ij �i ��ij0and r2 = s2 +Psi=1Pmij=1  ij � i �  ij 0 with �rst oordinate �. Again we know(�; �12; : : : ; �1k) = (�; �22; : : : ; �2k)+(0; �12��22; : : : ; �1k��2k) with (�12��22; : : : ; �1k��2k) 2M. Hene (�; �12; : : : ; �1k) = (�; �22; : : : ; �2k)+Pwi=1Pnij=1 �ij�di��ij 0 for �ij; �ij 0 2 R,i.e., (�1; �20; : : : ; �k0) �hd1;:::;dwi (�1; : : : ; �k). As again f(Æi2; : : : ; Æik) j 1 � i � wg is16The elements in this set annot inuene the �rst oordinate whih is �1 for both vetors.







48 Chapter 3 - Redution Ringsa Gr�obner basis ofM both vetors must have a ommon normal with respet toredution using fdi = (0; Æi2; : : : ; Æik) j 1 � i � wg. q.e.d.Let us lose this setion with a remark on why the additional property of beingNoetherian is so important. In the proofs of Theorem 3.4.5 and 3.4.7 in theindution step the \projetion" of S on Rk�1 plays an essential role. If thisprojetion is de�ned as M = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2 Sg we have toshow that this module is again �nitely generated. In assuming Noetherian forR this then follows as M is a submodule of Rk�1 whih is again Noetherian.Assuming that S is �nitely generated by some set fa1; : : : ;ang does not improvethe situation as in general we annot extrat a �nite generating set forM fromthis set17. The situation improves if we look at one-sided redution rings R anddemand that in R all (left respetively right) syzygy modules have �nite bases.Rk is a right R-module with salar multipliation (�1; : : : ; �k)�� = (�1 ��; : : : ; �k ��). Provided a �nite subset f�1; : : : ; �ng � R the set of solutions of the equation�1 �X1 + : : :+ �n �Xn = 0 is a submodule of the right R-module Rn. It is alledthe (�rst) module of syzygies of f�1; : : : ; �ng in the literature. We will see thatthese speial modules an be used to haraterize Gr�obner bases of submodulesin Rk.A redution relation an be de�ned similarly to De�nition 3.4.3.De�nition 3.4.8Let a =Pki=1 ei � �i, b =Pki=1 ei � �i 2 Rk. We say that b right redues a to at the monomial es � �s in one step, denoted by a�!rb , if(a) �j = 0 for 1 � j < s,(b) �s =)�s s with �s = s + �s � Æ, Æ 2 R, and()  = a� b � Æ = (�1; : : : ; �s�1; s; �s+1 � �s+1 � Æ; : : : ; �k � �k � Æ). �Theorem 3.4.9Let R be a ring with a right redution relation =) ful�lling (A1) { (A3). Ad-ditionally let every right module of syzygies in R have a �nite basis. If every17Another idea might be to look at an other projetion of S: M0 = f(�2; : : : ; �k) jthere exists �1 2 R suh that (�1; �2; : : : ; �k) 2 Sg. M0 then is again a module now �nitelygenerated by (�12; : : : ; �1k); : : : ; (�n2 ; : : : ; �nk). Unfortunately in this ase having a Gr�obner basisfor this module is of no use as we an no longer lift this speial basis to Rk. The trik withadding 0 as the �rst oordinate will no longer work as for some (2; : : : ; k) 2M0 we only knowthat there exists some  2 R suh that (; 2; : : : ; k) 2 S and we annot enfore that  = 0.However, if we lift the set by adding appropriate elements  2 R as �rst oordinates, then theresulting set does not lift the Gr�obner basis properties for the redution relation. Espeially inthe indution step the �rst oordinate of the vetor being modi�ed an no longer be expetedto be left unhanged whih is the ase when using vetors with �rst oordinate 0 for redution.







3.4 Modules over Redution Rings 49�nitely generated right ideal in R has a �nite Gr�obner basis, then the same holdsfor every �nitely generated right submodule in (Rk;�!).Proof :Again the andidate for the right Gr�obner basis an be built similar to the setG in the proofs of Theorem 3.4.5 and 3.4.7: Let S be a right submodule of Rkwhih is �nitely generated by a set fa1; : : : ;ang. We show our laim by indutionon k. For k = 1 we �nd that S is in fat a �nitely generated right ideal inR and hene by our hypothesis must have a �nite right Gr�obner basis. Fork > 1 let us look at the set i = f�1 j (�1; : : : ; �k) 2 Sg whih is again a rightideal in R �nitely generated by f�11; : : : ; �n1g where ai = (�i1; : : : ; �ik). Hene imust have a �nite right Gr�obner basis f1; : : : ; s j i 2 Rg by our assumption.Choose H = f1; : : : ; sg � S suh that the �rst oordinate of i is i. Onthe other hand the right syzygy module f( 1; : : : ;  n) j Pni=1 �i1 �  i = 0;  i 2Rg has a �nite basis B = f(�j1; : : : ; �jn) j 1 � j � mg � Rn. Then the setfPni=1 ai � �ji j 1 � j � mg [ fai j �i1 = 0; 1 � i � ng is a �nite generatingset for the submodule M = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2 Sg of Rk�1. To seethis let (0; �2; : : : ; �k) 2 S. Then (0; �2; : : : ; �k) = Pni=1 ai � �i, �i 2 R impliesPni=1 �i1 � �i = 0 and hene (�1; : : : ; �n) lies in the right syzygy module and we aredone. Hene by our indution hypothesisM then must have a �nite right Gr�obnerbasis f(Æi2; : : : ; Æik) j 1 � i � wg. Let G = f1; : : : ; sg [ fdi = (0; Æi2; : : : ; Æik) j1 � i � wg. Sine G generates S it remains to show that it is a right Gr�obnerbasis. By the de�nition of the redution relation in Rk we immediately �nd� !G � �S . To see the onverse let r = (�1; : : : ; �k) �S s = (�1; : : : ; �k). Thenas �1 �f�1ja=(�1;:::;�k)2Sg �1 by the de�nition of G we get �1 � !f1;:::;sg �1. Butthis gives us r �()H r +Psi=1 i � �i = r0 = (�1; �20; : : : ; �k0), �i 2 R, and we get(�1; �20; : : : ; �k 0) �S (�1; : : : ; �k). Hene (�1; �20; : : : ; �k0)� (�1; : : : ; �k) = (0; �20��2; : : : ; �k0 � �k) 2 S implying (�20 � �2; : : : ; �k0 � �k) 2 M. Now we have to bemore areful sine we annot onlude that (�20; : : : ; �k 0); (�2; : : : ; �k) 2 M. Butwe know (�1; �20; : : : ; �k0) = (�1; : : : ; �k)+(0; �20��2; : : : ; �k 0��k) = (�1; : : : ; �k)+Pwi=1 di � �i where (0; �20 � �2; : : : ; �k0 � �k) = Pwi=1 di � �i for �i 2 R, i.e.,(�1; �20; : : : ; �k 0) �hd1;:::;dwi (�1; : : : ; �k). Hene, as f(Æi2; : : : ; Æik) j 1 � i � wg is aright Gr�obner basis ofM both vetors (�1; �20; : : : ; �k 0) and (�1; : : : ; �k) must havea ommon normal form using fdi = (0; Æi2; : : : ; Æik) j 1 � i � wg for redution18and we are done.The same argument applies to show loal onuene. Let us assume there are r,s1, s2 2 Rk suh that r �!G s1 and r �!G s2. Then by the de�nition of G the�rst oordinates �11 and �21 of s1 respetively s2 are joinable by f1; : : : ; sg to someelement say � giving rise to elements r1 = s1+Psi=1 i��i and r2 = s2+Psi=1 i�18The elements in this set annot inuene the �rst oordinate whih is �1 for both vetors.







50 Chapter 3 - Redution Rings i with �rst oordinate �. Again we know (�; �12; : : : ; �1k) = (�; �22; : : : ; �2k) +(0; �12 � �22; : : : ; �1k � �2k) with (�12 � �22; : : : ; �1k � �2k) 2 M. Hene (�; �12; : : : ; �1k) =(�; �22; : : : ; �2k)+Pwi=1 di��i for �i 2 R, i.e., (�1; �20; : : : ; �k0) �hd1;:::;dwi (�1; : : : ; �k).As again f(Æi2; : : : ; Æik) j 1 � i � wg is a right Gr�obner basis of M both vetorsmust have a ommon normal with respet to redution using fdi = (0; Æi2; : : : ; Æik) j1 � i � wg. q.e.d.The task of desribing two-sided syzygy modules is muh more ompliated. Wefollow the ideas given by Apel in his habilitation [Ape98℄.Let R be the free Abelian group with basis elements � 
 � where �; � 2 R. Wede�ne a new vetor spae S with formal sums as elements Pni=1 i � �i 
 �i � Æiwhere i; Æi 2 R and �i 
 �i 2 R. Let U be the subspae of S generated by thevetors �
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 �) � where �;�i; �; �i;  2 R. Then the quotient S=U is alled the tensor produtdenoted by R 
 R.The sets we are interested in an be de�ned as follows: Let R be some subset of R.Syzygies of R are solutions of the equationsPni=1Pnij=1 �i;j ��i ��i;j = 0; �i;j; �i;j 2R; �i 2 R. The set ontaining all suh solutions is alled the syzygy module of R.We an now desribe these sets using objets of the \polynomial" struture S[R℄whih ontains formal sums of the formPni=1Pnij=1(�i;j 
 �i;j) � i, �i; �i; i 2 R.We an assoiate a mapping � : S[R℄ �! R by Pni=1Pnij=1(�i;j 
 �i;j) � i 7!Pni=1Pnij=1 �i;j � i � �i;j. Then for the set R we are interested in, the set of\solutions" is S�1;:::;�k2R;k2NS�1;:::;�k with ordered lists of not neessarily di�erentelements from R suh that S�1;:::;�k = f(Pn1j=1 �1;j 
 �1;j; : : : ;Pnkj=1 �k;j 
 �k;j) j�(Pki=1Pnij=1(�i;j 
 �i;j) � �i) = 0; �i;j; �i;j 2 Rg. Then these sets S�1;:::;�k are infat modules1. S�1;:::;�k is losed under salar multipliation, i.e., (Pn1j=1 �1;j 
�1;j; : : : ;Pnkj=1 �k;j 
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3.5 Polynomial Rings over Redution Rings 51Pki=1Pnij=1  ��i;j ��i ��i;j = 0. Multipliation from the right an be treatedsimilarly.2. S�1;:::;�k is losed under addition, i.e., (Pn1j=1 �1;j
�1;j; : : : ;Pnkj=1 �k;j
�k;j),(P ~n1j=1 ~�1;j
 ~�1;j; : : : ;P ~nkj=1 ~�k;j 
 ~�k;j) 2 S�1;:::;�k implies (Pn1j=1 �1;j
�1;j+P ~n1j=1 ~�1;j 
 ~�1;j; : : : ;Pnkj=1 �k;j 
 �k;j +P ~nkj=1 ~�k;j 
 ~�k;j) 2 S�1;:::;�k :The question arises when suh modules have useful bases for haraterizing syzygymodules in non-ommutative redution rings. This would mean the existeneof sets B�1;:::;�k = fBi 2 (R 
 R)k j i 2 Ig suh that for eah (Pn1j=1 �1;j 
�1;j; : : : ;Pnkj=1 �k;j 
 �k;j) 2 S�1;:::;�k there exist ij ; Æij 2 R with (Pn1j=1 �1;j 
�1;j; : : : ;Pnkj=1 �k;j 
 �k;j) =Pi2IPnij=1 ij �Bi � Æij. But even if this is possible itstill remains the problem that we have to handle in�nitely many sets of solutionsassoiated to ordered subsets of a set admitting elements to our more than one.This problem arises from the fat that in ontrary to one-sided syzygy modules orsyzygy modules in ommutative strutures the summands in the representationsannot be \olleted" and \ombined" in suh a way that for a set R the sumsan be written as a P�2R�� � � � ��.Let us lose this setion by illustrating the situation with two examples.Example 3.4.10Let � = fa; bg and �� the free monoid on the alphabet �. Further let R = Q[��℄the monoid ring over �� and Q. Let us look at the syzygy module of the setfa; bg � R, i.e. the set of solutions of the equationsPn1j=1 �1;j �a ��1;j+Pn2j=1 �2;j �b � �2;j = 0; �i;j; �i;j 2 R. Then we �nd f(�1 
 b; a 
 1); (�b 
 1; 1 
 a)g � Sa;band this set is a �nite basis for Sa;b. �Example 3.4.11Let M be the monoid presented by (fa; b; g; fab = a; a = a; b = bg) andR = Q[M℄ the monoid ring overM and Q. Let us look at the syzygy module ofthe set fa; bg � R. Then we �nd f(1 
 1;�a
 ibj) j i; j 2 Ng � Sa;b and heneSa;b has no �nite basis. �Hene the task of two-sided syzygies is muhmore ompliated than the one-sidedase. This was also observed by Apel for graded strutures where we have morestrutural information [Ape98℄.3.5 Polynomial Rings over Redution RingsFor a ring R with a redution relation =) ful�lling (A1) { (A3) we adopt the usualnotations in R[X℄ the polynomial ring in one variable X where multipliationis denoted by ?. Notie that for salar multipliation with � 2 R we assume







52 Chapter 3 - Redution Rings� �X = X � � (see [Pes97℄ for other possibilities). We speify an ordering on theset of terms in one variable by de�ning that if X i divides Xj , i.e. 0 � i � j, thenX i � Xj . Using this ordering, the head term HT(p), the head monomial HM(p)and the head oeÆient HC(p) of a polynomial p 2 R[X℄ are de�ned as usual,and RED(p) = p � HM(p). We extend the funtion HT to sets of polynomialsF � R[X℄ by HT(F ) = fHT(f) j f 2 Fg.Let i � R[X℄ be a �nitely generated ideal in R[X℄. It is easy to see that given aterm t the set C(t; i) = fHC(f) j f 2 i;HT(f) = tg[f0g is an ideal in R. In orderto guarantee that these ideals are also �nitely generated we will assume that Ris a Noetherian ring19. Note that for any two terms t and s suh that t dividess we have C(t; i) � C(s; i). This follows, as for s = t ? u, u 2 fX i j i 2 Ng, we�nd that HC(f) 2 C(t; i) implies HC(f ? u) = HC(f) 2 C(s; i) sine f 2 i impliesf ? u 2 i.We additionally de�ne a partial ordering on R by setting for �; � 2 R, � >R �if and only if there exists a �nite set B � R suh that � +=)B �. Then we ande�ne an ordering on R[X℄ as follows: For f; g 2 R[X℄, f > g if and only if eitherHT(f) � HT(g) or (HT(f) = HT(g) and HC(f) >R HC(g)) or (HM(f) = HM(g)and RED(f) > RED(g)). Notie that this ordering in general is neither total norNoetherian on R[X℄.De�nition 3.5.1Let p; f be two non-zero polynomials in R[X℄. We say f redues p to q at amonomial � �X i in one step, denoted by p�!f q, if(a) HT(f) divides X i, i.e. HT(f) ? Xj = X i for some term Xj,(b) � =)HC(f) �, with � = � +Pki=1 i � HC(f) � Æi for some �; i; Æi 2 R,1 � i � k, and() q = p �Pki=1(i � f � Æi) ? Xj . �Notie that if f redues p to q at a monomial � � t the term t an still ourin the resulting polynomial q. Hene termination of this redution annot beshown by arguments involving terms only as in the ase of polynomial rings over�elds. But when using a �nite set of polynomials for redution we know by (A1)that reduing � in R with respet to the �nite set of head oeÆients of theappliable polynomials must terminate and then either the monomial ontainingthe term t disappears or is irreduible. Hene the redution relation as de�ned inDe�nition 3.5.1 is Noetherian when using �nite sets of polynomials. Therefore itful�lls Axiom (A1). It is easy to see that (A2) and (A3) are also true and if theredution relation =) satis�es (A4) this is inherited by the redution relation�! in R[X℄.19We run into similar problems as in the module ase in Setion 3.4 as we annot onludethat the ideal C(t; i) is �nitely generated from the fat that i is.







3.5 Polynomial Rings over Redution Rings 53Theorem 3.5.2If (R;=)) is a Noetherian redution ring, then (R[X℄;�!) is a Noetherian re-dution ring.Proof :By Hilbert's basis theorem R[X℄ is Noetherian as R is Noetherian. We only haveto prove that every ideal i 6= f0g in R[X℄ has a �nite Gr�obner basis.A �nite basis G of i will be de�ned in stages aording to the degree of termsourring as head terms among the polynomials in i and then we will show thatG is in fat a Gr�obner basis.Let G0 be a �nite Gr�obner basis of the ideal C(X0; i) in R, whih must exist sineR is supposed to be Noetherian and a redution ring. Further, at stage i > 0,if for eah Xj with j < i we have C(Xj; i) $ C(X i; i), inlude for eah � inGb(C(X i; i)) (a �nite Gr�obner basis of C(X i; i)) a polynomial p� from i in Gisuh that HM(p) = � �X i. Notie that in this onstrution we use the axiom ofhoie, when hoosing the p� from the in�nite set i, and hene the onstrutionis non-onstrutive. At eah stage only a �nite number of polynomials an beadded sine the respetive Gr�obner bases Gb(C(X i; i)) are always �nite, and atmost one polynomial from i is inluded for eah element in Gb(C(X i; i)).If a polynomial with head term X i is inluded, then C(Xj; i) $ C(X i; i) forevery j < i. So if X i 2 HT (i) is not inluded as a head term of a poly-nomial in Gi, then there is a term Xj ourring as a head term in some setGj , j < i, C(X i; i) = C(Xj ; i) and C(Xj ; Gj) is a Gr�obner basis for the idealC(Xj; i) = C(X i; i) in R.We laim that the set G = Si�0Gi is a �nite Gr�obner basis of i.To show that G is �nite it suÆes to prove that the set HT(G) is �nite, sine inevery stage only �nitely many polynomials all having new head terms are added.Assuming that HT(G) is in�nite, there is a sequene Xni , i 2 N of di�erent termssuh that ni < ni+1. But then by onstrution there is an asending sequene ofideals in R, namely C(Xn0; i) $ C(Xn1 ; i) $ : : : whih ontradits the fat thatR is supposed to be Noetherian.So after some step m no more polynomials p from i an be found suh that forHT(p) = X i the set C(X i; i) is di�erent from all C(Xj; i), j < i.Notie that for all p 2 i we have p ��!G 0 and G generates i. This follows imme-diately from the onstrution of G. Hene G is at least a wesk Gr�obner basis.To see that �!G is onuent, let p be a polynomial whih has two distint nor-mal forms with respet to G, say p1 and p2. Let t be the largest term on whihp1 and p2 di�er and let �1 and �2 be the respetive oeÆients of t in p1 andp2. Sine p1 � p2 2 i this polynomial redues to 0 using G and without loss ofgenerality we an assume that these redutions always take plae at the respe-tive head terms of the polynomials in the redution sequene. Let s 2 HT(G) be







54 Chapter 3 - Redution Ringsthe head term of the polynomial in G whih redues HT(p1 � p2), i.e., s dividest, �1 � �2 2 C(s; i), and hene �1 �i �2. Therefore, not both �1 and �2 anbe in normal form with respet to any Gr�obner basis of C(s; i) and hene withrespet to the set of head oeÆients of polynomials in G with head term s. Soboth, �1 � t and �2 � t annot be in normal form with respet to G, whih is aontradition to the fat that p1 and p2 are supposed to be in normal form withrespet to G.Finally we have to prove �i = � !G . Let p �i q both be in normal form withrespet to G. Then as before p � q ��!G 0 implies p = q. Hene we have shownthat G is in fat a �nite Gr�obner basis of i. q.e.d.This theorem of ourse an be applied to R[X℄ and a new variable X2 and byiteration we immediately get the following:Corollary 3.5.3If (R;=)) is a Noetherian redution ring, then R[X1; : : : ;Xn℄ is a Noetherianredution ring with the respetive extended redution relation.Notie that other de�nitions of redution relations in R[X1; : : : ;Xn℄ are knownin the literature. These are usually based on divisibility of terms and admissibleterm orderings on the set of terms to distinguish the head terms. The proof ofTheorem 3.5.2 an be generalized for these ases.Moreover, these results also hold for weak redution rings.Corollary 3.5.4If (R;=)) is a Noetherian weak redution ring, then R[X1; : : : ;Xn℄ is a Noetherianweak redution ring with the respetive extended redution relation.Proof :This follows immediately by using weak Gr�obner bases Gi for the de�nition ofG in the proof of Theorem 3.5.2. As before the property that for all p 2 i wehave p ��!G 0 and G generates i follows immediately from the onstrution of G.Hene the result holds for R[X1℄ and an be extended to R[X1; : : : ;Xn℄. q.e.d.Now if (R;=)) is an e�etive redution ring, then addition and multipliation inR[X℄ as well as redution as de�ned in De�nition 3.5.1 are omputable operations.However, the proof of Theorem 3.5.2 does not speify how Gr�obner bases for�nitely generated ideals in R[X℄ an be onstruted using Gr�obner basis methodsfor R. So we annot onlude that for e�etive redution rings the polynomialring again will be e�etive. A more suitable haraterization of Gr�obner basesrequiring R to ful�ll additional onditions is needed.







3.5 Polynomial Rings over Redution Rings 55In order to provide ompletion proedures to ompute Gr�obner bases, variousharaterizations of Gr�obner bases by �nite test sets of speial polynomials inertain ommutative redution rings (e.g. the integers and Eulidean domains)an be found in the literature (see e.g. [KN85, KRK84, Mor89℄). A generalapproah to haraterize ommutative redution rings allowing the omputationof Gr�obner bases using Buhberger's approah was presented by Stifter in [Sti87℄.Let us lose this setion by providing similar haraterizations for polynomialrings over non-ommutative redution rings and outlining the arising problems.For simpliity we restrit ourselves to the ase of R[X℄ but this is no generalrestrition. Given a generating set F � R[X℄ the key idea is to distinguish speialelements of ideal(F ) whih have representations Pni=1 gi ? fi ? hi, gi; hi 2 R[X℄,fi 2 F suh that the head terms HT(gi ? fi ? hi) are all the same within therepresentation. Then on one hand the respetive oeÆients HC(gi ? fi ? hi) anadd up to zero whih in the ommutative ase means that the sum of the headoeÆients is in an appropriate module generated by the oeÆients HC(fi) |m(odule)-polynomials are related to these situations. If the result is not zero thesum of the oeÆients HC(gi?fi ?hi) as in the ommutative ase an be desribedin terms of a Gr�obner basis of the oeÆients HC(fi) | g(r�obner)-polynomialsare related to these situations. Zero divisors in the redution ring our as aspeial instane of m-polynomials where F = ffg and � ? f ? �, �; � 2 R areonsidered.In ase R is a ommutative or one-sided redution ring the �rst problem is relatedto solving linear homogeneous equations in R and to the existene of �nite basesof the respetive modules.Let us beome more preise and look into the de�nitions of m- and g-polynomialsfor the speial ase of rings with right redution relations.De�nition 3.5.5Let P = fp1; : : : ; pkg be a �nite set of polynomials in R[X℄, u1; : : : ; uk terms infXj j j 2 Ng suh that for the term t = maxfHT(pi) j 1 � i � kg we havet = HT(pi) ? ui and i = HC(pi) for 1 � i � k.Let G be a right Gr�obner basis of the right ideal generated by fi j 1 � i � kgin R and � = kXi=1 i � ��ifor � 2 G, ��i 2 R. Then we de�ne the g-polynomials (Gr�obner polynomi-als) orresponding to P and t by settingg� = kXi=1 pi ? ui � ��iwhere HT(pi) ? ui = t. Notie that HM(g�) = � � t.For the right moduleM = f(Æ1; : : : ; Æk) jPki=1 i�Æi = 0g, let the set fBj j j 2 IMg







56 Chapter 3 - Redution Ringsbe a basis with Bj = (�j;1; : : : ; �j;k) for �j;l 2 R and 1 � l � k. We de�ne them-polynomials (module polynomials) orresponding to P and t by settinghj = kXi=1 pi ? ui � �j;i for eah j 2 IMwhere HT(pi) ? ui = t. Notie that HT(hj) � t for eah j 2 IM . �Given a set of polynomials F the orresponding m- and g-polynomials are thoseresulting for every subset P � F aording to this de�nition.In ase we want e�etiveness, we have to require that the bases in this de�ni-tion are omputable. Of ourse for ommutative redution rings the de�nitionextends to haraterize two-sided ideals. However, the whole situation beomesmore ompliated for non-ommutative two-sided redution rings, as the equa-tions are no longer linear and we have to distinguish right and left multiplierssimultaneously. Moreover the set of m-polynomials is a muh more ompliatedstruture. In some ases the problem for two-sided ideals an be translated intothe one-sided ase and hene solved via one-sided redution tehniques [KRW90℄.But the general ase is muh more involved, see De�nition 3.5.6 below.The g-polynomials orresponding to right Gr�obner bases of right ideals in R ansuessfully be treated whenever �nite right Gr�obner bases exist. Here, if we wante�etiveness, we have to require that a right Gr�obner basis as well as representa-tions for its elements in terms of the generating set are omputable.Using m- and g-polynomials, right Gr�obner bases an be haraterized similarto the haraterizations in terms of syzygies (a diret generalization of the ap-proahes by Kapur and Narendran in [KN85℄ respetively M�oller in [Mor89℄): Inase for the respetive subsets P � F the respetive terms t = maxfHT(p) jp 2 Pg only give rise to �nitely many m- and g-polynomials, these situationsan be loalized to �nitely many terms. One an provide a ompletion proedurebased on this haraterization whih will indeed ompute a �nite right Gr�obnerbasis if R is Noetherian. In prinipal ideal rings, where the funtion gd (greatestommon divisor) is de�ned it is suÆient to onsider subsets P � F of size 2(ompare [KN85℄).Now let us look at two-sided ideals and two-sided redution relations.De�nition 3.5.6Let P = fp1; : : : ; pkg be a �nite set of polynomials in R[X℄, u1; : : : ; uk terms infXj j j 2 Ng suh that for the term t = maxfHT(pi) j 1 � i � kg we havet = HT(pi) ? ui and i = HC(pi) for 1 � i � k.Let G be a Gr�obner basis of the ideal generated by fi j 1 � i � kg in R and� = kXi=1 niXj=1 ��i;j � i � Æ�i;j







3.5 Polynomial Rings over Redution Rings 57for � 2 G, ��i;j; Æ�i;j 2 R, 1 � i � k,1 � j � ni. Then we de�ne the g-polynomials(Gr�obner polynomials) orresponding to P and t by settingg� = kXi=1 niXj=1 ��i;j � pi ? ui � Æ�i;jwhere HT(pi) ? ui = t. Notie that HM(g�) = � � t.We de�ne them-polynomials (module polynomials) orresponding to P andt as h = kXi=1 niXj=1 �i;j � pi ? ui � Æi;jwhere Pki=1Pnij=1 �i;j � i � Æi;j = 0. Notie that HT(h) � t. �Given a set of polynomials F , the set of orresponding g- and m-polynomialsontains those whih are spei�ed by De�nition 3.5.6 for eah subset P � Fful�lling the respetive onditions. For a set onsisting of one polynomial theorresponding m-polynomials also reet the multipliation of the polynomialwith zero-divisors of the head oeÆient, i.e., by a basis of the annihilator of thehead oeÆient. Notie that given a �nite set of polynomials the orrespondingsets of g- and m-polynomials in general an be in�nite.We an use g- and m-polynomials to haraterize �nite weak Gr�obner bases.Notie that this haraterization does not require R to be Noetherian. In orderto haraterize Gr�obner bases in this fashion the Translation Lemma must holdfor the redution ring.Theorem 3.5.7Let F be a �nite set of polynomials in R[X℄nf0g. Then F is a weak Gr�obner basisof the ideal it generates if and only if all g-polynomials and all m-polynomialsorresponding to F as spei�ed in De�nition 3.5.6 redue to zero.Proof :First let F be a weak Gr�obner basis. By De�nition 3.5.6 the g- and m-polynomialsare elements of the ideal generated by F and hene redue to zero using F .It remains to show that every g 2 ideal(F )nf0g redues to zero by F . Rememberthat for g 2 ideal(F ), g�!F g0 implies g0 2 ideal(F ). As �!F is Noetherian20,thus it suÆes to show that every g 2 ideal(F )nf0g is �!F -reduible. Letg = Pmi=1 �i � fi ? ui � �i be an arbitrary representation of g with �i; �i 2 R,ui 2 fXj j j 2 Ng, and fi 2 F (not neessarily di�erent polynomials). Dependingon this representation of g and the degree ordering � on fXj j j 2 Ng we de�nethe maximal ourring term of this representation of g to be t = maxfHT(fi?ui) j20To ahieve this we have demanded that F is �nite.







58 Chapter 3 - Redution Rings1 � i � mg and K is the number of polynomials fi ? ui ontaining t as a term.Then t � HT(g). We will show that G is reduible by indution on (t;K), where(t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and K 0 < K)21. Without lossof generality let the �rst K multiples ourring in our representation of g bethose with head term t, i.e., for PKi=1 �i � fi ? ui � �i we have HT(fi ? ui) = t for1 � i � K, and HT(�i � fi ? ui � �i) � t for K < i � m. In ase t � HT(g) there isan m-polynomial orresponding to the set of polynomials P = ff1; : : : ; fKg andby our assumption this polynomial is reduible to zero using F hene yielding theexistene of a representationPni=1 i �fi ?vi � Æi with t � ~t = maxfHT(fi ?vi) j i 2f1; : : : ngg. We an then hange the original representation of g by substitutingthis sum forPKi=1 �i �fi?ui ��i yielding a new representation with smaller maximalterm than t.On the other hand, if t = HT(g) then again we an assume that the �rst Kmultiples have head term t. In this ase there exists a g-polynomial orrespondingto the set of polynomials P = ff1; : : : ; fKg and by our assumption this polynomialis reduible to zero using F . Now as the head monomial of the g-polynomial andthe head monomial of g are equal, then g must be reduible by F as well. q.e.d.In order to haraterize in�nite sets F as weak Gr�obner bases we have to be moreareful sine we an no longer assume that �!F is terminating22. But inspetingthe proof of the previous theorem losely we see that this is not neessary. Underthe stronger assumption that the g-polynomial redues to zero using redutionat head monomials only, i.e., we have a terminating redution sequene using�nitely many polynomials in F only, we an onlude that the polynomials usedto extinguish the term t in the g-polynomial an equally be applied to extinguishthe head monomial of g. Sine there annot be an in�nite sequene of dereasingterms t one an show that g redues to zero by iterating arguments involving g-and m-polynomials.Corollary 3.5.8Let F be a set of polynomials in R[X℄nf0g. Then F is a weak Gr�obner basisof the ideal it generates if and only if all g-polynomials and all m-polynomialsorresponding to F as spei�ed in De�nition 3.5.6 redue to zero using redutionat head monomials only.Corollary 3.5.9Let F be a set of polynomials in R[X℄nf0g. Additionally let the TranslationLemma hold in R. Then F is a Gr�obner basis of the ideal it generates if and21Note that this ordering is well-founded sine � is well-founded on fXj j j 2 Ng and K 2 N.22This an of ourse be ahieved by requiring the stronger axiom (A1') to hold for theredution relation.







3.5 Polynomial Rings over Redution Rings 59only if all g-polynomials and all m-polynomials orresponding to F as spei�edin De�nition 3.5.6 redue to zero using redution at head monomials only.Still the problem remains that the set of m-polynomials does not have a nieharaterization as an algebrai struture. Remember that in the one-sided aseor the ase of ommutative redution rings the m-polynomials for a �nite set ofpolynomials P orrespond to submodules of RjP j, as they orrespond to solutionsof linear equations. When attempting to desribe the setting for two-sided idealsin non-ommutative redution rings one runs into the same problems as in theprevious setion on modules.
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Chapter 4Funtion RingsIn the literature Gr�obner bases and redution relations have been introdued tovarious algebrai strutures suh as the lassial ommutative polynomial ringsover �elds, non-ommutative polynomial rings over �elds, ommutative polyno-mial rings over redution rings, skew polynomial rings, Lie algebras, monoid andgroup rings and many more. This hapter is intended to give a generalized settingsubsuming these approahes and outlining a framework for introduing redutionrelations and Gr�obner bases to other strutures �tting the appropriate require-ments. An additional aim was to work out what onditions are neessary atwhat point in order to give more insight into the ideas behind algebrai hara-terizations suh as speialized standard representations for ideal elements as wellas into the idea of using rewriting tehniques for ahieving onuent redutionrelations desribing the ideal ongruene.This hapter is organized as follows: Setion 4.1 introdues the general struturewe are looking into alled funtion rings. Setion 4.2 gives the algebrai hara-terization for the ase of right ideals in form of right standard representations.To work out the diÆulties involved by our notion of terms and oeÆients sep-arately, Setion 4.2.1 �rst treats the easier ase of funtion rings over �elds whileSetion 4.2.2 then goes into the details when taking a redution ring as intro-dued in Chapter 3 as oeÆient domain. Sine for funtion rings over generalredution rings only a feasible haraterization of weak Gr�obner bases is possible,we show that this situation an be improved when looking at the speial aseof funtion rings over the integers in Setion 4.2.3. Setion 4.3 is dediated tothe study of a generalization of the onept of right ideals { right modules. Theremaining Setions 4.4 { 4.5 then treat the same onepts and problems now inthe more omplex setting of two-sided ideals.







62 Chapter 4 - Funtion Rings4.1 The General SettingLet T be a set and let R = (R;+; �; 0; 1) be an assoiative ring with 1. ByFTR we will denote the set of all funtions f : T �! R with �nite supportsupp(f) = ft j t 2 T ; f(t) 6= 0g. We will simply write F if the ontext is lear.By o we will denote the funtion with empty support, i.e., supp(o) = ;. Thisfuntion will be alled the zero funtion. Two elements of F are equal if theyare equal as funtions, i.e., they have the same support and oinide in theirrespetive values. We require the set T to be independent in the sense that afuntion f has unique support.F an be viewed as a group with respet to a binary operation� : F �F �! Falled addition by assoiating to f; g in F the funtion in F , denoted by f � g,whih has support supp(f � g) � supp(f) [ supp(g) and values (f � g)(t) =f(t)+g(t) for t 2 supp(f)[supp(g). The zero funtion o ful�lls o�f = f�o = f ,hene is neutral with respet to �. For an element f 2 F we de�ne the element�f with supp(�f) = supp(f) and for all t 2 supp(f) the value of (�f)(t) is theinverse of the element f(t) with respet to + in R denoted by �f(t). Notie thatsine in R every element has suh an inverse the inverse of an element in Fnfog isalways de�ned. Then �f is the (left and right) inverse of f , sine f�(�f) as wellas (�f)� f equals o, i.e., has empty support. This follows as for all t 2 supp(f)we have (f � (�f))(t) = f(t) + (�f)(t) = f(t) � f(t) = 0 = �f(t) + f(t) =(�f)(t) + f(t) = ((�f)� f)(t). We will write f � g to abbreviate f � (�g) forf; g in F . If the ontext is lear we will also write f + g instead of f � g. Notiethat (F ;�; o) is an Abelian group sine (R;+; 0) is Abelian. Sums of funtionsf1; : : : ; fm will be abbreviated by f1 � : : :� fm =Pmi=1 fi as usual. Now if R is aomputable ring1, then (F ;�) is a omputable group.In the next lemma we provide a syntatial representation for elements of thefuntion ring.Lemma 4.1.1Every f 2 Fnfog has a �nite representation of the formf = Xt2supp(f)mtwhere mt 2 F suh that supp(mt) = ftg and f(t) = mt(t). The representation ofo is the empty sum.Proof :This an be shown by indution on n = jsupp(f)j. For n = 0 we have the empty1A ring R is alled omputable, if the ring operations + and � are omputable, i.e. for �; � 2 Rwe an ompute �+ � and � � �.







4.1 The General Setting 63sum whih is the zero funtion o and are done. Hene let supp(f) = ft1; : : : ; tngand n > 0. Furthermore let f(t1) = � 2 R and m 2 F be the unique funtionwith supp(m) = ft1g and m(t1) = �. Then there exists an inverse funtion �mand a funtion (�m)� f 2 F suh thatf = (m� (�m))� f = m� ((�m)� f)and supp((�m) � f) = ft2; : : : tng. Hene by our indution hypothesissupp((�m)� f) has a representation Pt2ft2;:::tngmt yieldingf = m� ((�m)� f) = m� Xt2ft2;:::tngmt = Xt2supp(f)mtwith mt1 = m. q.e.d.This presentation is unique up to permutations. We will all suh a representationof an element as a formal sum of speial funtions a polynomial representationor a polynomial to stress the similarity with the objets known as polynomialsin other �elds of mathematis. Polynomial representations in terms of these fun-tions are unique up to permutations of the respetive elements of their support.Sine these speial funtions are of interest we de�ne the following subsets of F :M(F) = ff 2 F j jsupp(f)j = 1gwill be alled the set of monomial funtions or monomials in F . Monomialswill often be denoted by mt where the suÆx t is the element of the support, i.e.,supp(mt) = ftg. A subset of this set, namelyT(F) = fmt 2 M(F) j mt(t) = 1gwhere 1 denotes the unit in R will be alled the set of term funtions or termsof F . Notie that this set an be viewed as an embedding of T in F via themapping t 7�! f with supp(f) = ftg and f(t) = 1.Further we assume the existene of a seond binary operation alled multipli-ation ? : F �F �! Fsuh that (F ;�; ?; o) is a ring. In partiular we have o ? f = f ? o = o for all fin F . This ring is alled a funtion ring2. In ase ? is a omputable operation,F is a omputable funtion ring.2Notie that in the literature the term funtion ring is usually restrited to those ringswhere the multipliation is de�ned pointwise as in Example 4.1.3. Here we want to allow moreinterpretations for ?.







64 Chapter 4 - Funtion RingsDe�nition 4.1.2An element 1rF 2 F is alled a right unit of F if for all f 2 F we have f ?1rF = f .Similarly 1F̀ 2 F is alled a left unit of F if for all f 2 F we have 1F̀ ? f = f .An element 1F 2 F is alled a unit if for all f 2 F we have 1F ? f = f ?1F = f .�In general F need not have a left or right unit. If F does not have a unit thisan be ahieved by enlarging the set T by a new element, say �, and assoiatingto � a funtion f� with support f�g and f�(�) = 1. The de�nition of ? must beextended suh that for all f 2 F we have f ? f� = f� ? f = f . Similarly we ouldadd a left or right unit by requiring f ? f r� = f respetively f�̀ ? f = f . Whenadding a new element f� as a unit to F we have f� 2 T(F) � M(F).We will not speify our ring multipliation ? further at the moment exept forgiving some examples.Our �rst example outlines the situation for multiplying two elements by multiply-ing the respetive values of the support. This is the de�nition of multipliationnormally assoiated to funtion rings in the mathematial literature.Example 4.1.3Let us speify our multipliation ? by assoiating to f; g in F the funtion in F ,denoted by f ? g, whih has support supp(f ? g) � supp(f) \ supp(g) and values(f ? g)(t) := f(t) � g(t) for t 2 supp(f) \ supp(g). Notie that in this ase Fan only ontain a (right, left) unit if T is �nite, sine otherwise a unit funtionwould have in�nite support and hene be no element of F . But the set of speialfuntions uS = Pt2S ut where S � T �nite, supp(ut) = ftg and ut(t) = 1 is anapproximation of a unit, sine for every funtion f in F and all funtions uS withsupp(f) � S we have f ?uS = uS ?f = f . However, if we want a real unit, addinga new symbol � to T and f� with f�(�) = 1 to F together with an extension ofthe de�nition of ? by f� ? f = f ? f� = f for all f 2 F will do the trik. �Remember that by Lemma 4.1.1 polynomials have representations of the formf =Pt2supp(f)mt and g =Ps2supp(g) ns yieldingf ? g = ( Xt2supp(f)mt) ? ( Xs2supp(g)ns) = Xt2supp(f);s2supp(g)mt ? nssine the multipliation ? must satisfy the distributivity law of the ring axioms.Hene knowing the behaviour of the multipliation for monomials, i.e. ? : M(F)�M(F) �! F , is enough to haraterize the multipliation ?.For all examples from the literature mentioned in this work, we an even statethat the multipliation an be de�ned by speifying ? : T � T �! F , and thenlifting it to M(F) and F . This is done by de�ning mt ?ns = (mt(t) �ns(s)) � (t ? s)and extending this to the formal sums of monomials3.3Notie that this lifting requires that when writing a monomial mt as mt(t) � t we havemt(t) � t = t �mt(t).







4.1 The General Setting 65A well-known example for the speial instane ? : T �T �! T are the polynomialrings from Setion 2.3.Example 4.1.4For a set of variables X1; : : : ;Xn let us de�ne the set of ommutative termsT = fX i11 : : :X inn j i1; : : : in 2 Ng and let FTQ be the set of all funtions f :T �! Q with �nite support, where Q are the rational numbers. Multipliation? : T �T �! T is spei�ed as X i11 : : :X inn ?Xj11 : : :Xjnn = X i1+j11 : : :X in+jnn . Henehere we have an example where the set T is a monoid with unit elementX01 : : :X0n.Then F an be interpreted as the ordinary polynomial ring Q[X1; : : : ;Xn℄ withthe usual multipliation (� � t)? (� � s) = (� ��) � (t ? s) where �; � 2 Q; s; t 2 T . �Notie that in this example the unit element is an element of the set T embeddedin F . This does not have to be the ase as the next example shows.Example 4.1.5Let us �x a �nite set T = fe11; e12; e21; e22g and let FTQ be the set of all funtionsf : T �! Q, where Q are the rational numbers. We speify the multipliation ?on FTQ by the ation on T as follows: eij?ekl = o in ase j 6= k and eij?ejl = eil fori; j; l; k 2 f1; 2g. Then multipliation is not Abelian sine e11 ? e12 = e12 wherease12?e11 = o. (FTQ;�; ?; o) is a ring, in fat isomorphi to the ring of 2�2 rationalmatries4 It ontains a unit element, namely e11 + e22. �Notie that in this example the unit element is not an element of the set Tembedded in F . Moreover, the multipliation here arises from the situation? : T � T �! T [ fog. The next example even allows multipliations of termsto result in polynomials, i.e., ? : T � T �! F .Example 4.1.6For a set of variables X1;X2;X3 let us de�ne the set of ommutative terms T =fX i11 X i22 X i33 j i1; i2; i3 2 Ng and letFTQ be the set of all funtions f : T �! Q with�nite support, where Q are the rational numbers. Multipliation ? : T �T �! Fis lifted from the following multipliation of the variables: X2 ? X1 = X2 + X3,X3 ? X1 = X1X3, X3 ? X2 = X2X3 and Xi ? Xj = XiXj for i < j. Then Fan be interpreted as a skew-polynomial ring Q[X1;X2;X3℄ with unit elementX01X02X03 2 FTQ. �Finally, many examples for funtion rings will be taken from monoid rings andhene we lose this subsetion by giving an example of a monoid ring.4This interpretation an be extended to arbitrary rings of n � n matries over a �eld K bysetting T = feij j 1 � i; j � ng, eij ? ekl = o in ase j 6= k and eij ? ejl = eil else. The unitelement then is e11 + : : :+ enn.







66 Chapter 4 - Funtion RingsExample 4.1.7Let T = fai; bi; 1 j i 2 N+g, where 1 is the empty word in fa; bg�, and let themultipliation ? be de�ned by the following multipliation table:1 aj bj1 1 aj bjai ai ai+j ai monus jbj monus ibi bi aj monus ibi monus j bi+jwhere i; j 2 N+ and i monus j = i� j if i � j and 0 else. In fat T is the free groupon one generator whih an be presented as a monoid by (fa; bg; fab = ba = 1g).Let FTQ be the set of all funtions f : T �! Q with �nite support. Then FTQ isa ring and is known as a speial ase of the free group ring. Its unit element is1 2 FTQ. �For the speial ase that we have ? : T � T �! T , and some subring R0 � Rwe get that the funtion ring FTR0 is a subring of FTR . This follows diretly asthen for f; g 2 FTR0 we have f + (�g); f ? g 2 FTR0. This is no longer true if? : T � T �! FTR . Let R = Q, R0 = Zand T = fX i1Xj2 j i; j 2 Ng with ?indued by X2 ? X1 = 12 �X1X2, X1 ? X2 = X1X2. Then for X2;X1 2 FTZwe getX2 ? X1 = 12 �X1X2 2 FTQ.Similarly, if we have T 0 � T and ? : T 0 � T 0 �! FT 0R , then FT 0R is a subring ofFTR . Again this follows as for f; g 2 FT 0R we have f + (�g); f ? g 2 FT 0R . Letus review Example 4.1.6: There we have T = fX i11 X i22 X i33 j i1; i2; i3 2 Ng andthe multipliation ? : T � T �! FTQ is lifted from the following multipliationof the variables: X2 ? X1 = X2 + X3, X3 ? X1 = X1X3, X3 ? X2 = X2X3 andXi ? Xj = XiXj for i < j. Then for T 0 = fX i22 X i33 j i2; i3 2 Ng we have? : T 0 � T 0 �! FT 0Q and hene FT 0Q is a subring of FTQ.4.2 Right Ideals and Right Standard Represen-tationsSine F is a ring, we an de�ne right, left or two-sided ideals. In this setion in a�rst step we will restrit our attention to one-sided ideals, in partiular to rightideals sine left ideals in general an be treated in a symmetrial manner.A subset i � F is alled a right ideal, if1. o 2 i,







4.2 Right Ideals and Right Standard Representations 672. for f; g 2 i we have f � g 2 i, and3. for f 2 i, g 2 F we have f ? g 2 i.Right ideals an also be spei�ed in terms of generating sets. For F � Fnfog letidealr(F ) = fPni=1 fi ? gi j fi 2 F; gi 2 F ; n 2 Ng = fPni=1 fi ? mi j fi 2 F;mi 2M(F); n 2 Ng. These generated sets are subsets of F sine for f; g 2 F f ? g aswell as f � g are again elements of F , and it is easily heked that they are infat right ideals:1. o 2 idealr(F ) sine o an be written as the empty sum.2. For two elements Pni=1 fi ? gi and Pmj=1 fj ? hj in idealr(F ), the resultingsumPni=1 fi ? gi �Pmj=1 fj ? hj is again an element in idealr(F ).3. For an elementPni=1 fi?gi in idealr(F ) and a polynomial h in F , the produt(Pni=1 fi ? gi) ? h =Pni=1 fi ? (gi ? h) is again an element in idealr(F ).Given a right ideal i � F we all a set F � Fnfog a basis or a generatingset of i if i = idealr(F ). Then every element g 2 idealr(F )nfog has di�erentrepresentations of the formg = nXi=1 fi ? hi; fi 2 F; hi 2 F ; n 2 N:Of ourse the distributivity law in F then allows to onvert any suh representa-tion into one of the formg = mXj=1 fi ? mi; fi 2 F;mi 2 M(F);m 2 N:As we have seen in Setion 1.3, it is not obvious whether some polynomial belongsto an ideal. Let again f1 = X21 +X2 and f2 = X21 +X3 be two polynomials in thepolynomial ring Q[X1;X2;X3℄ and i = ff1 � g1 + f2 � g2 j g1; g2 2 Q[X1;X2;X3℄gthe (right) ideal generated by them. It is not hard to see that the polynomialX2 � X3 belongs to i sine X2 � X3 = f1 � f2 is a representation of X2 � X3in terms of f1 and f2. The same is true for the polynomial X22 � X2X3 wherenow we have to use multiples of f1 and f2, namely X22 � X2X3 = f1 ? X2 �f2 ? X2. However, when looking at the polynomial X33 +X1 +X3 we �nd thatthere is no obvious algorithm to �nd suh appropriate multiples. The problemis that for an arbitrary generating set for an ideal we have to look at arbitrarypolynomial multiples with no boundary. One �rst improvement for the situationan be ahieved if we an represent ideal elements by speial representations interms of the given generating set. In polynomial rings suh representations arestudied as variations of the term standard representations in the literature(see also Setion 2.3). They will also be introdued in this setting. Sine standard







68 Chapter 4 - Funtion Ringsrepresentations are in general distinguished by onditions involving an orderingon the set of polynomials, we will start by introduing the notion of an orderingto F .Let � be a total well-founded ordering on the set T . This enables us to makeour polynomial representations of funtions unique by using the ordering � toarrange the elements of the support:f = kXi=1 mti; where supp(f) = ft1; : : : ; tkg; t1 � : : : � tk:Using the ordering � on T we are now able to give some notions for polynomialswhih are essential in introduing standard representations, standard bases andGr�obner bases in the lassial approah. We all the monomial with the largestterm aording to � the head monomial of f denoted by HM(f), onsistingof the head term denoted by HT(f) and the head oeÆient denoted byHC(f) = f(HT(f)). f �HM(f) is alled the redutum of f denoted by RED(f).Note that HM(f) 2 M(F), HT(f) 2 T and HC(f) 2 R. These notions an beextended to sets of funtions F � Fnfog by setting HM(F ) = fHM(f) j f 2 Fg,HT(F ) = fHT(f) j f 2 Fg and HC(F ) = fHC(f) j f 2 Fg.Notie that for some polynomial f = Pki=1mti 2 F , and some term t 2 T weannot onlude that for the terms ourring in the multiple f ? t =Pki=1mti ? twe have t1 ? t � : : : � tk ? t (in ase the multipliation of terms again results interms) or HT(t1 ? t) � : : : � HT(tk ? t) as the ordering need not be ompatiblewith multipliation in F .Example 4.2.1Let T = fx; 1g and ? indued by the following multipliation on T : x ? x =1 ? 1 = 1, x ? 1 = 1 ? x = x. Then assuming x � 1, after multiplying both sides ofthe equation with x, we get x ? x = 1 � 1 ? x = x. On the other hand, assumingthe preedene 1 � x similarly we get x = 1 ? x � 1 = x ? x. Hene the orderingis not ompatible with multipliation using elements in T . �We will later on see that this lak of ompatibility leads to additional requirementswhen de�ning standard representations, standard bases and Gr�obner bases. Sinethe elements of T an be identi�ed with the terms in T(F), the ordering � an beextended as a total well-founded5 ordering on T(F). Additionally we an provideorderings on M(F) and F as follows.De�nition 4.2.2Let � be a total well-founded ordering on T . Let >R be a (not neessarily total)5An ordering � on a set M will be alled well-founded if its strit part � is well-founded,i.e., does not allow in�nite desending hains of the form m1 � m2 � : : :.







4.2 Right Ideals and Right Standard Representations 69well-founded ordering on R. We de�ne an ordering on M(F) by mt1 � mt2 ift1 � t2 or (t1 = t2 and mt1(t1) >R mt2(t2)).For two elements f; g in F we de�ne f � g i� HM(f) � HM(g) or (HM(f) =HM(g) and RED(f) � RED(g)). We further de�ne f � o for all f 2 Fnfog. �Notie that the total well-founded ordering on T(F) extends to a well-foundedordering on M(F).For a �eld K we have the trivial ordering >K where � >K 0 for all � 2 Knf0g andno other elements are omparable. Then the resulting ordering on the respetivefuntion ring orresponds to the one given in De�nition 2.3.3 for polynomial ringsover �elds.Lemma 4.2.3The ordering � on F is well-founded.Proof :The proof of this lemma will use a method known as Cantor's seond diagonalargument (ompare e.g. [BW92℄ Chapter 4). Let us assume that � is not well-founded on F . We will show that this gives us a ontradition to the fat thatthe ordering � on M(F) induing � is well-founded. Hene, let us supposef0 � f1 � : : : � fk � : : : , k 2 N is a stritly desending hain in F . Then we anonstrut a sequene of sets of pairs ff(mtk; gkn) j n 2 Ng j k 2 Ng reursivelyas follows: For k = 0 let mt0 = min�fHM(fi) j i 2 Ng whih is well-de�nedsine � is well-founded on M(F). Now let j 2 N be the least index suh thatwe have mt0 = HM(fj). Then mt0 = HM(fj+n) holds for all n 2 N and we anset g0n = fj+n � HM(fj+n), i.e., mt0 � HM(g0n) for all n 2 N. For k + 1 we letmtk+1 = min�fHM(gki) j i 2 Ng and again let j 2 N be the least index suh thatmtk+1 = HM(gkj) holds, i.e., mtk+1 = HM(gk(j+n)) for all n 2 N. Again we setg(k+1)n = gk(j+n) � HM(gk(j+n)).Then the following statements hold for every k 2 N:1. For all monomials m ouring in the polynomials gkn, n 2 N, we havemtk � m.2. gk0 � gk1 � : : : is a stritly desending hain in F .Hene we get that mt0 � mt1 � : : : is a stritly desending hain in M(F)ontraditing the fat that � is supposed to be well-founded on this set. q.e.d.Charaterizations of ideal bases in terms of speial standard representations theyallow are mainly provided for polynomial rings over �elds in the literature (om-pare [BW92℄ and Setion 2.3). Hene we will �rst take a loser look at possiblegeneralizations of these onepts to funtion rings over �elds.







70 Chapter 4 - Funtion Rings4.2.1 The Speial Case of Funtion Rings over FieldsLet FK be a funtion ring over a �eld K. Remember that for a set F of polynomialsin FK every polynomial g 2 idealr(F ) has a representation of the form g =Pni=1 fi ? hi; fi 2 F; hi 2 FK; n 2 N: However, suh an arbitrary representationan ontain monomials larger than HM(g) whih are anelled in the sum. A �rstidea of standard representations in the literature now is to represent g as a sumof polynomial multiples fi ?hi suh that no anellation of monomials larger thanHM(g) takes plae, i.e. HM(g) � HM(fi ? hi). Hene in a �rst step we look at thefollowing analogon of a de�nition of standard representations (ompare [BW92℄,page 218):De�nition 4.2.4Let F be a set of polynomials in FK and g a non-zero polynomial in idealr(F ). Arepresentation of the formg = nXi=1 fi ? hi; fi 2 F; hi 2 FK; n 2 N (4.1)where additionally HT(g) � HT(fi ? hi) holds for 1 � i � n is alled a (general)right standard representation of g in terms of F . If every g 2 idealr(F )nfoghas suh a representation in terms of F , then F is alled a (general) rightstandard basis of idealr(F ). �What distinguishes an arbitrary representation from a (general) right standardrepresentation is the fat that the former may ontain polynomial multiples fi ?hi with head terms HT(fi ? hi) larger than the head term of the representedpolynomial g. Therefore, in order to hange an arbitrary representation intoone ful�lling our additional ondition (4.1) we have to deal with speial sums ofpolynomials.De�nition 4.2.5Let F be a set of polynomials in FK and t an element in T . Then we de�ne theritial set Cgr(t; F ) to ontain all tuples of the form (t; f1; : : : ; fk; h1; : : : ; hk),k 2 N, f1; : : : ; fk 2 F 6, h1; : : : ; hk 2 FK suh that1. HT(fi ? hi) = t, 1 � i � k, and2. Pki=1HM(fi ? hi) = o.We set Cgr(F ) = St2T Cgr(t; F ). �6As in the ase of ommutative polynomials, f1; : : : ; fk are not neessarily di�erent polyno-mials from F .







4.2 Right Ideals and Right Standard Representations 71Notie that for the sums of polynomial multiples in this de�nition we getHT(Pki=1 fi ? hi) � t. This de�nition is motivated by the de�nition of syzygies ofpolynomials in ommutative polynomial rings over rings. However, it di�ers fromthe original de�nition insofar as we need not have HT(f?h) = HT(HT(f)?HT(h)),i.e., we annot loalize the de�nition to the head monomials of the polynomialsin F . Still we an haraterize (general) right standard bases using this onept.Theorem 4.2.6Let F be a set of polynomials in FKnfog. Then F is a (general) right standardbasis of idealr(F ) if and only if for every tuple (t; f1; : : : ; fk; h1; : : : ; hk) in Cgr(F )the polynomial Pki=1 fi ? hi (i.e., the element in FK orresponding to this sum)has a (general) right standard representation with respet to F .Proof :In ase F is a (general) right standard basis, sine these polynomials are allelements of idealr(F ), they must have (general) right standard representationswith respet to F .To prove the onverse, it remains to show that every element in idealr(F ) hasa (general) right standard representation with respet to F . Hene, let g =Pmj=1 fj ?hj be an arbitrary representation of a non-zero polynomial g 2 idealr(F )suh that fj 2 F , hj 2 FK, m 2 N. Depending on this representation of g and thewell-founded total ordering � on T we de�ne t = max�fHT(fj ?hj) j 1 � j � mgand K as the number of polynomials fj ? hj with head term t. Then t � HT(g)and in ase HT(g) = t this immediately implies that this representation is alreadya (general) right standard one. Else we proeed by indution on t. Without loss ofgenerality let f1; : : : ; fK be the polynomials in the orresponding representationsuh that t = HT(fi ? hi), 1 � i � K. Then the tuple (t; f1; : : : ; fK; h1; : : : ; hK)is in Cgr(F ) and let h = PKi=1 fi ? hi. We will now hange our representation ofg in suh a way that for the new representation of g we have a smaller maximalterm. Let us assume h is not o7. By our assumption, h has a (general) rightstandard representation with respet to F , say Pnj=1 pj ? qj, where pj 2 F , qj 2FK, n 2 N and all terms ourring in the sum are bounded by t � HT(h) asPKi=1HM(fi ? hi) = o. This gives us:g = KXi=1 fi ? hi + mXi=K+1 fi ? hi= nXj=1 pj ? qj + mXi=K+1 fi ? hi7In ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.







72 Chapter 4 - Funtion Ringswhih is a representation of g where the maximal term of the involved polynomialmultiples is smaller than t. q.e.d.Remember that by the distributivity law in FK any representation of a polynomialg of the form g =Pni=1 fi ? hi; fi 2 F; hi 2 FK; n 2 N an be onverted into oneof the form g = Pmj=1 fj ? mj; fj 2 F;mj 2 M(FK);m 2 N: Now for polynomialrings the onversion of a (general right) standard representation from a sum ofpolynomial multiples into a sum of monomial multiples again results in a standardrepresentation. This is due to the fat that the orderings used for the polynomialrings are ompatible with multipliation. Now let us look at a seond analogonto this kind of standard representations in our setting.De�nition 4.2.7Let F be a set of polynomials in FK and g a non-zero polynomial in idealr(F ). Arepresentation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(FK); n 2 N (4.2)where additionally HT(g) � HT(fi ? mi) holds for 1 � i � n is alled a rightstandard representation of g in terms of F . If every g 2 idealr(F )nfog hassuh a representation in terms of F , then F is alled a right standard basis ofidealr(F ). �If our ordering � on FK is ompatible with ? we an onlude that the onversionof a general right standard representation into a sum involving only monomialmultiples again results in a right standard representation as de�ned in De�nition4.2.7. But sine in general the ordering and the multipliation are not ompatible(review Example 4.2.1) a polynomial multiple f?h an ontain monomialsm;m0 2M(f ? mj) where h = Pnj=1mj suh that m and m0 are larger than HM(f ? h)and m = m0. Hene just applying the distributivity to a sum of polynomialmultiples no longer hanges a standard representation as de�ned in De�nition4.2.4 into one as de�ned in De�nition 4.2.7. Remember that this was true forpolynomial rings over �elds where both de�nitions are equivalent. Let us look atthe monoid ring Q[M℄ whereM is the monoid presented by (fa; b; g; ab = a).Moreover, let � be the length-lexiographial ordering indued by the preedene � b � a. Then for the polynomials f = a + 1, h = b2 � b 2 Q[M℄ we getHT(f ? b2) = HT(a+ b2) = a and HT(f ? b) = HT(a+ b) = a. On the otherhand HT(f ?h) = HT(a+b2�a�b) = HT(b2�b) = b2. Hene for the polynomialg = b2�b the polynomial multiple f ?h is a general right standard representationas de�ned in De�nition 4.2.4 while the sum of monomial multiples f ? b2 � f ? bis no right standard representation as de�ned in De�nition 4.2.7. We an evenstate that g has no right standard representation in terms of the polynomial f .







4.2 Right Ideals and Right Standard Representations 73Now as our aim is to link standard representations of polynomials to redutionrelations, a loser inspetion of the onept of general right standard representa-tions shows that a redution relation related to them has to involve polynomialmultiples for de�ning the redution steps. Right standard representations analso be linked to speial instanes of suh redution relations but are traditionallylinked to redution relations involving monomial multiples. There is no exampleknown from the literature where redution relations involving polynomial multi-ples gain real advantages over redution relations involving monomial multiplesonly8. Therefore we will restrit our attention to right standard representationsas presented in De�nition 4.2.7.Again, in order to hange an arbitrary representation into one ful�lling our ad-ditional ondition (4.2) of De�nition 4.2.7 we have to deal with speial sums ofpolynomials.De�nition 4.2.8Let F be a set of polynomials in FK and t an element in T . Then we de�ne theritial set Cr(t; F ) to ontain all tuples of the form (t; f1; : : : ; fk;m1; : : : ;mk),k 2 N, f1; : : : ; fk 2 F 9, m1; : : : ;mk 2 M(F) suh that1. HT(fi ? mi) = t, 1 � i � k, and2. Pki=1HM(fi ? mi) = o.We set Cr(F ) = St2T Cr(t; F ). �As before, we an haraterize right standard bases using this onept.Theorem 4.2.9Let F be a set of polynomials in FKnfog. Then F is a right standard basisof idealr(F ) if and only if for every tuple (t; f1; : : : ; fk;m1; : : : ;mk) in Cr(F ) thepolynomialPki=1 fi ?mi (i.e., the element in F orresponding to this sum) has aright standard representation with respet to F .Proof :In ase F is a right standard basis, sine these polynomials are all elements ofidealr(F ), they must have right standard representations with respet to F .To prove the onverse, it remains to show that every element in idealr(F ) has aright standard representation with respet to F . Hene, let g = Pmj=1 fj ? mjbe an arbitrary representation of a non-zero polynomial g 2 idealr(F ) suh that8Examples where redution relations involving polynomial multiples are studied for theoriginal ase of Gr�obner bases in ommutative polynomial rings an be found in [Tri78, Za78℄.9As in the ase of ommutative polynomials, f1; : : : ; fk are not neessarily di�erent polyno-mials from F .







74 Chapter 4 - Funtion Ringsfj 2 F , mj 2 M(FK), m 2 N. Depending on this representation of g and the well-founded total ordering � on T we de�ne t = max�fHT(fj ?mj) j 1 � j � mg andK as the number of polynomials fj ? mj with head term t. Then t � HT(g) andin ase HT(g) = t this immediately implies that this representation is already aright standard one. Else we proeed by indution on t. Without loss of generalitylet f1; : : : ; fK be the polynomials in the orresponding representation suh thatt = HT(fi?mi), 1 � i � K. Then the tuple (t; f1; : : : ; fK;m1; : : : ;mK) is in Cr(F )and let h = PKi=1 fi ? mi. We will now hange our representation of g in suh away that for the new representation of g we have a smaller maximal term. Letus assume h is not o10. By our assumption, h has a right standard representationwith respet to F , say Pnj=1 hj ? lj, where hj 2 F , lj 2 M(FK), n 2 N and allterms ourring in the sum are bounded by t � HT(h) as PKi=1HM(fi ? mi) = o.This gives us: g = KXi=1 fi ? mi + mXi=K+1 fi ? mi= nXj=1 hj ? lj + mXi=K+1 fi ? miwhih is a representation of g where the maximal term of the involved monomialmultiples is smaller than t. q.e.d.For ommutative polynomial rings over �elds standard bases are in fat Gr�obnerbases. Remember that in algebrai terms a set F is a Gr�obner basis of the idealideal(F ) it generates if and only if HT(ideal(F )) = ft ? w j t 2 HT(F ); w a termg(ompare De�nition 2.3.12). The loalization to the set of head terms only ispossible as the ordering and multipliation are ompatible, i.e. HT(f ? w) =HT(f) ? w for any f 2 F and any term w. Then of ourse if every g 2 ideal(F )has a standard representation in terms of F we immediately get that HT(g) =HT(f ? w) = HT(f) ? w for some f 2 F and some term w. Moreover, forany redution relation based on divisibility of terms we get that g is reduibleat its head monomial by this polynomial f . This of ourse orresponds to theseond de�nition of Gr�obner bases in rewriting terms { a set F is a Gr�obner basisof the ideal it generates if and only if the redution relation �!bF assoiatedto the polynomials in F is onuent11 (ompare De�nition 2.3.8). Central inboth de�nitions of Gr�obner bases is the idea of \dividing" terms. Importantin this ontext is the fat that divisors are smaller than the terms they dividewith respet to term orderings and moreover the ordering on the terms is stable10In ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.11The additional properties of apturing the ideal ongruene and being terminating requiredby De�nition 3.1.4 trivially hold for polynomial rings over �elds.







4.2 Right Ideals and Right Standard Representations 75under multipliation with monomials. The algebrai de�nition states that everyhead term of a polynomial in ideal(G) has a head term of a polynomial in Gas a divisor12. Similarly the redution relation is based on divisibility of terms(ompare De�nition 2.3.7). The stability of the ordering under multipliation isimportant for the orretness of these haraterizations of Gr�obner bases sineit allows �nite loalizations for the test sets to s-polynomials (Lemma 2.3.9 isentral in this ontext).In our ontext now the ordering � and the multipliation ? on FK in general arenot ompatible. Hene, a possible algebrai de�nition of Gr�obner bases and ade�nition of a redution relation related to right standard representations mustinvolve the whole polynomials and not only their head terms.De�nition 4.2.10A subset F of FKnfog is alled a weak right Gr�obner basis of idealr(F ) ifHT(idealr(F )nfog) = HT(ff ? m j f 2 F;m 2 M(FK)gnfog). �Instead of onsidering multiples of head terms of the generating set F we look athead terms of monomial multiples of polynomials in F .In the setting of funtion rings over �elds, in order to loalize the de�nitions ofstandard representations and weak Gr�obner bases to head terms instead of headmonomials and show their equivalene we have to view F as a vetor spae withsalars from K. We de�ne a natural left salar multipliation � : K �F �! Fby assoiating to � 2 K and f 2 F the funtion in F , denoted by � � f , whihhas support supp(� � f) � supp(f) and values (� � f)(t) = � � f(t) for t 2 supp(f).Notie that if � 6= 0 we have supp(� � f) = supp(f). Similarly, we an de�ne anatural right salar multipliation � : F � K �! F by assoiating to � 2 K andf 2 F the funtion in F , denoted by f ��, whih has support supp(f ��) � supp(f)and values (f � �)(t) = f(t) � � for t 2 supp(f). Sine K is assoiative we have((� � f) � �)(t) = (� � f)(t) � �= (� � f(t)) � �= � � (f(t) � �)= � � ((f � �)(t))= (� � (f � �))(t)and we will write � � f � �. Monomials an be represented as m = � � t wheresupp(m) = ftg and m(t) = �.12When generalizing this de�nition to our setting of funtion rings we have to be very arefulas in reality this implies that every polynomial in the ideal is reduible to zero whih is thede�nition of a weak Gr�obner basis (ompare De�nition 3.1.2). Gr�obner bases and weak Gr�obnerbases oinide in polynomial rings over �elds due to the Translation Lemma (ompare Lemma2.3.9 (2)).







76 Chapter 4 - Funtion RingsAdditionally we have to state how salar multipliation and ring multipliationare ompatible. Remember that we have introdued the elements of our funtionrings as formal sums of monomials. We want to treat these objets similar tothose ourring in the examples known from the literature. In partiular we wantto ahieve that multipliation in FK an be spei�ed by de�ning a multipliationon the terms and lifting it to the monomials. Hene we require the followingequations (��f)?g = ��(f ?g) and f ?(g ��) = (f ?g)�� to hold13. These equationsare valid in the examples from the literature studied here. The ondition of oursethen implies that multipliation in FK an be spei�ed by knowing ? : T �T �!FK. This follows as for �; � 2 K and t; s 2 T we have(� � t) ? (� � s) = � � (t ? (� � s))= � � (t ? (s � �))= � � (t ? s) � �= (� � �) � (t ? s):If F ontains a unit element 1 the �eld an be embedded into F by � 7�! � � 1.Then for � 2 K and f 2 FK the equations � � f = (� �1) ? f and f �� = f ? (� �1)hold. Moreover, as K is Abelian � � f � � = � � � � f for any �; � 2 K, f 2 FK.In the next lemma we show that in fat both haraterizations of speial bases,right standard bases and weak Gr�obner bases, oinide as in the ase of polyno-mial rings over �elds.Lemma 4.2.11Let F be a subset of FKnfog. Then F is a right standard basis if and only if itis a weak right Gr�obner basis.Proof :Let us �rst assume that F is a right standard basis, i.e., every polynomial g inidealr(F ) has a right standard representation with respet to F . In ase g 6= o thisimplies the existene of a polynomial f 2 F and a monomialm 2 M(FK) suh thatHT(g) = HT(f ? m). Hene HT(g) 2 HT(ff ? m j m 2 M(FK); f 2 Fgnfog). Asthe onverse, namely HT(ff ?m j m 2 M(FK); f 2 Fgnfog) � HT(idealr(F )nfog)trivially holds, F then is a weak right Gr�obner basis.Now suppose that F is a weak right Gr�obner basis and again let g 2 idealr(F ).We have to show that g has a right standard representation with respet to F .This will be done by indution on HT(g). In ase g = o the empty sum isour required right standard representation. Hene let us assume g 6= o. Sinethen HT(g) 2 HT(idealr(F )nfog) by the de�nition of weak right Gr�obner baseswe know there exists a polynomial f 2 F and a monomial m 2 M(FK) suh13Then of ourse sine K is Abelian we have (� � f) ? g = � � (f ? g) = f ? (� � g) = f ? (g ��) =(f ? g) � �.







4.2 Right Ideals and Right Standard Representations 77that HT(g) = HT(f ? m). Then there exists a monomial ~m 2 M(FK) suh thatHM(g) = HM(f ? ~m), namely14 ~m = (HC(g) �HC(f ?m)�1) �m). Let g1 = g�f ? ~m.Then HT(g) � HT(g1) implies the existene of a right standard representation forg1 whih an be added to the multiple f ? ~m to give the desired right standardrepresentation of g. q.e.d.Inspeting this proof loser we get the following orollary.Corollary 4.2.12Let a subset F of FKnfog be a weak right Gr�obner basis. Then every g 2idealr(F ) has a right standard representation in terms of F of the form g =Pni=1 fi ? mi; fi 2 F;mi 2 M(FK); n 2 N suh that HM(g) = HM(f1 ? m1) andHT(f1 ? m1) � HT(f2 ? m2) � : : : � HT(fn ? mn).Notie that we hene get stronger representations as spei�ed in De�nition 4.2.7for the ase that the set F is a weak right Gr�obner basis or a right standard basis.In the literature Gr�obner bases are linked to redution relations. These redutionrelations in general then orrespond to the respetive standard representations asfollows: if g ��!F o, then the monomial multiples involved in the respetive redu-tion steps add up to a standard representation of g in terms of F . One possibleredution relation related to right standard representations as de�ned in De�-nition 4.2.7 is alled strong redution15 where a monomial m1 is reduible bysome polynomial f , if there exists some monomialm2 suh that m1 = HM(f ?m2).Notie that suh a redution step eliminates the ourene of the term HT(m1)in the resulting redutum m1 � f ? m2. When generalizing this redution rela-tion to funtion rings we an no longer loalize the redution step to hekingwhether HM(f) divides m1, as now the whole polynomial is involved in the re-dution step. We an no longer onlude that HM(f) divides m1 but only thatm1 = HM(f ? m2).Our de�nition of weak right Gr�obner bases using the ondition HT(idealr(F )nfog)= HT(ff ? m j f 2 F;m 2 M(FK)gnfog) in De�nition 4.2.10 orresponds tothis problem that in many ases orderings on T are not ompatible with themultipliation ?. Let us review Example 4.2.1 where the ordering � induedby x � 1 on terms respetively monomials is well-founded but in general notompatible with multipliation, due to the algebrai struture of T . There forthe polynomial f = x+1 and the term x we get HM(f?x) = x whileHM(f)?x = 1.14Notie that this step requires that we an view FKas a vetor spae. In order to get a similarresult without introduing vetor spaes we would have to use a di�erent de�nition of weak rightGr�obner bases. E.g. requiring that HM(idealr(F )nfog) = HM(ff?m j f 2 F;m 2 M(FK)gnfogg)would be a possibility. However, then no loalization of ritial situations to head terms ispossible, whih is the advantage of having a �eld as oeÆient domain.15Strong redution has been studied extensively for monoid rings in [Rei95℄.







78 Chapter 4 - Funtion RingsBehind this phenomenon lies the fat that the de�nition of \divisors" arising fromthe algebrai haraterization of weak Gr�obner bases in the ontext of funtionrings does not have the same properties as divisors in polynomial rings. One suhimportant property is that divisors are smaller with respet to the ordering onterms and that this ordering is transitive. Hene if t1 is a divisor of t2 and t2is a divisor of t3 then t1 is also a divisor of t3. This is the basis of loalizationswhen heking for the Gr�obner basis property in polynomial rings over �elds(ompare Lemma 2.3.9). Unfortunately this is no longer true for funtion rings ingeneral. Now m1 2 HM(idealr(G)) implies the existene of m2 2 M(FK) suh thatHM(f ? m2) = m1. Reviewing the previous example we see that for f = x + 1,m2 = x and m1 = HM(f) = x we get HM(f ? m2) = HM((x + 1) ? x) = x,i.e. HM(f ? m2) divides m1. On the other hand m1 = x divides 1 as x ? x = 1.But HM(HM(f ? m2) ? x) = 1 while HM(f ? m2 ? x) = x, i.e. the head monomialof the multiple involving the polynomial f ? m2 does not divide 1.Notie that even if we restrit the onept of right divisors to monomials only wedo not get transitivity. We are interested when for some monomialsm1;m2;m3 2M(FK) the fats that m1 dividesm2 and m2 dividesm3 imply that m1 dividesm3.Let m;m0 2 M(FK) suh that HM(m1 ? m) = m2 and HM(m2 ? m0) = m3. Thenm3 = HM(m2?m0) = HM(HM(m1?m)?m0). When does this equal HM(m1?m?m0)or evenHM(m1?HM(m?m0))? Obviously if we have ? : M(FK)�M(FK) 7! M(FK),whih is true for the Examples 4.1.3, 4.1.4 and 4.1.5, this is true. However ifmultipliation of monomials results in polynomials we are in trouble. Let us lookat the skew-polynomial ring Q[X1;X2;X3℄, X1 � X2 � X3, de�ned in Example4.1.6, i.e.X2?X1 = X2+X3,X3?X1 = X1X3,X3?X2 = X2X3 and Xi?Xj = XiXjfor i < j. Then from the fat that X2 divides X2 we get HM(X2 ? X1) = X2 andsine again X2 divides X2, HM(HM(X2 ? X1) ? X1) = HM(X2 ? X1) = X2. ButHM(X2 ?X1 ?X1) = HM(X1X3+X2+X3) = X1X3. Next we will show how usinga restrited set of divisors only will enable some sort of transitivity.To establish a ertain kind of ompatibility for the ordering � and the multipli-ation ?, additional requirements an be added. One way to do this is by givingan additional ordering on T whih is in some sense weaker than � but adds moreinformation on ompatibility with right multipliation. Examples from the lit-erature, where this tehnique is suessfully applied, inlude speial monoid andgroup rings (see e.g. [Rei95, MR98a, MR98d℄). There restritions of the respe-tive orderings on the monoid or group elements are of syntatial nature involvingthe presentation of the monoid or group (e.g. pre�x orderings of various kinds forommutative monoids and groups, free groups and polyyli groups).De�nition 4.2.13We will all an ordering � on T a right redutive restrition of the ordering� or simply right redutive, if the following hold:1. t � s implies t � s for t; s 2 T .







4.2 Right Ideals and Right Standard Representations 792. � is a partial ordering on T whih is ompatible with multipliation ? fromthe right in the following sense: if for t; t1; t2; w 2 T , t2 � t1, t1 � t andt2 = HT(t1 ? w) hold, then t2 � t ? w. �Notie that if � is a partial well-founded ordering on T so is �.We an now distinguish speial \divisors" of monomials: For m1;m2 2 M(FK) weall m1 a stable left divisor of m2 if and only if HT(m2) � HT(m1) and thereexists m 2 M(FK) suh that m2 = HM(m1 ?m). Then m is alled a stable rightmultiplier of m1.If T ontains a unit element16 1 and 1 � t for all terms t 2 T this immediately17implies 1 � t and hene 1 is a stable divisor of any monomial m. It remains toshow that stable division is also transitive. For three monomials m1;m2;m3 2M(F) let m1 be a stable divisor of m2 and m2 a stable divisor of m3. Then thereexist monomials m;m0 2 M(F) suh that m2 = HM(m1 ? m) with HT(m2) �HT(m1) andm3 = HM(m2?m0) with HT(m3) � HT(m2). Let us have a look at themonomialHM(HM(m1?m)?m0). Remember how on page 78 we have seen that theasem1?m 2 M(F) is not ritial as then we immediately have that this monomialequals HM(m1?m?m0) = HM(m1?HM(m?m0)). Hene let us assume thatm1?m 62M(F). Then for all terms s 2 T(m1 ?m)nHT(m1?m) we know s � HT(m1?m) =HT(m2). Moreover HT(m3) � HT(m2) and HT(m3) = HT(HT(m2) ? HT(m0))then implies HT(m3) � HT(s ? HT(m0)) and hene HM(HM(m1 ? m) ? m0) =HM(m1 ? m ? m0). In both ases now HT(m3) � HT(m1). However, we annotonlude that HM(m1 ? m ? m0) = HM(m1 ? HM(m ? m0)). Still m1 is a stableright divisor of m3 as in ase m?m0 is a polynomial there exists some monomial~m in this polynomial suh that HM(m1 ? m ? m0) = HM(m1 ? ~m).The intention of restriting the ordering is that now, if HT(m2) � HT(m1) andm2 = m1 ? m, then for all terms t with HT(m1) � t we then an onludeHT(m2) � HT(t ? m), whih will be used to loalize the multiple HT(m1 ? m)to HT(m1) ahieving an equivalent to the properties of \divisors" in the aseof ommutative polynomial rings. Under ertain onditions redution relationsbased on this divisibility property for terms will have the stability properties wedesire. On the other hand, restriting the hoie of divisors in this way will leadto redution relations whih in general no longer apture the respetive right idealongruenes18.Example 4.2.14In Example 4.1.4 of a ommutative polynomial ring we an state a redutiverestrition of any term ordering by t � s for two terms t and s if and only if16I.e. 1 ? t = t ? 1 = t for all t 2 T .17As there are no terms smaller than 1 the seond ondition of De�nition 4.2.13 triviallyholds.18Pre�x redution for monoid rings is an example where the right ideal ongruene is lost.See e.g. [MR98d℄ for more on this topi.







80 Chapter 4 - Funtion Ringss divides t as a term, i.e. for t = X i11 : : :X inn , s = Xj11 : : :Xjnn we have jl � il,1 � l � n. The same is true for skew-polynomial rings as de�ned by Kredelin his PhD thesis [Kre93℄. The situation hanges if for the de�ning equationsof skew-polynomial rings, Xj ? Xi = ij � XiXj + pij where i < j, pij � XiXj ,we allow ij = 0. Then other restritions of the ordinary term orderings haveto be onsidered due to the possible vanishing of head terms. Let X2 ? X1 =X1;X3 ? X1 = X1X3;X3 ? X2 = X2X3 and � a term ordering with preedeneX3 � X2 � X1. Then, although X2 � X1, as X2 ? (X1X2) = X1X2 and X1 ?(X1X2) = X21X2 � X1X2, we get X2 ? (X1X2) � X1 ? (X1X2). Hene, sine X2is a divisor of X1X2 as a term, the lassial restrition for polynomial rings nolonger holds as X2 is no stable divisor of X1X2. For these ases the restritionto u < v if and only if u is a pre�x of v as a word will work. Then we know thatfor the respetive term w with u ? w = v multipliation is just onatenation ofu and w as words and hene for all t � u the result of t ? w is again smaller thanu ? w. �Let us ontinue with algebrai onsequenes related to the right redutive restri-tion of our ordering by distinguishing speial standard representations. Notiethat for standard representations in ommutative polynomial rings we alreadyhave that HT(g) = HT(fi ? mi) implies HT(g) = HT(fi) ? HT(mi) and for allt � HT(fi) we have t ? w � HT(fi) ? w for any term w. In the setting offuntion rings an analogon to the latter property now an be ahieved by re-striting the monomial multiples in the representation to stable ones. Hereforewe have di�erent possibilities to inorporate these restritions into the onditionHT(g) � HT(fi ? mi) of De�nition 2.3.4 and De�nition 4.2.7. The most gen-eral one is to require HT(g) = HT(f1 ? m1) = HT(HT(f1) ? m1) � HT(f1) andHT(g) � HT(fi ? mi) for all 2 � i � n. Then a representation of g an ontainfurther monomial multiples fj ? mj, 2 � j � n with HT(g) = HT(fj ? mj) notfull�lling the restrition on the �rst multiple of f1. Hene when de�ning ritialsituations we have to look at the same set as in De�nition 4.2.8. Another gener-alization is to demand HT(g) = HT(f1 ? m1) = HT(HT(f1) ? m1) � HT(f1) andHT(g) � HT(fi ?mi) = HT(HT(fi)?mi) � HT(fi) for all 2 � i � n. Then ritialsituations an be loalized to stable multiplers. But we an also give a weakeranalogon as follows:De�nition 4.2.15Let F be a set of polynomials in FK and g a non-zero polynomial in idealr(F ). Arepresentation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(FK); n 2 Nsuh that HT(g) = HT(fi ? mi) = HT(HT(fi) ? mi) � HT(fi) for 1 � i � k, forsome k � 1, and HT(g) � HT(fi ? mi) for k < i � n is alled a right redutivestandard representation in terms of F . �







4.2 Right Ideals and Right Standard Representations 81Notie that we restrit the possible multipliers to stable ones if the monomialmultiple has the same head term as g, i.e. ontributes to the head term of g.For de�nitions sake we will let the empty sum be the right redutive standardrepresentation of o. The idea behind right redutive standard representations isthat for an appropriate de�nition of a redution relation based now on stabledivisors suh representations will again allow a redution step to take plae atthe head monomial.In ase we have ? : T � T �! T we an rephrase the ondition in De�nition4.2.15 to HT(g) = HT(fi ? mi) = HT(fi) ? HT(mi) � HT(fi), 1 � i � k.De�nition 4.2.16A set F � FKnfog is alled a right redutive standard basis (with respetto the redutive ordering �) of idealr(F ) if every polynomial f 2 idealr(F ) has aright redutive standard representation in terms of F . �Again, in order to hange an arbitrary representation into one ful�lling our ad-ditional ondition of De�nition 4.2.15 we have to deal with speial sums of poly-nomials.De�nition 4.2.17Let F be a set of polynomials in FK and t an element in T . Then we de�ne theritial set Crr(t; F ) to ontain all tuples of the form (t; f1; : : : ; fk;m1; : : : ;mk),k 2 N, f1; : : : ; fk 2 F 19, m1; : : : ;mk 2 M(F) suh that1. HT(fi ? mi) = HT(HT(fi) ? mi) = t, 1 � i � k,2. HT(fi ? mi) � HT(fi), 1 � i � k, and3. Pki=1HM(fi ? mi) = o.We set Crr(F ) = St2T Crr(t; F ). �Unfortunately, in ontrary to the haraterization of right standard bases in The-orem 4.2.9 these ritial situations will not be suÆient to haraterize rightredutive standard bases. To see this let us onsider the following example:Example 4.2.18Let us reall the desription of the free group ring in Example 4.1.7 with T =fai; bi; 1 j i 2 N+g and let� be the ordering indued by the length-lexiographialodering on T resulting from the preedene a � b.Then the set onsisting of the polynomial a + 1 does not give rise to non-trivialritial situations, but still is no right redutive standard basis as the polynomialb+1 2 idealr(fa+1g) has no right redutive standard representation with respetto a+ 1. �19As in the ase of ommutative polynomials, f1; : : : ; fk are not neessarily di�erent polyno-mials from F .







82 Chapter 4 - Funtion RingsHowever, the failing situation b + 1 = (a + 1) ? b desribed in Example 4.2.18desribes the only kind of additional ritial situations whih have to be resolvedin order to haraterize right redutive standard bases.Theorem 4.2.19Let F be a set of polynomials in FKnfog. Then F is a right redutive standardbasis of idealr(F ) if and only if1. for every f 2 F and every m 2 M(FK) the multiple f ? m has a rightredutive standard representation in terms of F ,2. for every tuple (t; f1; : : : ; fk;m1; : : : ;mk) in Crr(F ) the polynomialPki=1 fi?mi (i.e., the element in F orresponding to this sum) has a right redutivestandard representation with respet to F .Proof :In ase F is a right redutive standard basis, sine these polynomials are allelements of idealr(F ), they must have right redutive standard representationswith respet to F .To prove the onverse, it remains to show that every element in idealr(F ) hasa right redutive standard representation with respet to F . Hene, let g =Pmj=1 fj?mj be an arbitrary representation of a non-zero polynomial g 2 idealr(F )suh that fj 2 F , and mj 2 M(FK). By our �rst statement every suh monomialmultiple fj ? mj has a right redutive standard representation in terms of Fand we an assume that all multiples are replaed by them. Depending on thisrepresentation of g and the well-founded total ordering � on T we de�ne t =max�fHT(fj ? mj) j 1 � j � mg and K as the number of polynomials fj ? mjwith head term t. Then for eah multiple fj ? mj with HT(fj ? mj) = t we knowthat HT(fj ? mj) = HT(HT(fj) ? mj) � HT(fj) holds. Then t � HT(g) andin ase HT(g) = t this immediately implies that this representation is already aright redutive standard one. Else we proeed by indution on t. Without loss ofgenerality let f1; : : : ; fK be the polynomials in the orresponding representationsuh that t = HT(fi ?mi), 1 � i � K. Then the tuple (t; f1; : : : ; fK;m1; : : : ;mK)is in Crr(F ) and let h =PKi=1 fi ? mi. We will now hange our representation ofg in suh a way that for the new representation of g we have a smaller maximalterm. Let us assume h is not o20. By our assumption, h has a right redutivestandard representation with respet to F , say Pnj=1 hj ? lj, where hj 2 F , andlj 2 M(FK) and all terms ourring in the sum are bounded by t � HT(h) as20In ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.







4.2 Right Ideals and Right Standard Representations 83PKi=1HM(fi ? mi) = o. This gives us:g = KXi=1 fi ? mi + mXi=K+1 fi ? mi= nXj=1 hj ? lj + mXi=K+1 fi ? miwhih is a representation of g where the maximal term is smaller than t. q.e.d.We an similarly re�ne De�nition 4.2.10 with respet to a redutive restrition �of the ordering �.De�nition 4.2.20A set F � FKnfog is alled a weak right redutive Gr�obner basis (withrespet to the redutive ordering �) of idealr(F ) if HT(idealr(F )nfog) = HT(ff ?m j f 2 F;m 2 M(FK);HT(f ? m) = HT(HT(f) ? m) � HT(f)gnfog). �This de�nition now loalizes the haraterization of the Gr�obner basis to the headterms of the generating set of polynomials.The next lemma states that in fat both haraterizations of speial bases, rightredutive standard bases and weak right redutive Gr�obner bases, oinide as inthe ase of polynomial rings over �elds.Lemma 4.2.21Let F be a subset of FKnfog. Then F is a right redutive standard basis if andonly if it is a weak right redutive Gr�obner basis.Proof :Let us �rst assume that F is a right redutive standard basis, i.e., every poly-nomial g in idealr(F ) has a right redutive standard representation with respetto F . In ase g 6= o this implies the existene of a polynomial f 2 F and amonomialm 2 M(FK) suh that HT(g) = HT(f ?m) = HT(HT(f)?m) � HT(f).Hene HT(g) 2 HT(ff ? m j m 2 M(FK); f 2 F;HT(f ? m) = HT(HT(f) ? m) �HT(f)gnfog). As the onverse, namely HT(ff ? m j m 2 M(FK); f 2 F;HT(f ?m) = HT(HT(f) ? m) � HT(f)gnfog) � HT(idealr(F )nfog) trivially holds, F isthen a weak right redutive Gr�obner basis.Now suppose that F is a weak right redutive Gr�obner basis and again letg 2 idealr(F ). We have to show that g has a right redutive standard representa-tion with respet to F . This will be done by indution on HT(g). In ase g = othe empty sum is our required right redutive standard representation. Hene letus assume g 6= o. Sine then HT(g) 2 HT(idealr(F )nfog) by the de�nition of weak







84 Chapter 4 - Funtion Ringsright redutive Gr�obner bases we know there exists a polynomial f 2 F and amonomialm 2 M(FK) suh that HT(g) = HT(f ?m) = HT(HT(f)?m) � HT(f).Then there exists a monomial ~m 2 M(F) suh that HM(g) = HM(f ? ~m), namely21~m = (HC(g) � HC(f ? m)�1) � m). Let g1 = g � f ? ~m. Then HT(g) � HT(g1)implies the existene of a right redutive standard representation for g1 whihan be added to the multiple f ? ~m to give the desired right redutive standardrepresentation of g. q.e.d.An inspetion of the proof shows that in fat we an require a stronger onditionfor the head terms of the monomial multiples involved in right redutive standardrepresentations in terms of right redutive Gr�obner bases.Corollary 4.2.22Let a subset F of FKnfog be a weak right redutive Gr�obner basis. Then everyg 2 idealr(F ) has a right redutive standard representation in terms of F of theform g =Pni=1 fi?mi; fi 2 F;mi 2 M(F); n 2 N suh that HT(g) = HT(f1?m1) �HT(f2 ? m2) � : : : � HT(fn ? mn), and HT(fi ? mi) = HT(HT(fi) ? mi) � HT(fi)for all 1 � i � n.The importane of Gr�obner bases in ommutative polynomial rings stems fromthe fat that they an be haraterized by speial polynomials, the so-alled s-polynomials, and that only �nitely many suh polynomials have to be hekedin order to deide whether a set is a Gr�obner basis. This test an be ombinedwith adding ideal elements to the generating set leading to an algorithm whihomputes �nite Gr�obner bases by means of ompletion. These �nite sets thenan be used to solve many problems related to the ideals they generate.Given a �eld as oeÆient domain the ritial situations for funtion rings nowlead to s-polynomials as in the original ase and an be identi�ed by studyingterm multiples of polynomials. Let p and q be two non-zero polynomials in FK.We are interested in terms t; u1; u2 suh that HT(p ? u1) = HT(HT(p) ? u1) =t = HT(q ? u2) = HT(HT(q) ? u2) and HT(p) � t, HT(q) � t. Let Cs(p; q)(this is a speialization of De�nition 4.2.17) be the ritial set ontaining all suhtuples (t; u1; u2) (as a short hand for (t; p; q; u1; u2)). We all the polynomialHC(p?u1)�1 �p?u1�HC(q ?u2)�1 � q ?u2 = spolr(p; q; t; u1; u2) the s-polynomialof p and q related to the tuple (t; u1; u2).Theorem 4.2.23Let F be a set of polynomials in FKnfog. Then F is a weak right redutiveGr�obner basis of idealr(F ) if and only if1. for all f in F and for m 2 M(FK) the multiple f ? m has a right redutivestandard representation in terms of F , and21Notie that this step again requires that we an view F as a vetor spae.







4.2 Right Ideals and Right Standard Representations 852. for all p and q in F and every tuple (t; u1; u2) in Cs(p; q) the respetive s-polynomial spolr(p; q; t; u1; u2) has a right redutive standard representationin terms of F .Proof :In ase F is a weak right redutive Gr�obner basis it is also a right redutivestandard basis, and sine all multiples f ?m and s-polynomials spolr(p; q; t; u1; u2)stated above are elements of idealr(F ), they must have right redutive standardrepresentations in terms of F .The onverse will be proven by showing that every element in idealr(F ) has aright redutive standard representation in terms of F . Now, let g =Pmj=1 fj ?mjbe an arbitrary representation of a non-zero polynomial g 2 idealr(F ) suh thatfj 2 F , mj 2 M(F), m 2 N. By our �rst assumption every multiple fj ? mj inthis sum has a right redutive representation. Hene without loss of generaltitywe an assume that HT(HT(fj) ? mj) = HT(fj ? mj) � HT(fj) holds.Depending on this representation of g and the well-founded total ordering � onT we de�ne t = max�fHT(fj ? mj) j 1 � j � mg and K as the number ofpolynomials fj ? mj with head term t. Without loss of generality we an assumethat the multiples with head term t are just f1 ? m1; : : : ; fK ? mK. We proeedby indution on (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or (t0 = t andK 0 < K)22.Obviously, t � HT(g) holds. If K = 1 this gives us t = HT(g) and by ourassumptions our representation is already of the required form. Hene let usassume K > 1, then there are two not neessarily di�erent polynomials f1; f2and orresponding monomials m1 = �1 � w1, m2 = �2 � w2 with �1; �2 2 K,w1; w2 2 T in the orresponding representation suh that t = HT(HT(f1) ? w1) =HT(f1 ?w1) = HT(f2 ?w2) = HT(HT(f2)?w2) and t � HT(f1), t � HT(f2). Thenthe tuple (t; w1; w2) is in Cs(f1; f2) and we have an s-polynomial h = HC(f1 ?w1)�1 � f1 ? w1 � HC(f2 ? w2)�1 � f2 ? w2 orresponding to this tuple. We willnow hange our representation of g by using the additional information on thiss-polynomial in suh a way that for the new representation of g we either have asmaller maximal term or the ourrenes of the term t are dereased by at least1. Let us assume the s-polynomial is not o23. By our assumption, h has a rightredutive standard representation in terms of F , say Pni=1 hi ? li, where hi 2 F ,and li 2 M(FK) and all terms ourring in the sum are bounded by t � HT(h).This gives us:f1 ? m1 + f2 ? m222Note that this ordering is well-founded sine � is well-founded on T and K 2 N.23In ase h = o, just substitute the empty sum for the right redutive representation of h inthe equations below.







86 Chapter 4 - Funtion Rings= �1 � f1 ? w1 + �2 � f2 ? w2= �1 � f1 ? w1 + �02 � �1 � f1 ? w1 � �02 � �1 � f1 ? w1| {z }=0 +�02 � �2| {z }=�2 �f2 ? w2= (�1 + �02 � �1) � f1 ? w1 � �02 � (�1 � f1 ? w1 � �2 � f2 ? w2)| {z }=h= (�1 + �02 � �1) � f1 ? w1 � �02 � ( nXi=1 hi ? li) (4.3)where �1 = HC(f1 ? w1)�1, �2 = HC(f2 ? w2)�1 and �02 � �2 = �2. By substituting(4.3) in our representation of g it beomes smaller. q.e.d.Notie that both test sets in this haraterization in general are not �nite.Remember that in ommutative polynomial rings over �elds we an restrit theseritial situations to one s-polynomial arising from the least ommon multiple ofthe head terms HT(p) and HT(q). Here we an introdue a similar onept ofleast ommon multiples, but now two terms an have no, one, �nitely many andeven in�nitely many suh multiples.Given two non-zero polynomials p and q in FK let S(p; q) = ft jthere exist u1; u2 2 T suh that HT(p?u1) = HT(HT(p)?u1) = t = HT(q ?u2) =HT(HT(q) ? u2) and HT(p) � t;HT(q) � tg. A subset LCM(p; q) of S(p; q) isalled a set of least ommon multiples for p and q if for any t 2 S(p; q) thereexists t0 2 LCM(p; q) suh that t0 � t and all other s 2 LCM(p; q) are notomparable with t0 with respet to the redutive ordering �.For polynomial rings over �elds a term t is smaller than another term s withrespet to the redutive ordering if t is a divisor of s and LCM(p; q) onsists ofthe least ommon multiple of the head terms HT(p) and HT(q). But for funtionrings in general other situations are possible. Two polynomials do not have togive rise to any s-polynomial. Just take T to be the free monoid on fa; bg andK = Q. Then for the two polynomials p = a+1 and q = b+1 we have S(p; q) = ;as there are no terms u1; u2 in T suh that a ? u1 = b ? u2.Next we give an example where the set LCM(p; q) is �nite but larger that oneelement.Example 4.2.24Let our set of terms T be presented as a monoid by (fa; b; ; d1; d2; x1; x2g; faxi =xi; bxi = xi; djxi = xidj j i; j 2 f1; 2gg), � is the length-lexiographial orderingindued by the preedene x2 � x1 � a � b �  � d1 � d2 and the redutive







4.2 Right Ideals and Right Standard Representations 87ordering � is the pre�x ordering. Then for the two polynomials p = a + d1and q = b + d2 we get the respetive sets S(p; q) = fx1w; x2w j w 2 T gand LCM(p; q) = fx1; x2g with resulting s-polynomials spolr(p; q; x1; x1; x1) =x1d1 � x1d2 and spolr(p; q; x2; x2; x2) = x2d1 � x2d2. �It is also possible to have in�nitely many least ommon multiples.Example 4.2.25Let our set of terms T be presented as a monoid by (fa; b; ; d1; d2; xi j i 2Ng; faxi = xi; bxi = xi; djxi = xidj j i 2 N; j 2 f1; 2gg), � is the length-lexiographial ordering indued by the preedene : : : � xn � : : : � x1 � a �b �  � d1 � d2 and the redutive ordering � is the pre�x ordering. Thenfor the two polynomials p = a + d1 and q = b + d2 we get the respetive setS(p; q) = fxiw j i 2 N; w 2 T g and the in�nite set LCM(p; q) = fxi j i 2 Ngwith in�nitely many resulting s-polynomials spolr(p; q; xi; xi; xi) = xid1 � xid2.�However, we have to show that we an restrit the set Cs(p; q) to those tuplesorresponding to terms in LCM(p; q).Remember that one problem whih is related to the fat that the ordering � andthe multipliation ? in general are not ompatible is that an important propertyful�lled for representations of polynomials in ommutative polynomial rings over�elds no longer holds. This property in fat underlies Lemma 2.3.9 (4), whih isessential in Buhberger's haraterization of Gr�obner bases in polynomial rings:p ��!bF 0 implies p ? m ��!bF 0 for any monomial m. Notie that p ��!bF 0 impliesthat p has a standard representation with respet to F , sayPni=1 fi ?mi, and it iseasy to see that then Pni=1 fi ? mi ? m is a standard representation of p ?m withrespet to F . This lemma is entral in loalizing all the ritial situations relatedto two polynomials to the one s-polynomial resulting from the least ommonmultiple of the respetive head terms.Unfortunately, neither the lemma nor its impliation for the existene of therespetive standard representations holds in our more general setting. There, ifg 2 idealr(F ) has a right redutive standard representation g =Pni=1 fi ?mi, thenthe sumPni=1 fi ?mi ?m in general is no right redutive standard representationnot even a right standard representation of the multiple g ? m for m 2 M(FK).Even while g 2 idealr(fgg) has the trivial right redutive standard representationg = g, the multiple g ?m is in general no right redutive standard representationof the funtion g ? m for m 2 M(FK). Reall the example on page 77 where forg = x+1 we have HM(g?x) = x while HM(g)?x = 1 as x?x = 1. Similarly, whileg�!g 0 must hold for any redution relation, this no longer will imply g?m ��!g 0.To see this let us review Example 4.2.18: For g = a + 1 and m = b we get themultiple g ? m = (a + 1) ? b = 1 + b, but HT(g ? m) = b 6= 1 = HT(HT(g) ? m).Moreover, b+1 is not reduible by a+1 for any redution relation based on headmonomial divisibility.







88 Chapter 4 - Funtion RingsIn order to give loalizations of the test sets from Theorem 4.2.23 it is importantto study under whih onditions the stability of right redutive standard repre-sentations with respet to multipliation by monomials an be restored. The nextlemma provides a suÆient ondition.Lemma 4.2.26Let F � FKnfog and p a non-zero polynomial in FK. Moreover, we assume that phas a right redutive standard representation in terms of F and m is a monomialsuh that HT(p ? m) = HT(HT(p) ? m) � HT(p). Then p ? m again has a rightredutive standard representation in terms of F .Proof :Let p = Pni=1 fi ? mi with n 2 N, fi 2 F , mi 2 M(FK) be a right redu-tive standard representation of p in terms of F , i.e., HT(p) = HT(fi ? mi) =HT(HT(fi)?mi) � HT(fi), 1 � i � k and HT(p) � HT(fi?mi) for all k+1 � i � n.Let us �rst analyze fj ? mj ? m for 1 � j � k:Let T(fj ? mj) = fs1; : : : ; slg with s1 � si, 2 � i � l, i.e. s1 = HT(fj ? mj) =HT(HT(fj) ? mj) = HT(p). Hene HT(HT(p) ? m) = HT(s1 ? m) � HT(p) = s1and as s1 � si, 2 � i � l, by De�nition 4.2.13 we an onlude HT(HT(p) ?m) =HT(s1?m) � si?m � HT(si?m) for 2 � i � l. This impliesHT(HT(fj?mj)?m) =HT(fj ? mj ? m). Hene we getHT(p ? m) = HT(HT(p) ? m)= HT(HT(fj ? mj) ? m); as HT(p) = HT(fj ? mj)= HT(fj ? mj ? m)and sine HT(p?m) � HT(p) � HT(fj) we an onlude HT(fj?mj?m) � HT(fj).It remains to show that fj ?mj ?m has a right redutive standard representationin terms of F . First we show that HT(HT(fj) ? mj ? m) � HT(fj): We knowHT(fj) ?mj � HT(HT(fj) ?mj) = HT(fj ?mj) and hene HT(HT(fj) ?mj ?m) =HT(HT(fj ? mj) ? m) = HT(fj ? mj ? m) � HT(fj).Now in ase mj ?m 2 M(FK) we are done as then fj ? (mj ?m) is a right redutivestandard representation in terms of F .Hene let us assume mj ? m = Pki=1 ~mi, ~mi 2 M(FK). Let T(fj) = ft1; : : : ; tsgwith t1 � tp, 2 � p � s, i.e. t1 = HT(fj). As HT(HT(fj) ?mj) � HT(fj) � tp,2 �p � s, again by De�nition 4.2.13 we an onlude HT(HT(fj) ? mj) � tp ? mj �HT(tp ? mj), and HT(fj) ? mj �Psp=2 tp ? m1. Then for eah si, 2 � i � l thereexists tp 2 T(fj) suh that si 2 supp(tp ? mj). Sine HT(p) � si and even24HT(p) � tp ? mj we �nd that either HT(p ? m) � HT((tp ? mj) ? m) = HT(tp ?(mj ?m)) in ase HT(tp ?mj) = HT(fj ?mj) or HT(p ?m) � HT((tp ?mj) ?m) =24HT(p) � tp ? mj if HT(fj ? mj) 62 supp(tp ? mj).







4.2 Right Ideals and Right Standard Representations 89HT(tp ? (mj ?m)). Hene we an onlude fj ? ~mi � HT(p ?m), 1 � i � l and forat least one ~mi we get HT(fj ? ~mi) = HT(fj ? mj ? m) � HT(fj).It remains to analyze the situation for the funtion (Pni=k+1 fi ? mi) ? m. Againwe �nd that for all terms s in the fi ? mi, k + 1 � i � n, we have HT(p) � s andwe get HT(p ? m) � HT(s ? m). Hene all polynomial multiples of the fi in therepresentation Pni=k+1Pkij=1 fi ? ~mij, where mi ? m = Pkij=1 ~mij, are bounded byHT(p ? m). q.e.d.Notie that these observations are no longer true in ase we only require HT(p ?m) = HT(HT(p) ? m) � HT(p), as then HT(p) � s no longer implies that HT(p ?m) � HT(s ? m) will hold.Of ourse this lemma now implies that if for two polynomials p and q in FKall s-polynomials related to the set LCM(p; q) have right redutive standardrepresentations so have all s-polynomials related to any tuple in Cs(p; q).So far we have haraterized weak right redutive Gr�obner bases as speial rightideal bases providing right redutive standard representations for the right idealelements. In the literature the existene of suh representations is normally es-tablished by means of redution relations. The speial representations presentedhere an be related to a redution relation based on the divisibility of terms asde�ned in the ontext of right redutive restritions of our ordering followingDe�nition 4.2.13. Let � be suh a right redutive restrition of the ordering �.De�nition 4.2.27Let f; p be two non-zero polynomials in FK. We say f right redues p to q ata monomial � � t in one step, denoted by p�!rf q, if there exists m 2 M(FK)suh that1. t 2 supp(p) and p(t) = �,2. HT(f ? m) = HT(HT(f) ? m) = t � HT(f),3. HM(f ? m) = � � t, and4. q = p � f ? m.We write p�!rf if there is a polynomial q as de�ned above and p is then alledright reduible by f . Further, we an de�ne ��!r ; +�!r and n�!r as usual. Rightredution by a set F � FK is denoted by p�!rF q and abbreviates p�!rf q forsome f 2 F . �Notie that if f right redues p to q at � � t then t 62 supp(q). If for somew 2 T we have HT(f ? w) = HT(HT(f) ? w) = t � HT(f) we an always







90 Chapter 4 - Funtion Ringsredue � � t in p by f using the monomial m = (� � HC(f ? w)�1) � w. Otherde�nitions of redution relations are possible, e.g. substituting item 2 by theondition HT(HT(f) ? m) = HT(f ? m) (alled right redution in the ontext ofmonoid rings in [Rei95℄; suh a redution relation would be onneted to standardrepresentations as de�ned in De�nition 4.2.7) or by the ondition HT(f ? m) = t(alled strong redution in the ontext of monoid rings in [Rei95℄ and for funtionrings on page 77). We have hosen this partiular redution relation as it providesthe neessary information to apply Lemma 4.2.26 to give loalizations for thetest sets in Theorem 4.2.23 later on. Let us ontinue by studying some of theproperties of our redution relation.Lemma 4.2.28Let F be a set of polynomials in FKnfog.1. For p; q 2 FK, p�!rf2F q implies p � q, in partiular HT(p) � HT(q).2. �!rF is Noetherian.Proof :1. Assuming that the redution step takes plae at a monomial � � t, by De�-nition 4.2.27 we know HM(f ? m) = � � t whih yields p � p � f ? m sineHM(f ? m) � RED(f ? m).2. This follows diretly from 1. as the ordering � on T is well-founded (om-pare Theorem 4.2.3). q.e.d.The next lemma shows how redution sequenes and right redutive standardrepresentations are related.Lemma 4.2.29Let F � FKnfog and p 2 FKnfog. Then p ��!rF o implies that p has a rightredutive standard representation in terms of F .Proof :This follows diretly by adding up the polynomials used in the redution stepsourring in the redution sequene p ��!rF o, say p�!rf1 p1�!rf2 : : : �!rfn o. Ifthe redution steps take plae at the respetive head monomials only, we anadditionally state that p =Pni=1 fi?mi, HT(fi?mi) = HT(HT(fi)?mi) � HT(fi),1 � i � n, and even HT(f1 ? m1) � HT(f2 ? m2) � : : :HT(fn ? mn). q.e.d.







4.2 Right Ideals and Right Standard Representations 91If p ��!rF q, then p has a right redutive standard representation in terms of F [fqg, respetively p�q has a right redutive standard representation in terms of F .On the other hand, if a polynomial g has a right redutive standard representationin terms of some set F it is reduible by a polynomial in F . To see this letg = Pni=1 fi ? mi; fi 2 F;mi 2 M(FK); n 2 N be a right redutive standardrepresentation of g in terms of F . Then HT(g) = HT(f1 ? m1) = HT(HT(f1) ?m1) � HT(f1) and by De�nition 4.2.27 this implies that g�!rf1 g�� �f1?m1 = g0where � 2 K suh that � � HC(f1 ? m1) = HC(g).So far we have given an algebrai haraterization of weak right redutive Gr�obnerbases in De�nition 4.2.20 and a haraterization of them as right redutive stan-dard bases in Lemma 4.2.21. Another haraterization known from the literatureis that for a Gr�obner basis in a polynomial ring every element of the ideal itgenerates redues to zero using the Gr�obner basis. Reviewing De�nition 3.1.2we �nd that this is in fat only the de�nition of a weak Gr�obner basis. Howeverin polynomial rings over �elds and many other strutures in the literature thede�nitions of weak Gr�obner bases and Gr�obner bases oinide as the TranslationLemma holds (see Lemma 2.3.9 (2)). This is also true for funtion rings over�elds.The �rst part of the following lemma is only needed for the proof of the seondpart whih is an analogon of the Translation Lemma for funtion rings over �elds.Lemma 4.2.30Let F be a set of polynomials in FK and p; q; h polynomials in FK.1. Let p � q�!rF h. Then there exist p0; q0 2 FK suh that p ��!rF p0 andq ��!rF q0 and h = p0 � q0.2. Let o be a normal form of p�q with respet to F . Then there exists g 2 FKsuh that p ��!rF g and q ��!rF g.Proof :1. Let p � q�!rF h at the monomial � � t, i.e., h = p � q � f ? m for somef 2 F ,m 2 M(FK) suh that HT(HT(f) ? m) = HT(f ? m) = t � HT(f)and HM(f ? m) = � � t, i.e., � is the oeÆient of t in p � q. We have todistinguish three ases:(a) t 2 supp(p) and t 2 supp(q): Then we an eliminate the ourrene oft in the respetive polynomials by right redution and get p�!rf p ��1 � f ? m = p0, q�!rf q � �2 � f ? m = q0, where �1 � HC(f ? m) and�2 � HC(f ? m) are the oeÆients of t in p respetively q. Moreover,







92 Chapter 4 - Funtion Rings�1 � HC(f ? m) � �2 � HC(f ? m) = � and hene �1 � �2 = 1, asHC(f ?m) = �. This gives us p0� q0 = p��1 � f ?m� q+�2 � f ?m =p � q � (�1 � �2) � f ? m = p� q � f ? m = h.(b) t 2 supp(p) and t 62 supp(q): Then we an eliminate the term t in thepolynomial p by right redution and get p�!rf p� f ? m = p0, q = q0,and, therefore, p0 � q0 = p� f ? m� q = h.() t 2 supp(q) and t 62 supp(p): Then we an eliminate the term t in thepolynomial q by right redution and get q�!rf q + f ? m = q0, p = p0,and, therefore, p0 � q0 = p� (q + f ? m) = h.2. We show our laim by indution on k, where p� q k�!rF o. In the base asek = 0 there is nothing to show as then p = q. Hene, let p�q�!rF h k�!rF o.Then by 1. there are polynomials p0; q0 2 FK suh that p ��!rF p0 andq ��!rF q0 and h = p0 � q0. Now the indution hypothesis for p0 � q0 k�!rF oyields the existene of a polynomial g 2 FK suh that p ��!rF g and q ��!rF g.q.e.d.The essential part of the proof is that right reduibility is onneted to stabledivisors of terms. We will later see that for funtion rings over arbitrary redutionrings, when the oeÆient is also involved in the redution step, this lemma nolonger holds.De�nition 4.2.31A subset G of FK is alled a right Gr�obner basis (with respet to the redutionrelation �!r ) of the right ideal i = idealr(G) it generates, if � !rG = �i and�!rG is onuent.Reall the free group ring in Example 4.2.18. There the polynomial b+ 1 lies inthe right ideal generated by the polynomial a+1. Unlike in the ase of polynomialrings over �elds where for any set of polynomials F we have � !bF = �ideal(F ),here we have b+ 1 �idealr(fa+1g) o but b+ 1 6 � !ra+1 o. Hene the �rst ondition ofDe�nition 4.2.31 now beomes neessary while it an be omitted in the de�nitionof Gr�obner bases for ordinary polynomial rings.Now by Lemma 4.2.30 and Theorem 3.1.5 weak right redutive Gr�obner basesare right Gr�obner bases and an be haraterized as follows:Corollary 4.2.32Let G be a set of polynomials in FKnfog. G is a right Gr�obner basis if and onlyif for every g 2 idealr(G) we have g ��!rG o.Finally we an haraterize right Gr�obner bases similar to Theorem 2.3.11.







4.2 Right Ideals and Right Standard Representations 93Theorem 4.2.33Let F be a set of polynomials in FKnfog. Then F is a right Gr�obner basis if andonly if1. for all f in F and for all m 2 M(FK) we have f ? m ��!rF o, and2. for all p and q in F and every tuple (t; u1; u2) in Cs(p; q) and the respetives-polynomial spolr(p; q; t; u1; u2) we have spolr(p; q; t; u1; u2) ��!rF o.However, the importane of Gr�obner bases in the lassial ase stems from thefat that we only have to hek a �nite set of s-polynomials for F in order todeide, whether F is a Gr�obner basis. Hene, we are interested in loalizing thetest sets in Theorem 4.2.33 { if possible to �nite ones.De�nition 4.2.34A set of polynomials F � FKnfog is alled weakly saturated, if for everymonomial m 2 M(FK) and every polynomial f in F we have f ? m ��!rF o. �Then for a weakly saturated set F and any monomial m 2 M(FT ), f 2 F ,the multiple f ? m has a right redutive standard representation in terms of F .Notie that sine the oeÆient domain is a �eld and F a vetor spae we aneven restrit ourselves to multiples with elements of T . However, for redutionrings as oeÆient domains, we will need monomial multiples and hene we givethe more general de�nition. For the free group ring in Example 4.2.18 the setfa+ 1; b+ 1g is weakly saturated.De�nition 4.2.35Let F be a set of polynomials in FKnf0g. A set SAT(F ) � ff ? m j f 2 F;m 2M(FK)g is alled a stable saturator for F if for any f 2 F , m 2 M(FK) thereexist s 2 SAT(F ), m0 2 M(FK) suh that f ? m = s ? m0 and HT(f ? m) =HT(HT(s) ? m0) � HT(s).Notie that a stable saturator need not be weakly saturated. Let s 2 SAT(F ) �ff ? m j f 2 F;m 2 M(FK)g and m0 2 M(FK). For SAT(F ) to be weaklysaturated then s ? m0 ��!SAT(F ) o must hold. We know that s = f ? m for somef 2 F;m 2 M(FK). In ase m ? m0 2 M(FK) we are done. But this is nolonger true if the monomial multiple results in a polynomial. Let our set of termsonsist of words on the alphabet fa; b; g with multipliation ? dedued form theequations a ? b = a; b ? a = b2� b; a ? a = o. As ordering on T we take the lengthlexiographial ordering with preedene a � b �  and as redutive restritionthe pre�x ordering. For the polynomial f = a + 1 we get a stable saturatorSAT(ffg) = fa + 1; a + b; a + b2; b3 + a; ag. Then the polynomial multiple(f ? b) ? a = f ? (b ? a) = f ? (b2� b) = a+ b2� (a+ b) = b2� b is not reduibleby SAT(ffg) while f ? b = a+ b 2 SAT(ffg).







94 Chapter 4 - Funtion RingsCorollary 4.2.36Let SAT(F ) be a stable saturator of a set F � FK. Then for any f 2 F ,m 2 M(FK) there exists s 2 SAT(F ) suh that f ? m�!rs o.Lemma 4.2.37Let F be a set of polynomials in FKnf0g. If for all s in a stable saturator SAT(F )we have s ��!rF o, then for every m in M(FK) and every polynomial f in F theright multiple f ?m has a right redutive standard representation in terms of F .Proof :This follows immediately from Lemma 4.2.29 and Lemma 4.2.26. q.e.d.De�nition 4.2.38Let p and q be two non-zero polynomials in FK. Then a subset C �fspolr(p; q; t; u1; u2) j (t; u1; u2) 2 Cs(p; q)g is alled a stable loalization for theritial situations if for every s-polynomial spolr(p; q; t; u1; u2) related to a tuple(t; u1; u2) in Cs(p; q) there exists a polynomial h 2 C and a monomialm 2 M(FK)suh that1. HT(h) � HT(spolr(p; q; t; u1; u2)),2. HT(h ? m) = HT(HT(h) ? m) = HT(spolr(p; q; t; u1; u2)),3. spolr(p; q; t; u1; u2) = h ? m. �The set LCM(p; q) (see page 4.2.1) allows a stable loalization as follows: C =fspolr(p; q; t; u1; u2) j t 2 LCM(p; q); (t; u1; u2) 2 Cs(p; q)g.Corollary 4.2.39Let C � fspolr(p; q; t; u1; u2) j (t; u1; u2) 2 Cs(p; q)g be a stable loalization fortwo polynomials p; q 2 FK. Then for any s-polynomial spolr(p; q; t; u1; u2) thereexists h 2 C suh that spolr(p; q; t; u1; u2)�!rh o.Lemma 4.2.40Let F be a set of polynomials in FKnf0g. If for all h in a stable loalizationC � fspolr(p; q; t; u1; u2) j (t; u1; u2) 2 Cs(p; q)g, we have h ��!rF o, then for every(t; u1; u2) in Cs(p; q) the s-polynomial spolr(p; q; t; u1; u2) has a right redutivestandard representation in terms of F .







4.2 Right Ideals and Right Standard Representations 95Proof :This follows immediately from Lemma 4.2.29 and Lemma 4.2.26. q.e.d.So far we have seen that basially the theory for right Gr�obner bases and there�ned notion of right redutive standard bases (for right ideals of ourse) arriesover similar from the ase of polynomial rings over �elds. Now Lemma 4.2.26 andLemma 4.2.29 allow a loalization of the test situations from Theorem 4.2.33.Theorem 4.2.41Let F be a set of polynomials in FKnf0g. Then F is a right Gr�obner basis if andonly if1. for all s in a stable saturator SAT(F ) we have s ��!rF o, and2. for all p and q in F , and every polynomial h in a stable loalization C �fspolr(p; q; t; u1; u2) j (t; u1; u2) 2 Cs(p; q)g, we have h ��!rF o.Proof :In ase F is a right Gr�obner basis by Lemma 4.2.32 all elements of idealr(F ) mustright redue to zero by F . Sine the polynomials in question all belong to theright ideal generated by F we are done.The onverse will be proven by showing that every element in idealr(F ) has aright redutive representation in terms of F . Now, let g = Pmj=1 fj ? mj be anarbitrary representation of a non-zero polynomial g 2 idealr(F ) suh that fj 2 F ,and mj 2 M(FK).By our �rst assumption for every multiple fj ? mj in this sum we have somes 2 SAT(F ), m 2 M(FK) suh that fj ?mj = s?m and HT(fj ?mj) = HT(s?m) =HT(HT(s) ? m) � HT(s). Sine we have s ��!rF o, by Lemma 4.2.26 we anonlude that eah fj ?mj has a right redutive standard representation in termsof F . Therefore, we an assume that HT(HT(fj) ? mj) = HT(fj ? mj) � HT(fj)holds.Depending on this representation of g and the well-founded total ordering � onT we de�ne t = max�fHT(fj ? mj) j 1 � j � mg and K as the number ofpolynomials fj ? mj with head term t.Without loss of generality we an assume that the polynomial multiples withhead term t are just f1 ? m1; : : : ; fK ? mK. We proeed by indution on (t;K),where (t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and K 0 < K)25. Obviously,t � HT(g) must hold. If K = 1 this gives us t = HT(g) and by our assumptionour representation is already of the required form.Hene let us assume K > 1, then for the two not neessarily di�erent polynomials25Note that this ordering is well-founded sine � is well-founded on T and K 2 N.







96 Chapter 4 - Funtion Ringsf1; f2 and orresponding monomials m1 = �1 � w1, m2 = �2 � w2, �1; �2 2 K,w1; w2 2 T , in the orresponding representation we have t = HT(HT(f1) ? w1) =HT(f1 ? w1) = HT(f2 ? w2) = HT(HT(f2) ? w2) and t � HT(f1), t � HT(f2).Then the tuple (t; w1; w2) is in Cs(f1; f2) and we have a polynomial h in a stableloalization C � fspolr(f1; f2; t; w1; w2) j (t; w1; w2) 2 Cs(f1; f2)g and m 2 M(FK)suh that spolr(f1; f2; t; w1; w2) = HC(f1?w1)�1 �f1 ?w1�HC(f2?w2)�1 �f2 ?w2 =h ? m and HT(spolr(f1; f2; t; w1; w2)) = HT(h ? m) = HT(HT(h) ? m) � HT(h).We will now hange our representation of g by using the additional informationon this situation in suh a way that for the new representation of g we either havea smaller maximal term or the ourrenes of the term t are dereased by at least1. Let us assume the s-polynomial is not o26. By our assumption, h ��!rF o andby Lemma 4.2.29 h then has a right redutive standard representation in terms ofF . Then by Lemma 4.2.26 the multiple h?m again has a right redutive standardrepresentation in terms of F , say Pni=1 hi ? li, where hi 2 F , and li 2 M(FK) andall terms ourring in this sum are bounded by t � HT(h ? m). This gives us:�1 � f1 ? w1 + �2 � f2 ? w2= �1 � f1 ? w1 + �02 � �1 � f1 ? w1 � �02 � �1 � f1 ? w1| {z }=0 +�02 � �2| {z }=�2 �f2 ? w2= (�1 + �02 � �1) � f1 ? w1 � �02 � (�1 � f1 ? w1 � �2 � f2 ? w2)| {z }=h?m= (�1 + �02 � �1) � f1 ? w1 � �02 � ( nXi=1 hi ? li) (4.4)where �1 = HC(f1 ? w1)�1, �2 = HC(f2 ? w2)�1 and �02 � �2 = �2. By substituting(4.4) our representation of g beomes smaller. q.e.d.Obviously we now have riteria for when a set is a right Gr�obner basis. As inthe ase of ompletion proedures suh as the Knuth-Bendix proedure or theBuhberger algorithm, elements from these test sets whih do not redue to zeroan be added to the set being tested, to gradually desribe a not neessarily �niteright Gr�obner basis. Of ourse in order to get a omputable ompletion proedureertain assumptions on the test sets have to be made, e.g. they should themselvesbe reursively enumerable, and normal forms with respet to �nite sets have to beomputable. Then provided suh enumeration proedures for stable saturatorsand ritial situations, an enumeration proedure for a respetive right Gr�obnerbasis has to ensure that all neessary andidates are enumerated and tested for26In ase h = o, just substitute the empty sum for the right redutive representation of h inthe equations below.







4.2 Right Ideals and Right Standard Representations 97reduibility to o. If this is not the ase they are added to the right Gr�obner basis,have to be added to the enumeration of the stable saturator andidates and thenew arising ritial situations have to be added to the respetive enumerationproess.We lose this subsetion by outlining how di�erent strutures known to allow�nite Gr�obner bases an be interpreted as funtion rings. Using the respetiveinterpretations the terminology an be adapted at one to the respetive stru-tures and in general the resulting haraterizations of Gr�obner bases oinidewith the results known from literature.Polynomial RingsA ommutative polynomial ring K[x1; : : : ; xn℄ is a funtion ring aording to thefollowing interpretation:� T is the set of terms fxi11 : : : xinn j i1; : : : ; in 2 Ng.� � an be any admissible term ordering on T . For the redutive ordering �we have t � s if s divides t as as term27.� Multipliation ? is spei�ed by the ation on terms, i.e. ? : T � T �! Twhere xi11 : : : xinn ? xj11 : : : xjnn = xi1+j11 : : : xin+jnn .We do not need the onept of weak saturation. A stable loalization of Cs(p; q)is already provided by the tuple orresponding to the least ommon multiple ofthe terms HT(p) and HT(q).Sine this struture is Abelian, one-sided and two-sided ideals oinide. Buh-berger's Algorithm provides an eÆtive proedure to ompute �nite Gr�obnerbases.Solvable Polynomial RingsAording to [KRW90, Kre93℄, a solvable polynomial ring Kfx1 ; : : : ; xn; pij ; ijgwith 1 � j < i � n, pij 2 K[x1; : : : ; xn℄, ij 2 K� is a funtion ring aording tothe following interpretation:� T is the set of terms fxi11 : : : xinn j i1; : : : ; in 2 Ng.� � an be any admissible term ordering on T for whih xjxi � pij , j < i,must hold. For the redutive ordering � we have t � s if s divides t as asterm.27Apel has studied another possible redutive ordering � where we have t � s if s is a pre�xof t. This ordering gives rise to Janet bases.







98 Chapter 4 - Funtion Rings� Multipliation ? is spei�ed by lifting the following ation on the variables:xi ? xj = xixj if i � j and xi ? xj = ij � xjxi + pij if i > j.We do not need the onept of weak saturation exept in ase we also allowij = 0. Then appropriate term multiples whih \delete" head terms have to betaken into aount. This ritial set an be desribed in a �nitary manner. Forthe redutive ordering � then we an hose t � s if s is a pre�x of t (ompareExample 4.2.14).The set Cs(p; q) again ontains as a stable loalization the tuple orresponding tothe least ommon multiple of the terms HT(p) and HT(q).This struture is no longer Abelian, but �nite Gr�obner bases an be omputedfor one- and two-sided ideals (see [KRW90, Kre93℄).Non-ommutative Polynomial RingsA non-ommutative polynomial ring K[fx1; : : : ; xng�℄ is a funtion ring aordingto the following interpretation:� T is the set of words on fx1; : : : ; xng.� � an be any admissible ordering on T . For the redutive ordering � wean hose t � s if s is a subword of t.� Multipliation ? is spei�ed by the ation on words whih is just onate-nation.We do not need the onept of weak saturation. A stable loalization of Cs(p; q)is already provided by the tuples orresponding to word overlaps resulting fromthe equations u1HT(p)v1 = HT(q), u2HT(q)v2 = HT(p), u3HT(p) = HT(q)v3respetively u4HT(q) = HT(p)v4 with the restrition that ju3j < jHT(q)j andju4j < jHT(p)j, ui; vi 2 T .This struture is not Abelian. For the ase of one-sided ideals �nite Gr�obner basesan be omputed (see e.g. [Mor94℄). The ase of two-sided ideals only allows anenumerating proedure. This is not surprising as the word problem for monoidsan be redued to the problem of omputing the respetive Gr�obner bases (seee.g. [Mor87, MR98d℄).Monoid and Group RingsA monoid or group ring K[M℄ is a funtion ring aording to the following inter-pretation:







4.2 Right Ideals and Right Standard Representations 99� T is the monoid or group M. In the ases studied by us as well as in[Ros93, Lo96℄, it is assumed that the elements of the monoid or grouphave a ertain form. This presentation is essential in the approah. Wewill assume that the given monoid or group is presented by a onvergentsemi-Thue system.� � will be the ompletion ordering indued from the presentation ofM toM and hene to T . The redutive ordering � depends on the hoie of thepresentation.� Multipliation ? is spei�ed by lifting the monoid or group operation.The onept of weak saturation and the hoie of stable loalizations of Cs(p; q)again depend on the hoie of the presentation. We will lose this setion by listingmonoids and groups whih allow �nite Gr�obner bases for the respetive monoidor group ring and pointers to the literature where the appropriate solutions anbe found.Struture Ideals QuoteFinite monoid one- and two-sided [Rei96, MR97b℄Free monoid one-sided [Mor94, MR97b℄Finite group one- and two-sided [Rei95, MR97b℄Free group one-sided [MR93a, Ros93, Rei95, MR97b℄Plain group one-sided [MR93a, Rei95, MR97b℄Context-free group one-sided [Rei95, MR97b℄Nilpotent group one- and two-sided [Rei95, MR97a℄Polyyli group one- and two-sided [Lo96, Rei96℄4.2.2 Funtion Rings over Redution RingsThe situation beomes more ompliated for a funtion ring FR where R is not a�eld. We will abbreviate FR by F .Notie that similar to the previous setion it is possible to study generalizationsof standard representations for funtion rings over redution rings with respet tothe orderings � and � on T . General right standard representations as de�nedin De�nition 4.2.4, as well as the orresponding ritial situations from De�nition4.2.5 and the haraterization of general right standard bases as in Theorem 4.2.6arry over to our funtion ring F . The same is true for right standard represen-tations as de�ned in De�nition 4.2.7, the orresponding ritial situations from







100 Chapter 4 - Funtion RingsDe�nition 4.2.8 and the haraterization of right standard bases as in Theorem4.2.6. However, these standard representations an no longer be linked to weakright Gr�obner bases as de�ned in De�nition 4.2.10. This is of ourse obvious asfor funtion rings over �elds we have a haraterization of suh Gr�obner basesby head terms whih is no longer possible for funtion rings over redution rings.This is already the ase for polynomial rings over the integers. For example takethe polynomial 3 �X in Q[X℄. Then obviously for F1 = f3 � Xg and F2 = fXgwe get that HT(idealr(F1)nf0g) = HT(f3 � X ? X i j i 2 Ng) = HT(fX ? X i ji 2 Ng) = HT(idealr(F2)nf0g) while of ourse F1 is no right Gr�obner basis ofidealr(F2) and F2 is no right Gr�obner basis of idealr(F1). One possible generaliz-ing of De�nition 4.2.10 is as follows: F is a weak right Gr�obner basis of idealr(F )if HM(idealr(F )nf0g) = HM(ff ? m j f 2 F;m 2 M(F)g). But this does notsolve the problem as there is no equivalent to Lemma 4.2.11 to link these rightGr�obner bases to the respetive standard bases. The reason for this is that thede�nitions of standard representations as provided by De�nition 4.2.4 and 4.2.7are no longer related to redution relations orresponding to Gr�obner bases. Ofourse it is possible to study other generalizations of these de�nitions, e.g. involv-ing the ordering on the oeÆients, but we take a di�erent approah. Our studiesof standard representations for funtion rings over �elds revealed that in fat wean identify stronger onditions for suh representations in terms of weak rightGr�obner bases (review e.g. Corollary 4.2.12 and 4.2.22). These speial represen-ations arise from redution sequenes. Hene we will proeed by studying suhstandard representations whih an be diretly related to redution relations inour funtion ring.Similar to funtion rings over �elds we need to view F as a vetor spae nowover R, a redution ring as desribed in Setion 3.1. In general R is not Abelianand hene we have to distinguish right and left salar multipliation as de�nedon page 75. However, sine R is assoiative as in the ase of �elds we an write� � f � �.Notie that for f; g in F and �; � 2 R we have1. � � (f � g) = � � f � � � g2. � � (� � f) = (� � �) � f3. (�+ �) � f = � � f � � � f ,i.e., F is a left R-module. Similarly we have1. (f � g) � � = f � �� g � �2. (f � �) � � = f � (� � �)3. f � (� + �) = f � �� f � �,







4.2 Right Ideals and Right Standard Representations 101i.e., F is a right R-module as well. Moreover, as (� � f) � � = � � (f � �) for allf 2 F , �; � 2 R, F is an R-R bimodule.In order to state how salar multipliation and ring multipliation are ompatible,we again require (� � f) ? g = � � (f ? g) and f ? (g � �) = (f ? g) � � to hold. Thisis true for all examples we know from the literature.If we additionally require that for �; � 2 R and t; s 2 T we have (� � t) ? (� �s) = (� � �) � (t ? s), then the multipliation in F an be spei�ed by knowing? : T � T �! F .If F ontains a unit 1, R an be embedded into F via the mapping � 7�! � � 1.Then for � 2 R and f 2 F the equations � � f = (� � 1) ? f and f �� = f ? (� � 1)hold. Sine for � 2 R and t 2 T we have � � t = t �� this implies (� � t) ? (� � s) =(� � �) � (t ? s)28.Moreover, if R is Abelian, we get � � (f ? g) = f ? (� � g) and F is an algebra.Remember that we want to study standard representations diretly related toredution relations on F . Sine we have a funtion ring over a redution ringsuh a redution relation originates from the redution relation on the redutionring R. Here we want to distinguish two suh redution relations on F .One possible generalization in the spirit of these ideas for funtion rings overredution rings is as follows:De�nition 4.2.42Let F be a set of polynomials in F and g a non-zero polynomial in idealr(F ). Arepresentation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(F); n 2 Nsuh that HT(g) = HT(HT(f1)?m1) = HT(f1?m1) � HT(f1) and HT(g) � HT(fi?mi) for all 2 � i � n is alled a right redutive standard representationin terms of F . A set F � Fnfog is alled a right redutive standard basisof idealr(F ) if every polynomial f 2 idealr(F ) has a right redutive standardrepresentation in terms of F . �Notie that that this de�nition di�ers from De�nition 4.2.15 insofar as we demandHT(g) � HT(fi ? mi) for all 2 � i � n. In fat we use those speial standardrepresentations whih arise in the ase of funtion rings for g 2 idealr(F ) when Falready is a right redutive standard basis (ompare Corollary 4.2.22). Thisde�nition is diretly related to the redution relation presented in De�nition4.2.27 for FK generalized to F . A possible de�nition of redution an be givenin the following fashion where we require that the redution step eliminates therespetive monomial it is applied to.28(� � t)? (� �s) = (� � t)? ((� �1)?s) = ((� � t)? (� �1))?s = (� � (t? (� �1))?s = (� � (t ��))?s =(� � (� � t)) ? s = (� � �) � (t ? s).







102 Chapter 4 - Funtion RingsDe�nition 4.2.43Let f; p be two non-zero polynomials in F . We say f right redues p to qeliminating the monomial � � t in one step, denoted by p�!r;ef q, if thereexists m 2 M(F) suh that1. t 2 supp(p) and p(t) = �,2. HT(HT(f) ? m) = HT(f ? m) = t � HT(f),3. HM(f ? m) = � � t, suh that � =)HC(f?m) 0, and4. q = p � f ? m.We write p�!r;ef if there is a polynomial q as de�ned above and p is then alledright reduible by f . Further, we an de�ne ��!r;e ; +�!r;e and n�!r;e as usual.Right redution by a set F � F is denoted by p�!r;eF q and abbreviates p�!r;ef qfor some f 2 F . �This redution relation is related to a speial instane29 of the redution relation=). Notie that by Axiom (A2) � =)HC(f?m) 0 implies � 2 idealRr (HC(f ? m))and hene � = HC(f ? m) � � for some � 2 R.Notie that in ontrary to FK now for g; f 2 F and m 2 M(F) the situationHT(g) = HT(f ? m) = HT(HT(f) ? m) � HT(f) alone no longer implies thatHM(g) is right reduible by f . This is due to the fat that we an no longermodify the oeÆients involved in the redution step in the appropriate mannersine redution rings in general will not ontain inverse elements.Let us ontinue by studying our redution relation.Lemma 4.2.44Let F be a set of polynomials in Fnfog.1. For p; q 2 F p�!r;eF q implies p � q, in partiular HT(p) � HT(q).2. �!r;eF is Noetherian.Proof :1. Assuming that the redution step takes plae at a monomial � � t, by De�-nition 4.2.43 we know HM(f ? m) = � � t whih yields p � p � f ? m sineHM(f ? m) � RED(f ? m).2. This follows from 1.29Compare Pan's redution relation for the integers as de�ned in Example 3.1.1.







4.2 Right Ideals and Right Standard Representations 103q.e.d.The Translation Lemma no longer holds for this redution relation. This is al-ready so for polynomial rings over the integers.Example 4.2.45Let Z[X℄ be the polynomial ring in one indeterminant over Z. Moreover, let =)be the redution relation on Zwhere for �; � 2 Z, � =)� if and only if thereexists  2Zsuh that � = � � (ompare Example 3.1.1). Let p = 2�x, q = �3�Xand f = 5 �X. Then p � q = 5 �X �!r;ef 0 while p 6�!r;ef and q 6�!r;ef . �The redution relation �!r;e in polynomial rings over the integers is known asPan's redution in the literature. The generalization of Gr�obner bases then areweak Gr�obner bases as by ompletion one an ahieve that all ideal elementsredue to zero. Next we present a proper algebrai haraterization of weak rightGr�obner bases related to right redutive standard representations and the redu-tion relation de�ned in De�nition 4.2.43. Notie that it di�ers from De�nition4.2.20 for funtion rings over �elds insofar as we now have to look at the headmonomials of the right ideal instead of the head terms only.De�nition 4.2.46A set F � Fnfog is alled a weak right redutive Gr�obner basis of idealr(F )if HM(idealr(F )nfog) = HM(ff ? m j f 2 F;m 2 M(F);HT(HT(f) ? m) =HT(f ? m) � HT(f)gnfog). �Similar to Lemma 4.2.21 right redutive standard bases and weak right redutiveGr�obner bases oinide.Lemma 4.2.47Let F be a subset of Fnfog. Then F is a right redutive standard basis if andonly if it is a weak right redutive Gr�obner basis.Proof :Let us �rst assume that F is a right redutive standard basis, i.e., every poly-nomial g in idealr(F ) has a right redutive standard representation with respetto F . In ase g 6= o this implies the existene of a polynomial f 2 F and amonomial m 2 M(F) suh that HT(g) = HT(HT(f) ? m) = HT(f ? m) � HT(f)and HM(g) = HM(f ? m)30. Hene HM(g) 2 HM(ff ? m j m 2 M(F); f 2F;HT(HT(f) ? m) = HT(f ? m) � HT(f)gnfog). As the onverse, namelyHM(ff ? m j m 2 M(F); f 2 F;HT(HT(f) ? m) = HT(f ? m) � HT(f)gnfog) �HM(idealr(F )nfog) trivially holds, F is a weak right redutive Gr�obner basis.Now suppose that F is a weak right redutive Gr�obner basis and again let30Notie that if we had generalized the original De�nition 4.2.15 this would not holds.







104 Chapter 4 - Funtion Ringsg 2 idealr(F ). We have to show that g has a right redutive standard repre-sentation with respet to F . This will be done by indution on HT(g). In aseg = o the empty sum is our required right redutive standard representation.Hene let us assume g 6= o. Sine then HM(g) 2 HM(idealr(F )nfog) by the de�-nition of weak right redutive Gr�obner bases we know there exists a polynomialf 2 F and a monomialm 2 M(F) suh that HT(HT(f)?m) = HT(f?m) � HT(f)and HM(g) = HM(f ?m). Let g1 = g� f ?m. Then HT(g) � HT(g1) implies theexistene of a right redutive standard representation for g1 whih an be addedto the multiple f ? m to give the desired right redutive standard representationof g. q.e.d.Corollary 4.2.48Let F a subset of Fnfog be a weak right redutive Gr�obner basis. Then everyg 2 idealr(F ) has a right redutive standard representation in terms of F of theform g =Pni=1 fi ?mi; fi 2 F;mi 2 M(F); n 2 N suh that HT(g) = HT(HT(f1) ?m1) = HT(f1?m1) � HT(f1) and HT(f1?m1) � HT(f2?m2) � : : : � HT(fn?mn).Proof :This follows from inspeting the proof of Lemma 4.2.47. q.e.d.Another onsequene of Lemma 4.2.47 is the haraterization of weak right re-dutive Gr�obner bases in rewriting terms.Lemma 4.2.49A subset F of Fnfog is a weak right redutive Gr�obner basis if for all g 2 idealr(F )we have g ��!rF o.Now to �nd some analogon to s-polynomials in F we again study what polynomialmultiples our when hanging arbitrary representations of right ideal elementsinto right redutive standard representations.Given a generating set F � F of a right ideal in F the key idea in order to har-aterize weak right Gr�obner bases is to distinguish speial elements of idealr(F )whih have representations Pni=1 fi ? mi, fi 2 F , mi 2 M(F) suh that the headterms HT(fi ?mi) are all the same within the representation. Then on one handthe respetive oeÆients HC(fi ? mi) an add up to zero whih means that thesum of the head oeÆients is in an appropriate module in R | m-polynomialsare related to these situations (see also De�nition 4.2.8). If the result is not zerothe sum of the oeÆients HC(fi ?mi) an be desribed in terms of a (weak) rightGr�obner basis in R | g-polynomials are related to these situations. Zero divisors







4.2 Right Ideals and Right Standard Representations 105in the redution ring eliminating the head monomial of a polynomial our as aspeial instane of m-polynomials where F = ffg and f ��, � 2 R are onsidered.The �rst problem is related to solving linear homogeneous equations in R and tothe existene of possibly �nite bases of the respetive modules. In ase we wante�etiveness, we have to require that these bases are omputable.The g-polynomials an suessfully be treated when possibly �nite (weak) rightGr�obner bases exist for �nitely generated right ideals in R. Here, in ase we wante�etiveness, we have to require that the (weak) right Gr�obner bases as well asrepresentations for their elements in terms of the generating set are omputable.Using m- and g-polynomials, weak right Gr�obner bases an again be haraterizedas in Setion 3.5. The de�nition of m- and g-polynomials is inspired by De�nition3.5.5. One main di�erene however is that in funtion rings multiples of onepolynomial by di�erent terms an result in the same head terms for the multipleswhile the multiples themselves are di�erent. These multiples have to be treatedas di�erent ones ontributing to the same overlap although they arise from thesame polynomial. Hene when looking at sets of polynomials we now have toassume that we have multisets whih an ontain polynomials more than one.Additionally, while in De�nition 3.5.5 we an restrit our attention to overlapsequal to the maximal head term of the polynomials involved now we have tointrodue the overlapping term as an additional variable.De�nition 4.2.50Let P = fp1; : : : ; pkg be a multiset of not neessarily di�erent polynomials in Fand t an element in T suh that there are w1; : : : ; wk 2 T with HT(pi ? wi) =HT(HT(pi) ? wi) = t � HT(pi), for all 1 � i � k. Further let i = HC(pi ? wi) for1 � i � k.Let G be a (weak) right Gr�obner basis of f1; : : : ; kg in R with respet to =).Additionally let � = kXi=1 i � ��ifor � 2 G, ��i 2 R, 1 � i � k. Then we de�ne the g-polynomials (Gr�obnerpolynomials) orresponding to p1; : : : ; pk and t by settingg� = kXi=1 pi ? wi � ��i :Notie that HM(g�) = � � t.For the right moduleM = f(Æ1; : : : ; Æk) jPki=1 i�Æi = 0g, let the set fBj j j 2 IMgbe a basis with Bj = (�j;1; : : : ; �j;k) for �j;l 2 R and 1 � l � k. Then we de�ne them-polynomials (module polynomials) orresponding to P and t by settinghj = kXi=1 pi ? wi � �j;i for eah j 2 IM :







106 Chapter 4 - Funtion RingsNotie that HT(hj) � t for eah j 2 IM . �Given a set of polynomials F , the set of orresponding g- and m-polynomials on-tains those whih are spei�ed by De�nition 4.2.50 for eah term t 2 T ful�llingthe respetive onditions. For a set onsisting of one polynomial the orrespond-ing m-polynomials reet the multipliation of the polynomial with zero-divisorsof the head monomial, i.e., by a basis of the annihilator of the head monomial.Notie that given a �nite set of polynomials the orresponding sets of g- andm-polynomials in general an be in�nite.As in Theorem 4.2.23 we an use g- and m-polynomials instead of s-polynomialsto haraterize speial bases in funtion rings. As before we also have to take intoaount right multiples of the generating set as Example 4.2.18 does not requirea �eld as oeÆient domain.Theorem 4.2.51Let F be a set of polynomials in Fnfog. Then F is a weak right Gr�obner basisof idealr(F ) if and only if1. for all f in F and for all m in M(F), f ? m has a right redutive standardrepresentation in terms of F , and2. all g- and m-polynomials orresponding to F as spei�ed in De�nition 4.2.50have right redutive standard representations in terms of F .Proof :In ase F is a weak right Gr�obner basis it is also a right redutive standard basis,and sine the multiples f ? m and the respetive g- and m-polynomials are allelements of idealr(F ) they must have right redutive standard representations.The onverse will be proven by showing that every element in idealr(F ) has aright redutive standard representation in terms of F . Let g 2 idealr(F ) have arepresentation in terms of F of the following form: g =Pmj=1 fj?(wj ��j) suh thatfj 2 F , wj 2 T and �j 2 R. Depending on this representation of g and the well-founded total ordering � on T we de�ne t = max�fHT(fj?(wj ��j)) j 1 � j � mgand K as the number of polynomials fj ? (wj � �j) with head term t. We showour laim by indution on (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or(t0 = t and K 0 < K).Sine by our �rst assumption every multiple fj ? (wj � �j) in this sum has a rightredutive standard representation in terms of F , we an assume that HT(HT(fj)?wj) = HT(fj ? wj) � HT(fj) holds. Moreover, without loss of generality we anassume that the polynomial multiples with head term t are just f1 ? w1; : : : ; fK ?wK. Notie that these assumptions on the representation of g neither hange tnor K.







4.2 Right Ideals and Right Standard Representations 107Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and by ourassumptions our representation is already a right redutive one and we are done.Hene let us assume K > 1.First letPKj=1 HM(fj?(wj ��j)) = o. Then by De�nition 4.2.50 there exists a tuple(�1; : : : ; �K) 2 M , as PKj=1 HC(fj ? wj) � �j = 0. Hene there are Æ1; : : : ; ÆK 2 Rsuh thatPli=1Ai � Æi = (�1; : : : ; �K) for some l 2 N, Ai = (�i;1; : : : ; �i;K) 2 fAj jj 2 IMg, and �j =Pli=1 �i;j �Æi, 1 � j � K. By our assumption there are modulepolynomials hi =PKj=1 fj ? wj ��i;j,1 � i � l, all having right redutive standardrepresentations in terms of F .Then sine KXj=1 fj ? (wj � �j) = KXj=1 fj ? wj � ( lXi=1 �i;j � Æi)= KXj=1 lXi=1 (fj ? wj � �i;j) � Æi= lXi=1 ( KXj=1 fj ? wj � �i;j) � Æi= lXi=1 hi � Æiwe an hange the representation of g to Pli=1 hi � Æi + Pmj=K+1 fj ? (wj � �j)and replae eah hi by its right redutive standard representation in terms of F .Remember that for all hi, 1 � i � l we have HT(hi) � t. Hene, for this newrepresentation we now have maximal term smaller than t and by our indutionhypothesis we have a right redutive standard representation for g in terms of Fand are done.It remains to study the ase where PKj=1HM(fj ? (wj � �j)) 6= 0. Then we haveHT(f1 ? (w1 ��1)+ : : :+ fK ? (wK ��K)) = t = HT(g), HC(g) = HC(f1 ? (w1 ��1)+: : :+ fK ? (wK ��K)) 2 idealr(fHC(f1 ? w1); : : : ;HC(fK ? wK)g) and HM(f1 ? (w1 ��1)+ : : :+fK ?(wK ��K)) = HM(g). Hene HC(g) = � �Æ with Æ 2 R and � 2 G31,G being a (weak) right Gr�obner basis of idealr(fHC(f1 ? w1); : : : ;HC(fK ? wK)g)(ompare De�nition 4.2.50). Let g� be the respetive g-polynomial orrespondingto �. Then the polynomial g0 = g � g� � Æ lies in idealr(F ). Sine the multiple32g� �Æ has a right redutive standard representation in terms of F , sayPlj=1 fj ?mj,for the situationPKj=1 fj ? (wj ��j)� f1 ?m1 all polynomial multiples involved inthis sum have head term t and their head monomials add up to o. Therefore, this31Remember that we assume the redution relation =) on R based on division, see the remarkafter De�nition 4.2.43.32Note that right redutive standard representations are stable under multipliation withoeÆients whih are no zero-divisors of the head oeÆient.







108 Chapter 4 - Funtion Ringssituation again orresponds to an m-polynomial of F . Hene we an apply ourresults from above and get that the polynomial g0 has a smaller representationthan g, espeially the maximal term t0 is smaller. Moreover, we an assume that g0has a right redutive standard representation in terms of F , say g0 =Pni=1 fi? ~mi.Then g =Pni=1 fi ? ~mi + g� � Æ =Pni=1 fi ? ~mi +Plj=1 fj ? mj is a right redutivestandard representation of g in terms of F and we are done. q.e.d.Sine in general we will have in�nitely many g- and m-polynomials related toF , it is important to look for possible loalizations of these situations. We arelooking for onepts similar to those of weak saturation and stable loalizationsin the previous setion. Remember that Lemma 4.2.26 is entral there. It de-sribes when the existene of a right redutive standard representation for somepolynomial implies the existene of a right redutive standard representation fora multiple of the polynomial. Unfortunately we annot establish an analogonto this lemma for right redutive standard representations in F as de�ned inDe�nition 4.2.42.Example 4.2.52Let F be a funtion ring over the integers with T = fX1; : : : ;X7g and multi-pliation ? : T � T 7! F de�ned by the following equations: X1 ? X2 = X4,X4 ? X3 = X5, X2 ? X3 = X6 +X7, X1 ? X6 = 3 �X5, X1 ? X7 = �2 �X5 and elseXi ? Xj = o. Additionally let X5 > X4 > X1 � X2 � X3 � X6 � X7.Then for p = X4, f = X1 and m = X3 we �nd that1. p has a right redutive standard representation in terms of ffg, namelyp = f ? X2.2. HT(p ? m) = HT(HT(p) ? m) � HT(p) as X5 = X4 ? X3 > X4 and for allXi � X4 we have Xi ? X3 � X5.3. p ? m = X5 has no right redutive standard representation in terms of ffgas only X1 ?Xj 6= o for j = f2; 6; 7g, namely X1?X2 = X4, X1 ?X6 = 3 �X5,X1 ? X7 = �2 �X5, and X1 ? (Xj � �) 6= X5 for all j 2 f2; 6; 7g, � 2Z.Notie that these problems are due to the fat that while (X1 ? X2) ? X3 =X1 ? (X2 ? X3) = X5, X1 ? (X2 ? X3) = X1 ? (X6 + X7) = X1 ? X6 + X1 ? X7does not give us a right redutive standard representation in terms of X1 asHT(X1 ? X6) = X5 and HT(X1 ? X7) = X5 (ompare De�nition 4.2.42). Thiswas the ruial point in the proof of Lemma 4.2.26 and it is only ful�lled forthe weaker form of right redutive standard representations in FK as de�ned inDe�nition 4.2.15. �As this example shows an analogon to Lemma 4.2.26 does not hold in our generalase. Note that the trouble arises from the fat that we allow multipliation of







4.2 Right Ideals and Right Standard Representations 109two terms to result in a polynomial. If we restrit ourselves to multipliationswhere multiples of monomials are again monomials, the proof of Lemma 4.2.26arries over and we an look for appropriate loalizations.However, the redution relation de�ned in De�nition 4.2.43 is only one way ofde�ning a redution relation in F and we stated that the main motivation behindit is to link the redution relation with speial standard representations as it isdone in the ase of FK. The question now arises whether this motivation is asappropriate for F as it was for FK. In FK any redution relation based on stabledivisibility of terms an be linked to right redutive standard representations asde�ned in De�nition 4.2.15 and hene the approah is very powerful. It turns outthat for di�erent redution relations in F based on stable right divisibility thisis no longer so. Let us look at another familiar way of generalizing a redutionrelation for F from one de�ned in the redution ring. From now on we require a(not neessarily Noetherian) partial ordering on R: for �; � 2 R, � >R � if andonly if there exists a �nite set B � R suh that � +=)B �. This ordering ensuresthat redution in F is terminating when using a �nite set of polynomials.De�nition 4.2.53Let f; p be two non-zero polynomials in F . We say f right redues p to q ata monomial � � t in one step, denoted by p�!rf q, if there exists m 2 M(F)suh that1. t 2 supp(p) and p(t) = �,2. HT(HT(f) ? m) = HT(f ? m) = t � HT(f),3. � =)HC(f?m) �, with � = HC(f ? m) + � for some � 2 R, and4. q = p � f ? m.We write p�!rf if there is a polynomial q as de�ned above and p is then alledright reduible by f . Further, we an de�ne ��!r ; +�!r and n�!r as usual. Rightredution by a set F � Fnfog is denoted by p�!rF q and abbreviates p�!rf qfor some f 2 F . �Notie that in speifying this redution relation we use a speial instane of� =)HC(f?m) �, namely the ase that � = HC(f ? m) + � for some � 2 R.Moreover, for this redution relation we an still have t 2 supp(q). Hene otherarguments than used in the proof of Lemma 4.2.44 have to be provided to showtermination. It turns out that for in�nite subsets of polynomials F in F theredution relation �!rF need not terminate.Example 4.2.54Let R = Q[fXi j i 2 Ng℄ with X1 � X2 � : : : be the polynomial ring over the







110 Chapter 4 - Funtion Ringsrationals with in�nitely many indeterminates. We assoiate this ring with theredution relation based on divisibility of terms. Let F = R[Y ℄ be our funtionring. Elements of F are polynomials in Y i, i 2 N with oeÆients in R. Thenfor p = X1 � Y and the in�nite set F = ffi = (Xi �Xi+1) � Y j i 2 Ng we get thein�nite redution sequene p�!rf1X2 � Y �!rf2 X3 � Y �!rf3 : : : �However, if we restrit ourselves to �nite sets of polynomials the redution relationis Noetherian.Lemma 4.2.55Let F be a �nite set of polynomials in Fnfog.1. For p; q 2 F p�!rF q implies p � q, in partiular HT(p) � HT(q).2. �!rF is Noetherian.Proof :1. Assuming that the redution step takes plae at a monomial � � t, by De�-nition 4.2.53 we know HM(� � t� f ? m) = � � t whih yields p � p � f ? msine � >R �.2. This follows from 1. and Axiom (A1) as long as only �nite sets of polyno-mials are involved. Sine we have HT(f ? m) = HT(HT(f) ? m) � HT(f)we get HC(f ? m) = HC(f) � HC(HT(f) ? m). Then � =)HC(f?m) � im-plies � =)HC(f). Hene an in�nite redution sequene would give rise toan in�nite redution sequene in R with respet to the �nite set of headoeÆients fHC(f) j f 2 Fg ontraditing our assumption. q.e.d.Now if we try to link the redution relation in De�nition 4.2.53 to speial standardrepresentations, we �nd that this is no longer as natural as in the ases studiedbefore, where for FK we linked the redution relation from De�nition 4.2.27 tothe right redutive standard representations in De�nition 4.2.15 respetively forF the right redution relation from De�nition 4.2.43 to right redutive standardrepresentations as de�ned in De�nition 4.2.42. Hene we laim that for gener-alizing Gr�obner bases to F , the rewriting approah is more suitable. Hene weuse the following de�nition of weak right Gr�obner bases in terms of our redutionrelation.De�nition 4.2.56A set F � Fnfog is alled a weak right Gr�obner basis (with respet to �!r ) ofidealr(F ) if for all g 2 idealr(F ) we have g ��!rF o. �







4.2 Right Ideals and Right Standard Representations 111Every redution sequene g ��!rF o gives rise to a speial representation of g interms of F whih ould be taken as a new de�nition of standard representations.Corollary 4.2.57Let F be a set of polynomials in F and g a non-zero polynomial in idealr(F ) suhthat g ��!rF o. Then g has a representation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(F); n 2 Nsuh that HT(g) = HT(HT(fi) ? mi) = HT(fi ? mi) � HT(fi) for 1 � i � k, andHT(g) � HT(fi ? mi) for all k + 1 � i � n.Proof :We show our laim by indution on n where g n�!rF o. If n = 0 we are done.Else let g 1�!rF g1 n�!rF o. In ase the redution step takes plae at the headmonomial, there exists a polynomial f 2 F and a monomialm 2 M(F) suh thatHT(HT(f) ? m) = HT(f ? m) = HT(g) � HT(f) and HC(g) =)HC(f?m) � withHC(g) = HC(f ?m)+� for some � 2 R. Moreover the indution hypothesis then isapplied to g1 = g�f ?m ��. If the redution step takes plae at a monomial withterm smaller HT(g) for the respetive monomial multiple f ? m we immediatelyget HT(g) � HT(f?m) and we an apply our indution hypothesis to the resultingpolynomial g1. In both ases we an arrange the monomial multiples f ?m arisingfrom the redution steps in suh a way that gives us th desired representation.q.e.d.Notie that on the other hand the existene of suh a representation for a poly-nomial does not imply reduibility. For example take the polynomial ring Z[X℄with Pan's redution. Then with respet to the polynomials F = f2 �X; 3 �Xgthe polynomial g = 5 �X has a representation 5 �X = 2 �X +3 �X of the desiredform but is neither reduible by 2 �X nor 3 �X. This is of ourse a onsequeneof the fat that f2; 3g is no Gr�obner basis in Zwith respet to Pan's redution.In fat Corollary 4.2.57 provides additional information for the head oeÆientof g, namely HC(g) =Pki=1HC(fi) �HC(mi) and this is a standard representationof HC(g) in terms of fHC(fi) j 1 � i � kg in the redution ring R.We an haraterize weak right Gr�obner bases similar to Theorem 4.2.51. Ofourse the g-polynomials in De�nition 4.2.50 depend on the redution relation=) in R whih now is de�ned aording to De�nition 4.2.53. Notie that theharaterization will only hold for �nite sets as the proof requires the redutionrelation to be Noetherian. Additionally we need that the redution ring ful�lls







112 Chapter 4 - Funtion RingsAxiom (A4), i.e., for �; �; ; Æ 2 R, � =)� and � =) Æ imply � =) or� =)Æ33.Theorem 4.2.58Let F be a �nite set of polynomials in Fnfog where the redution ring satis�es(A4). Then F is a weak right Gr�obner basis of idealr(F ) if and only if1. for all f in F and for all m in M(F) we have f ? m ��!rF o, and2. all g- and m-polynomials orresponding to F as spei�ed in De�nition 4.2.50redue to o using F .Proof :In ase F is a weak right Gr�obner basis, sine the multiples f ?m and the respe-tive g- and m-polynomials are all elements of idealr(F ) they must redue to zerousing F .The onverse will be proven by showing that every element in idealr(F ) is re-duible by F . Then as g 2 idealr(F ) and g�!rF g0 implies g0 2 idealr(F ) wehave g ��!rF o. Notie that this only holds in ase the redution relation �!rF isNoetherian. This follows as by our assumption F is �nite (Lemma 4.2.55).Let g 2 idealr(F ) have a representation in terms of F of the following form:g = Pmj=1 fj ? (wj � �j) suh that fj 2 F , wj 2 T , �j 2 R. Depending onthis representation of g and the well-founded total ordering � on T we de�net = max�fHT(fj ? (wj � �j)) j 1 � j � mg and K as the number of polynomialsfj ? (wj ��j) with head term t. We show our laim by indution on (t;K), where(t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and K 0 < K).Sine by our �rst assumption every multiple fj ? (wj � �j) in this sum redues tozero using F and hene has a right representation as de�ned in Corollary 4.2.57,we an assume that HT(HT(fj) ? wj) = HT(fj ? wj) � HT(fj) holds. Moreover,without loss of generality we an assume that the polynomial multiples with headterm t are just f1 ? (w1 � �1); : : : ; fK ? (wK � �K). Notie that these assumptionsneither hange t nor K for our representation of g.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and evenHM(g) = HM(f1 ? (w1 � �1)), implying that g is right reduible at HM(g) by f1.Hene let us assume K > 1.First let PKj=1HM(fj ? (wj � �j)) = o. Then by De�nition 4.2.50 we know(�1; : : : ; �K) 2 M , as PKj=1 HC(fj ? wj) � �j = 0. Hene there are Æ1; : : : ; ÆK 2 Rsuh thatPli=1Ai � Æi = (�1; : : : ; �K) for some l 2 N, Ai = (�i;1; : : : ; �i;K) 2 fAj jj 2 IMg, and �j =Pli=1 �i;j �Æi, 1 � j � K. By our assumption there are module33Notie that (A4) is no basis for loalizing test sets, as this would require that � =)� and� =) Æ imply � =) . Hene even if the redution relation in F satis�es (A4), this does notsubstitute Lemma 4.2.26 or its variants.







4.2 Right Ideals and Right Standard Representations 113polynomials hi =PKj=1 fj ? wj ��i;j ,1 � i � l, all having representations in termsof F as de�ned in Corollary 4.2.57.Then sine KXj=1 fj ? (wj � �j) = KXj=1 fj ? wj � ( lXi=1 �i;j � Æi)= KXj=1 lXi=1 (fj ? wj � �i;j) � Æi= lXi=1 ( KXj=1 fj ? wj � �i;j) � Æi= lXi=1 hi � Æiwe an hange the representation of g to Pli=1 hi � Æi +Pmj=K+1 fj ? (wj � �j) andreplae eah hi by its respetive representation in terms of F . Remember that forall hi, 1 � i � l we have HT(hi) � t. Hene, for this new representation we nowhave maximal term smaller than t and by our indution hypothesis g is reduibleby F and we are done.It remains to study the ase where PKj=1HM(fj ? (wj � �j)) 6= 0. Then we haveHT(f1 ? (w1 ��1)+ : : :+ fK ? (wK ��K)) = t = HT(g), HC(g) = HC(f1 ? (w1 ��1)+: : :+ fK ? (wK ��K)) 2 idealr(fHC(f1 ? w1); : : : ;HC(fK ? wK)g) and even HM(f1 ?(w1 ��1)+: : :+fK ?(wK ��K)) = HM(g). Hene HC(g) is =)-reduible by some �,� 2 G, a (weak) right Gr�obner basis of idealr(fHC(f1?w1); : : : ;HC(fK?wK)g) in Rwith respet to the redution relation =). Let g� be the respetive g-polynomialorresponding to � and t. Then we know that g� ��!rF o. Moreover, we know thatthe head monomial of g� is reduible by some polynomial f 2 F and we assumeHT(g�) = HT(HT(f) ? m) = HT(f ? m) � HT(f) and HC(g�) =)HC(f?m). Then,as HC(g) is =)-reduible by HC(g�), HC(g�) is =)-reduible and (A4) holds, thehead monomial of g is also reduible by some f 0 2 F and we are done. q.e.d.Of ourse this theorem is also true for in�nite F if we an show that for therespetive funtion ring the redution relation is terminating.Now the question arises when the ritial situations in this haraterization anbe loalized to subsets of the respetive sets as in Theorem 4.2.41. Reviewing theProof of Theorem 4.2.41 we �nd that Lemma 4.2.26 is entral as it desribes whenmultiples of polynomials whih have a right redutive standard representation interms of some set F again have suh a representation. As we have seen above,this will not hold for funtion rings over redution rings in general. Now one wayto introdue loalizations would be to restrit the attention to those F satisfying







114 Chapter 4 - Funtion RingsLemma 4.2.26. Then appropriate adaptions of De�nition 4.2.34, 4.2.35 and 4.2.38would allow a loalization of the ritial situations. However, we have stated thatit is not natural to link right redution as de�ned in De�nition 4.2.43 to speialstandard representations. Hene, to give loalizations of Theorem 4.2.58 anotherproperty for F is suÆient:De�nition 4.2.59A set C � S � F is alled a stable loalization of S if for every g 2 S thereexists f 2 C suh that g�!rf o. �In ase F and �!r allow suh stable loalizations, we an rephrase Theorem4.2.58 as follows:Theorem 4.2.60Let F be a �nite set of polynomials in Fnfog where the redution ring satis�es(A4). Then F is a weak right Gr�obner basis of idealr(F ) if and only if1. for all s in a stable loalization of ff ? m j f 2 F ;m 2 M(F)g we haves ��!rF o, and2. for all h in a stable loalization of the g- and m-polynomials orrespondingto F as spei�ed in De�nition 4.2.50 we have h ��!rF o.We have stated that for arbitrary redution relations in F it is not natural to linkthem to speial standard representations. Still, when proving Theorem 4.2.60,we will �nd that in order to hange the representation of an arbitrary right idealelement, De�nition 4.2.59 is not enough to ensure reduibility. However, wean substitute the ritial situation using an analogon of Lemma 4.2.26, whih,while not related to reduibility, in this ase will still be suÆient to make therepresentation smaller.Lemma 4.2.61Let F be a subset of polynomials in Fnfog and f , p non-zero polynomials in F .If p�!rf o and f ��!rF o, then p has a standard representation of the formp = nXi=1 fi ? li; fi 2 F; li 2 M(F); n 2 Nsuh that HT(p) = HT(HT(fi) ? li) = HT(fi ? li) � HT(fi) for 1 � i � k andHT(p) � HT(fi ? li) for all k + 1 � i � n (ompare De�nition 4.2.15).Proof :If p�!rf o then p = f ? m with m 2 M(F) and HT(p) = HT(HT(f) ? m) =HT(f ? m) � HT(f). Similarly f ��!rF o implies f = Pni=1 fi ? mi; fi 2 F;mi 2







4.2 Right Ideals and Right Standard Representations 115M(F); n 2 N suh that HT(f) = HT(HT(fi) ? mi) = HT(fi ? mi) � HT(f1),1 � i � k, and HT(f) � HT(fi ? mi) for all k + 1 � i � n (ompare Corollary4.2.57).Let us �rst analyze fi ? mi ? m with HT(fi ? mi) = HT(f), 1 � i � k.Let T(fi ? mi) = fsi1; : : : ; sikig with si1 � sij , 2 � j � ki, i.e., si1 = HT(fi ? mi) =HT(HT(fi) ? mi) = HT(f). Hene HT(f) ? m = si1 ? m � HT(f) = si1 and assi1 � sij, 2 � j � ki, by De�nition 4.2.13 we an onlude that HT(HT(f) ? m) =HT(si1 ?m) � sij ?m � HT(sij ?m) for 2 � j � ki. This implies HT(HT(fi ?mi) ?m) = HT(fi ? mi ? m). Hene we getHT(f ? m) = HT(HT(f) ? m)= HT(HT(fi ? mi) ? m); as HT(f) = HT(fi ? mi)= HT(fi ? mi ? m)and sine HT(f ?m) � HT(f) � HT(fi) we an onlude HT(fi?mi?m) � HT(fi).It remains to show that the fi ? mi ? m have representations of the desired formin terms of F . First we show that HT(HT(fi) ? mi ? m) � HT(fi). We knowHT(fi)?mi � HT(HT(fi)?mi) = HT(fi ?mi)34 and hene HT(HT(fi)?mi ?m) =HT(HT(fi ? mi) ? m) = HT(fi ? mi ? m) � HT(fi). Then in ase mi ? m 2 M(F)we are done as then fi ? (mi ? m) is a representation of the desired form.Hene let us assume mi ? m = Pkir=1 ~mir, ~mir 2 M(F). Let T(fi) = fti1; : : : ; tiwigwith ti1 � til, 2 � l � wi, i.e., ti1 = HT(fi). As HT(HT(fi) ? mi) � HT(fi) � til,2 � l � wi, again by De�nition 4.2.13 we an onlude that HT(HT(fi) ? mi) �til ? mi � HT(til ? mi), 2 � l � wi, and HT(fi) ? mi � Pwil=2 til ? mi. Thenfor eah sij, 2 � j � ki, there exists til 2 T(fi) suh that s 2 supp(til ? mi).Sine HT(f) � sij and even HT(f) � til ? mi we �nd that either HT(f ? m) �HT((til ? mi) ? m) = HT(til ? (mi ? m)) in ase HT(til ? mi) = HT(fi ? mi) orHT(f?m) � (til?mi)?m = til?(mi?m). Hene we an onlude fi? ~mir � HT(f?m),1 � r � ki and for at least one ~mir we get HT(fi? ~mir) = HT(fi?mi?m) � HT(fi).It remains to analyze the situation for the funtion (Pni=k+1 fi ? mi) ? m. Againwe �nd that for all terms s in the fi ?mi, k +1 � i � n, we have HT(f) � s andwe get HT(f ? m) � HT(s ? m). Hene all polynomial multiples of the fi in therepresentation Pni=k+1Pkij=1 fi ? ~mij, where mi ? m = Pkij=1 ~mij, are bounded byHT(f ? m). q.e.d.Now we are able to prove Theorem 4.2.60.Proof of Theorem 4.2.60:The proof is basially the same as for Theorem 4.2.58. Due to Lemma 4.2.6134Notie that HT(fi) ?mi an be a polynomial and hene we annot onlude HT(fi) ?mi =HT(HT(fi) ? mi).







116 Chapter 4 - Funtion Ringswe an substitute the multiples fj ? mj by appropriate representations withouthanging (t;K). Hene, we only have to ensure that despite testing less polyno-mials we are able to apply our indution hypothesis. Taking the notations fromthe proof of Theorem 4.2.58, let us �rst hek the situation for m-polynomials.LetPKj=1 HM(fj?(wj ��j)) = o. Then by De�nition 4.2.50 we know (�1; : : : ; �K) 2M , as PKj=1 HC(fj ? wj) � �j = 0. Hene there are Æ1; : : : ; ÆK 2 R suh thatPli=1Ai � Æi = (�1; : : : ; �K) for some l 2 N, Ai = (�i;1; : : : ; �i;K) 2 fAj j j 2IMg, and �j = Pli=1 �i;j � Æi, 1 � j � K. There are module polynomialshi = PKj=1 fj ? wj � �i;j,1 � i � l and by our assumption there are polynomi-als h0i in the stable loalization suh that hi�!rh0i o. Moreover, h0i ��!rF o. Thenby Lemma 4.2.61 the m-polynomials hi all have representations bounded by t.Again we get KXj=1 fj ? (wj � �j) = KXj=1 fj ? wj � ( lXi=1 �i;j � Æi)= KXj=1 lXi=1 (fj ? wj � �i;j) � Æi= lXi=1 ( KXj=1 fj ? wj � �i;j) � Æi= lXi=1 hi � Æiand we an hange the representation of g to Pli=1 hi � Æi +Pmj=K+1 fj ? (wj � �j)and replae eah hi by the respetive speial standard representation in terms ofF . Remember that for all hi, 1 � i � l we have HT(hi) � t. Hene, for this newrepresentation we now have maximal term smaller than t and by our indutionhypothesis g is reduible by F and we are done.It remains to study the ase where PKj=1HM(fj ? (wj � �j)) 6= 0. Then we haveHT(f1 ? (w1 � �1) + : : : + fK ? (wK � �K)) = t = HT(g), HC(g) = HC(f1 ? (w1 ��1) + : : : + fK ? (wK � �K)) 2 idealr(fHC(f1 ? w1); : : : ;HC(fK ? wK)g) and evenHM(f1 ? (w1 ��1) + : : :+ fK ? (wK ��K)) = HM(g). Hene HC(g) is =)-reduibleby some �, � 2 G, G being a (weak) right Gr�obner basis of idealr(fHC(f1 ?w1); : : : ;HC(fK ? wK)g) in R with respet to the redution relation =). Letg� be the respetive g-polynomial orresponding to � and t. Then we know thatg��!rg0� o for some g0� in the stable loalization and g0� ��!rF o. Moreover, we knowthat the head monomial of g0� is reduible by some polynomial f 2 F and weassume HT(g�) = HT(HT(f) ?m) = HT(f ?m) � HT(f) and HC(g�) =)HC(f?m).Then, as HC(g) is =)-reduible by HC(g�), HC(g�) is =)-reduible by HC(g0�),HC(g0�) is =)-reduible to zero and (A4) holds, the head monomial of g is also







4.2 Right Ideals and Right Standard Representations 117reduible by some f 0 2 F and we are done. q.e.d.Again, if for in�nite F we an assure that the redution relation is Noetherian,the proof still holds.4.2.3 Funtion Rings over the IntegersIn the previous setion we have seen that for the redution relations for F asde�ned in De�nition 4.2.43 and 4.2.53 the Translation Lemma no longer holds.This is due to the fat that the �rst de�nition is based on divisibility in R andhene too weak and the seond de�nition is based on the abstrat notion of theredution relation =) and hene there is not enough information on the redutionstep involving the oeÆient.When studying speial redution rings where we have more information on thespei� redution relation =) the situation often an be improved. Here we wantto go into the details for the ase that R is the ring of the integersZ. Rememberthat there are various ways of de�ning a redution relation for the integers. InExample 3.1.1 two possibilities are presented. Here we want to use the seond onebased on division with remainders in order to introdue a redution relation toFZ. We follow the ideas presented in [MR93b℄ for haraterizing pre�x Gr�obnerbases in monoid rings Z[M℄ whereM is presented by a �nite onvergent stringrewriting system.In order to use elements of FZas rules for a redution relation we need an orderingon Z. We speify a total well{founded ordering on Zas follows35:� <Z � i� 8>>><>>>: � � 0 and � < 0� � 0; � > 0 and � < �� < 0; � < 0 and � > �and � �Z � i� � = � or � <Z �. Hene we get 0 �Z 1 �Z 2 �Z 3 �Z: : : �Z �1 �Z �2 �Z �3 �Z : : :. Then we an make the following importantobservation: Let  2 N. We all the positive numbers 0; : : : ; �1 the remaindersof . Then for eah Æ 2 Zthere are unique �; � 2Zsuh that Æ = � �  + � and� is a remainder of . We get � <  and in ase Æ > 0 and � 6= 0 even  � Æ.Further  does not divide �1 � �2, if �1; �2 are di�erent remainders of .As we will later on only use polynomials with head oeÆients in N for redution,we will mainly require the part of the ordering on N whih then oinides with35If not stated otherwise < is the usual ordering on Z, i.e. : : : < �3 < �2 < �1 < 0 < 1 <2 < 3 : : :.







118 Chapter 4 - Funtion Ringsthe natural ordering on this set. Then we will drop the suÆx36.This ordering <Z an be used to indue an ordering on FZas follows: for twoelements f; g in F we de�ne f � g i� HT(f) � HT(g) or ((HT(f) = HT(g) andHC(f) >Z HC(g)) or ((HM(f) = HM(g) and RED(f) � RED(g)).The redution relation presented in De�nition 4.2.53 now an be adapted to thisspeial ase: Let =) be our redution relation on Zwhere � =) �, if  > 0and for some Æ 2Zwe have � =  � Æ+ � with 0 � � < , i.e. � is the remainderof � modulo .De�nition 4.2.62Let p, f be two non-zero polynomials in FZ. We say f right redues p to q ata monomial � � t in one step, i.e. p�!rf q, if there exists s 2 T(FZ) suh that1. t 2 supp(p) and p(t) = �,2. HT(HT(f) ? s) = HT(f ? s) = t � HT(f),3. � �ZHC(f ? m) > 0 and � =)HC(f?s) Æ where � = HC(f ? s) � � + Æ with�; Æ 2Z, 0 � Æ < HC(f ? s), and4. q = p � f ? m where m = � � s.We write p�!rf if there is a polynomial q as de�ned above and p is then alledright reduible by f . Further, we an de�ne ��!r ; +�!r and n�!r as usual. Rightredution by a set F � Fnfog is denoted by p�!rF q and abbreviates p�!rf qfor some f 2 F . �As before, for this redution relation we an still have t 2 supp(q). Hene otherarguments than those used in the proof of Lemma 4.2.44 have to be used to showtermination. The important part now is that if we still have t 2 supp(q) then itsoeÆient will be smaller aording to our ordering <Zhosen for Zand sinethis ordering is well-founded we are done. Notie that in ontrary to Lemma4.2.55 we do not have to restrit ourselves to �nite sets of polynomials in orderto ensure termination.The additional information we have on the oeÆients before and after the re-dution step now enables us to prove an analogon of the Translation Lemma forfuntion rings over the integers. The �rst and seond part of the lemma are onlyneeded to prove the essential third part.Lemma 4.2.63Let F be a set of polynomials in FZand p; q; h polynomials in FZ.36In the literature other orderings on the integers are used by Buhberger and Stifter [Sti87℄and Kapur and Kandri-Rody [KRK88℄. They then have to onsider s- and t-polynomials asritial situations.







4.2 Right Ideals and Right Standard Representations 1191. Let p � q�!rF h suh that the redution step takes plae at the monomial� � t and we additionally have t 62 supp(h). Then there exist p0; q0 2 FZsuhthat p ��!rF p0 and q ��!rF q0 and h = p0 � q0.2. Let o be the unique normal form of p with respet to F and t = HT(p).Then there exists a polynomial f 2 F suh that p�!rf p0 and t 62 supp(p0).3. Let o be the unique normal form of p � q with respet to F . Then thereexists g 2 FZsuh that p ��!rF g and q ��!rF g.Proof :1. Let p � q�!rF h at the monomial � � t, i.e., h = p � q � f ? m for somem = � � s 2 M(FZ) suh that HT(HT(f) ? s) = HT(f ? s) = t � HT(f)and HC(f ? s) > 0. Remember that � is the oeÆient of t in p � q.Then as t 62 supp(h) we know � = HC(f ? m). Let �1 respetively �2be the oeÆients of t in p respetively q and �1 = HC(f ? m) � �1 + 1respetively �2 = HC(f ? m) � �2 + 2 for some �1; �2; 1; 2 2 Zwhere0 � 1; 2 < HC(f ? s) � HC(f ? m). Then � = HC(f ? m) = �1 � �2 =HC(f ?m) � (�1��2)+ (1� 2), and as 1� 2 is no multiple of HC(f ?m)we have 1 � 2 = 0 and hene �1 � �2 = 1. We have to distinguish twoases:(a) �1 6= 0 and �2 6= 0: Then p�!rF p�f ?m��1 = p0, q�!rF q�f ?m��2 =q0 and p0 � q0 = p � f ? m � �1 � q + f ? m � �2 = p � q � f ? m = h.(b) �1 = 0 and �2 = �1 (the ase �2 = 0 and �1 = 1 being symmetri):Then p0 = p, q�!rF q � f ? m � �2 = q + f ? m � � = q0 and p0 � q0 =p � q � f ? m = h.2. Sine p ��!rF o, HM(p) = � � t must be F -reduible. Let f1; : : : ; fk 2 F be allpolynomials in F suh that � � t is reduible by them. Let m1; : : :mk be therespetive monomials involved in possible redution steps. Moreover, let = min1�i�kfHC(fi ?mi)g and without loss of generality HM(f ?m) =  � tfor some f 2 F , HT(HT(f) ? m) = HT(f ? m) � HT(f). We laim thatfor p�!rf1 p � f ? m = p0 we have t 62 supp(p0). Suppose HT(p0) = t. Thenby our de�nition of redution we must have 0 < HC(p0) < HC(f ? m). Butthen p0 would no longer be F -reduible ontraditing our assumption thato is the unique normal form of p.3. Sine o is the unique normal form of p � q by 2. there exists a redutionsequene p � q�!rfi1 h1�!rfi2 : : : �!rfik o suh that for the head terms weget HT(p�q) � HT(h1) � : : :. We show our laim by indution on k, where







120 Chapter 4 - Funtion Ringsp � q k�!rF o is suh a redution sequene. In the base ase k = 0 there isnothing to show as then p = q. Hene, let p � q�!rF h k�!rF o. Then by1. there are polynomials p0; q0 2 FZsuh that p ��!rF p0 and q ��!rF q0 andh = p0 � q0. Now the indution hypothesis for p0 � q0 k�!rF o yields theexistene of a polynomial g 2 FZsuh that p ��!rF g and q ��!rF g. q.e.d.Hene weak Gr�obner bases are in fat Gr�obner bases and an be haraterized asfollows:De�nition 4.2.64A set F � FZnfog is alled a (weak) right Gr�obner basis of idealr(F ) if for allg 2 idealr(F ) we have g ��!rF o. �Corollary 4.2.65Let F be a set of polynomials in FZand g a non-zero polynomial in idealr(F )suh that g ��!rF o. Then g has a representation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(FZ); n 2 Nsuh that HT(g) = HT(HT(fi) ? mi) = HT(fi ? mi) � HT(fi), 1 � i � k, andHT(g) � HT(fi ? mi) = HT(HT(fi) ? mi) for all k + 1 � i � n.Proof :We show our laim by indution on n where g n�!rF o. If n = 0 we are done. Elselet g 1�!rF g1 n�!rF o. In ase the redution step takes plae at the head monomial,there exists a polynomial f 2 F and a monomial m = � � s 2 M(F) suh thatHT(HT(f) ? s) = HT(f ? s) = HT(g) � HT(f) and HC(g) =)HC(f?s) Æ withHC(g) = HC(f ? s) � � + Æ for some �; Æ 2 Z, 0 � Æ < HC(f ? s). Moreover theindution hypothesis then is applied to g1 = g � f ? m. If the redution steptakes plae at a monomial with term smaller HT(g) for the respetive monomialmultiple f ? m we immediately get HT(g) � HT(f ? m) and we an apply ourindution hypothesis to the resulting polynomial g1. In both ases we an arrangethe monomial multiples f ?m arising from the redution steps in suh a way thatgives us the desired representation. q.e.d.We an even state that HC(g) �=)fHC(fi?mi)j1�i�kg 0. Now right Gr�obner basesan be haraterized using the onept of s-polynomials ombined with the teh-nique of saturation whih is neessary in order to desribe the whole right idealongruene by the redution relation.







4.2 Right Ideals and Right Standard Representations 121De�nition 4.2.66Let p1; p2 be two polynomials in FZ. If there are respetive terms t; u1; u2 2 Tsuh that HT(HT(pi) ? ui) = HT(pi ? ui) = t � HT(pi) let HC(pi ? ui) = i.Assuming 1 � 2 > 037, there are �; Æ 2 Zsuh that 1 = 2��+Æ and 0 � Æ < 2and we get the following s-polynomialspolr(p1; p2; t; u1; u2) = p2 ? u2 � � � p1 ? u1:The set SPOL(fp1; p2g) then is the set of all suh s-polynomials orresponding top1 and p2. �These sets an be in�nite38.Theorem 4.2.67Let F be a set of polynomials in FZnfog. Then F is a right Gr�obner basis ofidealr(F ) if and only if1. for all f in F and for all m in M(FZ) we have f ? m ��!rF o, and2. all s-polynomials orresponding to F as spei�ed in De�nition 4.2.66 redueto o using F .Proof :In ase F is a right Gr�obner basis, sine the multiples f ? m and the respetives-polynomials are all elements of idealr(F ) they must redue to zero using F .The onverse will be proven by showing that every element in idealr(F ) is reduibleby F . Then as g 2 idealr(F ) and g�!rF g0 implies g0 2 idealr(F ) we have g ��!rF o.Notie that this is suÆient as the redution relation �!rF is Noetherian.Let g 2 idealr(F ) have a representation in terms of F of the following form:g = Pmj=1 fj ? wj � �j suh that fj 2 F , wj 2 T and �j 2 Z. Depending onthis representation of g and the well-founded total ordering � on T we de�net = max�fHT(fj ? wj) j 1 � j � mg, K as the number of polynomials fj ? wjwith head term t, and M = ffHC(fi ? wi) j HT(fj ? wj) = tgg a multiset in Z.We show our laim by indution on (t;M), where (t0;M 0) < (t;M) if and only ift0 � t or (t0 = t and M 0 �M)39.Sine by our �rst assumption every multiple fj ? wj in this sum redues to zerousing F and hene has a representation as spei�ed in Corollary 4.2.65, we anassume that HT(HT(fj) ? wj) = HT(fj ? wj) � HT(fj) holds. Moreover, without37Notie that i > 0 an always be ahieved by studying the situation for �pi in ase wehave HC(pi ? ui) < 0.38This is due to the fat that in general we annot always �nd �nite loations for t. Onewell-studied �eld are monoid rings.39We de�ne M 0 �M if M an be transformed into M 0 by substituting elements in M withsets of smaller elements (with respet to our ordering on the integers.







122 Chapter 4 - Funtion Ringsloss of generality we an assume that the polynomial multiples with head term tare just f1 ? w1; : : : ; fK ? wK and additionally we an assume HC(fj ? wj) > 040.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and evenHM(g) = HM(f1 ? w1 � �1), implying that g is right reduible at HM(g) by f1.Hene let us assume K > 1.Without loss of generality we an assume that HC(f1 ?w1) � HC(f2 ?w2) > 0 andthere are �; � 2Zsuh that HC(f2 ? w2) ��+� = HC(f1 ? w1) and HC(f2 ? w2) >� � 0. Sine t = HT(f1 ? w1) = HT(f2 ? w2) by De�nition 4.2.66 we have ans-polynomial spolr(f1; f2; t; w1; w2) = f2?w2 ���f1?w1. If spolr(f1; f2; t; w1; w2) 6=o41 then spolr(f1; f2; t; w1; w2) ��!rF o implies spolr(f1; f2; t; w1; w2) =Pki=1 Æi �hi ?vi, Æi 2 Z, hi 2 F , vi 2 T where this sum is a representation in the sense ofCorollary 4.2.65 with terms bounded by HT(spolr(f1; f2; t; w1; w2)) � t. Thisgives usg = f1 ? w1 � �1 + f2 ? w2 � �2 + mXj=3 fj ? wj � �j (4.5)= f1 ? w1 � �1 + f2 ? w2 � �1 � � � f2 ? w2 � �1 � �| {z }=o +f2 ? w2 � �2 + mXj=3 fj ? wj � �j= f2 ? w2 � (�1 � �+ �2)� (f2 ? w2 � �� f1 ? w1| {z }=spolr(f1;f2;t;w1;w2) ��1 + mXj=3 fj ? wj � �j= f2 ? w2 � (�1 � �+ �2)� ( kXi=1 Æi � hi ? vi) � �1 + mXj=3 fj ? wj � �jand depending on this new representation of g we de�ne t0 = max�fHT(fj ?wj);HT(hj ? vj) j fj; hj appearing in the new representation g, and M 0 =ffHC(fi ? wi);HC(hj ? vj) j HT(fj ? wj) = HT(hj ? vj) = t0gg and we eitherget t0 � t and have a smaller representation for g or in ase t0 = t we have todistinguish two ases1. �1 � �+ �2 = 0.ThenM 0 =M�ffHC(f1?w1);HC(f2?w2)gg[ffHC(hj ?vj) j HT(hj ?vj) =tgg. As those polynomials hj with HT(hj ? vj) = t are used to right reduethe monomial � � t = HM(spolr(f1; f2; t; w1; w2)) we know that for them wehave 0 < HC(hj ? vj) � � < HC(f2 ? w2) � HC(f1 ? w1). Hene M 0 � Mand we have a smaller representation for g.40This an easily be ahieved by adding �f to F for all f 2 F and using (�fj) ? wj in aseHC(fj ? wj) < 0.41In ase spolr(f1; f2; t; w1; w2) = o the proof is similar. We just have to substitute o in theequations below whih immediately gives us a smaller representation of g.







4.2 Right Ideals and Right Standard Representations 1232. �1 � �+ �2 6= 0.Then M 0 = (M � ffHC(f1 ? w1)gg) [ ffHC(hj ? vj) j HT(hj ? vj) = tgg.Again M 0 �M and we have a smaller representation for g.Notie that the ase t0 = t and M 0 �M annot our in�nitely often but has toresult in either t0 < t or will lead to t0 = t and K = 1 and hene to reduibilityby �!rF . q.e.d.Now the question arises when the ritial situations in this haraterization anbe loalized to subsets of the respetive sets as in Theorem 4.2.41. Reviewing theProof of Theorem 4.2.41 we �nd that Lemma 4.2.26 is entral as it desribes whenmultiples of polynomials whih have a right redutive standard representation interms of some set F again have suh a representation. As we have seen before,this will not hold for funtion rings over redution rings in general. As in Setion4.2.2, to give loalizations of Theorem 4.2.67 the onept of stable subsets issuÆient:De�nition 4.2.68A set C � S � FZis alled a stable loalization of S if for every g 2 S thereexists f 2 C suh that g�!rf o. �Stable loalizations for the sets of s-polynomials again arise from the appropriatesets of least ommon multiples as presented on page 4.2.1. In ase FZand �!rallow suh stable loalizations, we an rephrase Theorem 4.2.67 as follows:Theorem 4.2.69Let F be a set of polynomials in FZnfog. Then F is a right Gr�obner basis ofidealr(F ) if and only if1. for all s in a stable loalization of ff ? m j f 2 FZ;m 2 M(FZ)g we haves ��!rF o, and2. for all h in a stable loalization of the s-polynomials orresponding to F asspei�ed in De�nition 4.2.66 we have h ��!rF o.When proving Theorem 4.2.69, we an substitute the ritial situation using ananalogon of Lemma 4.2.26, whih will be suÆient to make the representationused in the proof smaller. It is a diret onsequene of Lemma 4.2.61.Corollary 4.2.70Let F � FZnfog and f , p non-zero polynomials in FZ. If p�!rf o and f ��!rF o,then p has a representation of the formp = nXi=1 fi ? li; fi 2 F; li 2 M(FZ); n 2 N







124 Chapter 4 - Funtion Ringssuh that HT(p) = HT(HT(fi) ? li) = HT(fi ? li) � HT(fi) for 1 � i � k andHT(p) � HT(fi ? li) for all k + 1 � i � n (ompare De�nition 4.2.15).Proof Theorem 4.2.69:The proof is basially the same as for Theorem 4.2.67. Due to Corollary 4.2.70we an substitute the multiples fj ?wj by appropriate representations. Hene, weonly have to ensure that despite testing less polynomials we are able to apply ourindution hypothesis. Taking the notations from the proof of Theorem 4.2.67, letus hek the situation for K > 1.Without loss of generality we an assume that HC(f1 ?w1) � HC(f2 ?w2) > 0 andthere are �; � 2Zsuh that HC(f2 ? w2) ��+� = HC(f1 ? w1) and HC(f2 ? w2) >� � 0. Sine t = HT(f1 ? w1) = HT(f2 ? w2) by De�nition 4.2.66 we have an s-polynomial h 2 SPOL(f1; f2) and m 2 M(FZ) suh that h?m = ��f2?w2�f1?w1.If h 6= o42 then by Corollary 4.2.70 f2 ? w2 ��� f1 ? w1�!rh o and h ��!rF o implyf2 ? w2 � � � f1 ? w1 = Pki=1 hi ? vi � Æi, Æi 2 Z, hi 2 F , vi 2 T where thissum is a representation in the sense of Corollary 4.2.65 with terms bounded byHT(h ? m) � t. As in the proof of Theorem 4.2.67 we now an use this boundedrepresentation to get a smaller representation of g and are done. q.e.d.We lose this subsetion by outlining how di�erent strutures known to allow�nite Gr�obner bases an be interpreted as funtion rings. Using the respetiveinterpretations the terminology an be adapted at one to the respetive stru-tures and in general the resulting haraterizations of Gr�obner bases oinidewith the results known from literature.Polynomial RingsA ommutative polynomial ring Z[x1; : : : ; xn℄ is a funtion ring aording to thefollowing interpretation:� T is the set of terms fxi11 : : : xinn j i1; : : : ; in 2 Ng.� � an be any admissible term ordering on T . For the redutive ordering �we have t � s if s divides t as as term.� Multipliation ? is spei�ed by the ation on terms, i.e. ? : T � T �! Twhere xi11 : : : xinn ? xj11 : : : xjnn = xi1+j11 : : : xin+jnn .We do not need the onept of weak saturation.42In ase h = o the proof is similar. We just have to substitute o in the equations belowwhih immediately gives us a smaller representation of g.







4.2 Right Ideals and Right Standard Representations 125Sine the integers are an instane of eulidean domains, similar redutions tothose given by Kandri-Rodi and Kapur in [KRK88℄ arise. A stable loalizationof Cs(p; q) is already provided by the tuple orresponding to the least ommonmultiple of the terms HT(p) and HT(q). In ontrast to the s- and t-polynomialsstudied by Kandri-Rodi and Kapur, we restrit ourselves to s-polynomials asdesribed in De�nition 4.2.66.Sine this struture is Abelian, one-sided and two-sided ideals oinide. Buh-berger's Algorithm provides an eÆtive proedure to ompute �nite Gr�obnerbases.Non-ommutative Polynomial RingsA non-ommutative polynomial ring Z[fx1; : : : ; xng�℄ is a funtion ring aordingto the following interpretation:� T is the set of words on fx1; : : : ; xng.� � an be any admissible ordering on T . For the redutive ordering � wean hose t � s if s is a subword of t.� Multipliation ? is spei�ed by the ation on words whih is just onate-nation.We do not need the onept of weak saturation. A stable loalization of Cs(p; q)is already provided by the tuples orresponding to word overlaps resulting fromthe equations u1HT(p)v1 = HT(q), u2HT(q)v2 = HT(p), u3HT(p) = HT(q)v3respetively u4HT(q) = HT(p)v4 with the restrition that ju3j < jHT(q)j andju4j < jHT(p)j, ui; vi 2 T . The oeÆients arise as desribed in De�nition 4.2.66.This struture is not Abelian. For the ase of one-sided ideals �nite Gr�obner basesan be omputed. The ase of two-sided ideals only allows an enumerating proe-dure. This is not surprising as the word problem for monoids an be redued to theproblem of omputing the respetive Gr�obner bases (see e.g. [Mor87, MR98d℄).Monoid and Group RingsA monoid or group ring Z[M℄ is a funtion ring aording to the following inter-pretation:� T is the monoid or group M. In the ases studied by us as well as in[Ros93, Lo96℄, it is assumed that the elements of the monoid or grouphave a ertain form. This presentation is essential in the approah. Wewill assume that the given monoid or group is presented by a onvergentsemi-Thue system.







126 Chapter 4 - Funtion Rings� � will be the ompletion ordering indued from the presentation ofM toM and hene to T . The redutive ordering � depends on the hoie of thepresentation.� Multipliation ? is spei�ed by lifting the monoid or group operation.The onept of weak saturation and the hoie of stable loalizations of Cs(p; q)again depend on the hoie of the presentation. More on this topi an be foundin [Rei95℄.4.3 Right F-ModulesThe onept of modules arises naturally as a generalization of the onept ofan ideal in a ring: Remember that an ideal of a ring is an additive subgroupof the ring whih is additionally losed under multipliation with ring elements.Extending this idea to arbitrary additive groups then gives us the onept ofmodules.In this setion we turn our attention to right modules, but left modules an bede�ned similarly and all results arry over (with the respetive modi�ations ofthe terms \right" and \left"). Let F be a funtion ring with unit 1.Example 4.3.1Let us provide some examples for right F -modules.1. Any right ideal in F is of ourse a right F -module.2. The set M = f0g with right salar multipliation 0 ? f = 0 is a rightF -module alled the trivial right F -module.3. Given a funtion ring F and a natural number k, let Fk = f(f1; : : : ; fk) jfi 2 Fg be the set of all vetors of length k with oordinates in F . Obvi-ously Fk is an additive ommutative group with respet to ordinary vetoraddition. Moreover, Fk is a right F -module with right salar multipliation? : Fk �F �! Fk de�ned by (f1; : : : ; fk) ? f = (f1 ? f; : : : ; fk ? f). �De�nition 4.3.2A subset of a right F -module M whih is again a right F -module is alled aright submodule ofM. �For example any right ideal of F is a right submodule of the right F -module F1.Provided a set of vetors S �M the set fPsi=1mi?gi j s 2 N; gi 2 F ;mi 2 Sg isa right submodule ofM. This set is denoted as hSir and S is alled its generating







4.3 Right F-Modules 127set. If hSir = M then S is a generating set of the right module itself. If S is�nite thenM is said to be �nitely generated. A generating set is alled linearlyindependent or a basis if for all s 2 N, pairwise di�erent m1; : : : ;ms 2 S andg1; : : : ; gs 2 F , Psi=1mi ? gi = 0 implies g1 = : : : = gs = o. A right F -module isalled free if it has a basis. The rightF -moduleFk is free and one suh basis is theset of unit vetors e1 = (1; o; : : : ; o); e2 = (o;1; o; : : : ; o); : : : ; ek = (o; : : : ; o;1).Using this basis the elements of Fk an be written uniquely as f = Pki=1 ei ? fiwhere f = (f1; : : : ; fk). Moreover, Fk has speial properties similar to the speialase of K[x1; : : : ; xn℄ and we will ontinue to state some of them.Theorem 4.3.3Let F be right Noetherian. Then every right submodule of Fk is �nitely gener-ated.Proof :Let S be a right submodule of Fk. We show our laim by indution on k. For k =1 we �nd that S is in fat a right ideal in F and hene by our hypothesis �nitelygenerated. For k > 1 let us look at the set I = ff1 j (f1; : : : ; fk) 2 Sg. Thenagain I is a right ideal in F and hene �nitely generated. Let fg1; : : : ; gs j gi 2 Fgbe a generating set of I. Choose g1; : : : ;gs 2 S suh that the �rst oordinate of giis gi. Similarly, the set f(f2; : : : ; fk) j (o; f2; : : : ; fk) 2 Sg is a submodule of Fk�1and hene �nitely generated by some set f(ni2; : : : ; nik); 1 � i � wg. Then the setfg1; : : : ;gsg [ fni = (o; ni2; : : : ; nik) j 1 � i � wg is a generating set for S. To seethis assumem = (m1; : : : ;mk) 2 S. Then m1 =Psi=1 gi ?hi for some hi 2 F andm0 = m�Psi=1 gi ? hi 2 S with �rst oordinate o. Hene m0 = Pwi=1 ni ? li forsome li 2 F giving rise tom =m0 + sXi=1 gi ? hi = wXi=1 ni ? li + sXi=1 gi ? hi: q.e.d.Fk is alled right Noetherian if and only if all its right submodules are �nitelygenerated.If F is a right redution ring, results on the existene of right Gr�obner bases forthe right submodules arry over from modi�ations of the proofs in Setion 4.3.A natural redution relation using the right redution relation in F denoted by=) an be de�ned using the representation as (module) polynomials with respetto the basis of unit vetors as follows:De�nition 4.3.4Let f = Pki=1 ei ? fi, p = Pki=1 ei ? pi 2 Fk. We say that f redues p to q ates ? ps in one step, denoted by p �!f q, if







128 Chapter 4 - Funtion Rings1. pj = o for 1 � j < s,2. ps =)fs qs,3. q = p�Pni=1 f � di= (0; : : : ; 0; qs; ps+1 �Pni=1 fs+1 � d; : : : ; pk �Pni=1 fk � d). �Notie that item 2 of this de�nition is dependant on the de�nition of the redutionrelation =) in F . If we assume that the redution relation is the one spei�edin De�nition 4.2.43 we get ps = qs + fs � d, d 2 M(F), but there are otherpossibilities. Reviewing the introdution of right modules to redution rings weould substitute 2. by ps = qs + fs � d, d 2 F as well (ompare De�nition 3.4.8).To show that our redution relation is terminating we have to extend the orderingfrom F to Fk. For two elements p = (p1; : : : ; pk), q = (q1; : : : ; qk) 2 Fk we de�nep � q if and only if there exists 1 � s � k suh that pi = qi, 1 � i < s, andps � qs.Lemma 4.3.5Let F be a �nite set of module polynomials in Fk.1. For p;q 2 Fk p�!F q implies p � q.2. �!F is Noetherian in ase =)Fi is for 1 � i � k and Fi = ffi j f =(f1; : : : ; fk) 2 Fg.43.Proof :1. Assuming that the redution step takes plae at es ? ps, by De�nition 4.3.4we know ps =)fs qs and ps > qs implying p � q.2. This follows from 1. and Axiom (A1). q.e.d.De�nition 4.3.6A subset B of Fk is alled a right Gr�obner basis of the right submoduleS = hBir, if � !B = �S and �!B is onvergent. �For any redution relation in F ful�lling the Axioms (A1){(A3), the followingtheorem holds.43Notie that Fi � F .







4.3 Right F-Modules 129Theorem 4.3.7If in (F ; =) ) every �nitely generated right ideal has a �nite right Gr�obner basis,then the same holds for �nitely generated right submodules in (Fk;�!).Proof :Let S = hfs1; : : : ; sngi be a �nitely generated right submodule of Fk. We showour laim by indution on k. For k = 1 we �nd that S is in fat a �nitelygenerated right ideal in F and hene by our hypothesis must have a �nite rightGr�obner basis. For k > 1 let us look at the set I = ff1 j (f1; : : : ; fk) 2 Sg whihis in fat the right ideal generated by fsi1 j si = (si1; : : : ; sik); 1 � i � ng. HeneI must have a �nite right Gr�obner basis H = fg1; : : : ; gs j gi 2 Fg. Chooseg1; : : : ;gs 2 S suh that the �rst oordinate of gi is gi. Similarly the set S 0 =f(f2; : : : ; fk) j (o; f2; : : : ; fk) 2 Sg is a submodule in Fk�1 whih by our indutionhypothesis then must have a �nite right Gr�obner basis f(~gi2; : : : ; ~gik); 1 � i � wg.Then the set G = fg1; : : : ;gsg [ f~gi = (o; ~gi2; : : : ; ~gik) j 1 � i � wg is a rightGr�obner basis for S. As shown in the proof of Theorem 4.3.3, G is a generatingset for S. It remains to show that G is in fat a right Gr�obner basis.First we have to show � !G = �S . By the de�nition of the redution relation inFk we immediately �nd � !G � �S. To see the onverse let p = (p1; : : : ; pk) �Sq = (q1; : : : ; qk). Then p1 �hfs1i jsi=(si1;:::;sik);1�i�ngir q1 and hene by the de�nition ofG we get p1 � !fgi1jgi=(gi1;:::;gik);1�i�sg q1. But this gives us p � !H p+Psi=1 gi?ri =p0 = (q1; p20; : : : ; pk 0), ri 2 F , and we get (q1; p20; : : : ; pk0) �S (q1; q2; : : : ; qk) andhene (q1; p20; : : : ; pk0) � (q1; q2; : : : ; qk) = (o; p20 � q2; : : : ; pk 0 � qk) 2 S implying(p20� q2; : : : ; pk0� qk) 2 S 0 and (o; p20� q2; : : : ; pk0� qk) =Pwi=1 ~gi ? �i for �i 2 F .Hene (q1; p20; : : : ; pk0) and (q1; q2; : : : ; qk) = (q1; p20; : : : ; pk 0)�(o; p20�q2; : : : ; pk 0�qk) = (q1; p20; : : : ; pk0)�Pwi=1 ~gi ? �i must be joinable by f~gi j 1 � i � wg as therestrition of this set without the �rst oordinate is a right Gr�obner basis of S 0.Sine the redution relation using the �nite set G is terminating we only haveto show loal onuene. Let us assume there are p, q1, q2 2 Fk suh thatp �!G q1 and p �!G q2. Then by the de�nition of G the �rst oordinates q11and q21 are joinable to some element say s by H = fg1; : : : ; gsg giving rise to theelements p1 = q1 +Psi=1 gi ? hi and p2 = q2 +Psi=1 gi ? ~hi with �rst oordinates. As before, p1 = p2 +Pwi=1 ~gi ? �i and hene p1 and p2 must be joinable byf~gi j 1 � i � wg. q.e.d.Now given a right submodule S ofM, we an de�neM=S = ff + S j f 2 Mg.Then with addition de�ned as (f + S) + (g + S) = (f + g) + S the set M=Sis an Abelian group and an be turned into a right F -module by the ation(f + S) ? g = f ? g + S. M=S is alled the right quotient module ofM by S.As usual this quotient an be related to homomorphisms. The results arry overfrom ommutative module theory as an be found in [AL94℄. Reall that for







130 Chapter 4 - Funtion Ringstwo right F -modules M and N , a funtion � :M �! N is a right F -modulehomomorphism if �(f + g) = �(f) + �(g) for all f ;g 2 Mand �(f) ? g = �(f ? g) for all f 2 M; g 2 F :The homomorphism is alled an isomorphism if � is one to one and we then writeM�= N . Let S = ker(�) = ff 2 M j �(f) = 0g. Then S is a right submodule ofM and �(M) is a right submodule of N . Sine all are Abelian groups we knowM=S �= �(M) under the mappingM=S �! �(M) with f + S 7! �(f) whihis in fat an isomorphism. All right submodules of the quotientM=S are of theform L=S where L is a right submodule ofM ontaining S.We an even show that every �nitely generated right F -module is of a speialform.Lemma 4.3.8Every �nitely generated right F -module M is isomorphi to Fk=N for somek 2 N and some right submodule N of Fk.Proof :LetM be a �nitely generated right F -module with generating set f1; : : : fk 2 M.Consider the mapping � : Fk �! M de�ned by �(g1; : : : ; gk) = Pki=1 fi ? gi.Then � is an F -module homomorphism with image M. Let N be the kernelof �, then the First Isomorphism Theorem for modules yields our laim. Notethat � is uniquely de�ned by speifying the image of eah unit vetor e1; : : : ; ek,namely by �(ei) = fi. q.e.d.Now, there are two ways to give a �nitely generated right F -moduleM � Fk.One is to be given expliit f1; : : : ft 2 Fk suh thatM = hff1; : : : fsgir. The otherway is to give a right submodule N = hfg1; : : :gsgir for expliit g1; : : :gs 2 Fksuh thatM�= Fk=N . This is alled a presentation ofM.Presentations are hosen when studying right ideals of F as right F -modules. Tosee how this is done let i be the right ideal generated by ff1; : : : ; fkg in F . Let usonsider the right F -module homomorphism de�ned as a mapping � : Fk �! iwith �(g1; : : : ; gk) = Pki=1 fi ? gi. Then i �= Fk=ker(�) as F -modules. ker(�)is alled the right syzygy of ff1; : : : ; fkg denoted by Syz(f1; : : : ; fk). In fatSyz(f1; : : : ; fk) is the set of all solutions of the linear equation f1X1+: : :+fkXk = oin F . Syzygies play an important role in Gr�obner basis theory for ordinarypolynomial rings.







4.4 Ideals and Standard Representations 1314.4 Ideals and Standard RepresentationsA subset i � F is alled a (two-sided) ideal, if1. o 2 i,2. for f; g 2 i we have f � g 2 i, and3. for f 2 i, g; h 2 F we have g ? f ? h 2 i.Ideals an also be spei�ed in terms of a generating set. For F � Fnfog letideal(F ) = fPni=1 gi ? fi ? hi j fi 2 F; gi; hi 2 F ; n 2 Ng = fPmi=1mi ? fi ? li j fi 2F;mi; li 2 M(F); n 2 Ng. These generated sets are in fat subsets of F sine forf; g 2 F we have that f ? g as well as f � g are again elements of F , and it iseasily heked that they are in fat ideals:1. o 2 ideal(F ) sine o an be written as the empty sum.2. For two elementsPni=1 gi ? fi ? hi and Pmi=1 ~gi ? ~fi ? ~hi in ideal(F ), the sumPni=1 gi ? fi ? hi �Pmi=1 ~gi ? ~fi ? ~hi is again an element in ideal(F ).3. For an elementPni=1 gi ? fi ? hi in idealr(F ) and two polynomials g; h in F ,the produt g ? (Pni=1 gi ? fi ? hi) ? h = Pni=1(g ? gi) ? fi ? (hi ? h) is againan element in ideal(F ).Given an ideal i � F we all a set F � Fnfog a basis of i if i = ideal(F ). Thenevery element g 2 ideal(F )nfog an have di�erent representations of the formg = nXi=1 gi ? fi ? hi; fi 2 F; gi; hi 2 F ; n 2 N:Notie that the fi ourring in this sum are not neessarily di�erent. The dis-tributivity law in F allows to onvert suh a representation into one of the formg = mXj=1 mi ? fi ? li; fi 2 F;mi; li 2 M(F); n 2 N:Again speial representations an be distinguished in order to haraterize speialideal bases. An ordering on F is used to de�ne appropriate standard representa-tions. As in the ase of right ideals we will �rst look at generalizations of standardrepresentations for the ase of funtion rings over �elds.







132 Chapter 4 - Funtion Rings4.4.1 The Speial Case of Funtion Rings over FieldsLet FK be a funtion ring over a �eld K. We �rst look at an analogon to De�nition4.2.7De�nition 4.4.1Let F be a set of polynomials in FK and g a non-zero polynomial in ideal(F ). Arepresentations of the formg = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(FK); n 2 Nwhere additionally HT(g) � HT(mi ? fi ? li) holds for 1 � i � n is alled astandard representation of g in terms of F . If every g 2 ideal(F )nfog has suha representation in terms of F , then F is alled a standard basis of ideal(F ). �Notie that sine we assume f � � = � � f , we an also substitute the monomialsli by terms wi 2 T , i.e. study representations of the formg = nXi=1 mi ? fi ? wi; fi 2 F;mi 2 M(F); wi 2 T ; n 2 N:We will use this additional information in some proofs later on.As with right standard representations, in order to hange an arbitrary represen-tation of an ideal element into a standard representation we have to deal withspeial sums of polynomials. We get the following analogon to De�nition 4.2.8.De�nition 4.4.2Let F be a set of polynomials in FK and t an element in T . Then we de�ne aset C(F; t) to ontain all tuples of the form (t; f1; : : : ; fk;m1; : : : ;mk; l1; : : : ; lk),k 2 N, f1; : : : ; fk 2 F , m1; : : : ;mk; l1; : : : ; lk 2 M(FK) suh that1. HT(mi ? fi ? li) = t, 1 � i � k, and2. Pki=1HM(mi ? fi ? li) = 0.We set C(F ) = St2T C(F; t). �Notie that this de�nition is motivated by the de�nition of syzygies of headmonomials in ommutative polynomial rings over rings. We an haraterizestandard bases using this onept (ompare Theorem 4.2.9).







4.4 Ideals and Standard Representations 133Theorem 4.4.3Let F be a set of polynomials in FKnfog. Then F is a standard basis of ideal(F )if and only if for every tuple (t; f1; : : : ; fk;m1; : : : ;mk; l1; : : : ; lk) in C(F ) the poly-nomialPki=1mi ? fi ? li (i.e. the element in FK orresponding to this sum) has astandard representation with respet to F .Proof :In ase F is a standard basis sine the polynomials related to the tuples are allelements of ideal(F ) they must have standard representations with respet to F .To prove the onverse, it remains to show that every element in ideal(F ) has astandard representation with respet to F . Hene, let g =Pmj=1mj ? fj ? lj be anarbitrary representation of a non-zero polynomial g 2 ideal(F ) suh that fj 2 F ,mj; lj 2 M(FK), m 2 N. Depending on this representation of g and the well-founded total ordering � on T we de�ne t = max�fHT(mj ? fj ? lj) j 1 � j � mgand K as the number of polynomialsmj ?fj ?lj with head term t. Then t � HT(g)and in ase HT(g) = t this immediately implies that this representation is alreadya standard one. Else we proeed by indution on t. Without loss of generality letf1; : : : ; fK be the polynomials in the orresponding representation suh that t =HT(mj ? fj ? lj), 1 � j � K. Then the tuple (t; f1; : : : ; fK;m1; : : : ;mK; l1; : : : ; lK)is in C(F ) and let h =PKj=1mj?fj?lj . We will now hange our representation of gin suh a way that for the new representation of g we have a smaller maximal term.Let us assume h is not o44. By our assumption, h has a standard representationwith respet to F , say Pni=1 ~mi ? ~fi ? ~li, where ~fi 2 F , and ~mi; ~li 2 M(FK) and allterms ourring in the sum are bounded by t � HT(h). This gives us:g = KXj=1 mj ? fj ? lj + mXj=K+1mj ? fj ? lj= nXi=1 ~mi ? ~fi ? ~li + mXj=K+1mj ? fj ? ljwhih is a representation of g where the maximal term of the involved monomialmultiples is dereased. q.e.d.Weak Gr�obner bases an be de�ned as in De�nition 4.2.10. Sine the ordering� and the multipliation ? in general are not ompatible, instead of onsideringmultiples of head terms of the generating set F we look at head terms of monomialmultiples of polynomials in F .44In ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.







134 Chapter 4 - Funtion RingsDe�nition 4.4.4A subset F of FKnfog is alled a weak Gr�obner basis of ideal(F ) ifHT(ideal(F )nfog) = HT(fm ? f ? l j f 2 F;m; l 2 M(FK)gnfog). �In the next lemma we show that in fat both haraterizations of speial bases,standard bases and weak Gr�obner bases, oinide as in the ase of polynomialrings over �elds (ompare Lemma 4.2.11).Lemma 4.4.5Let F be a subset of FKnfog. Then F is a standard basis if and only if it is aweak Gr�obner basis.Proof :Let us �rst assume that F is a standard basis, i.e., every polynomial g in ideal(F )has a standard representation with respet to F . In ase g 6= o this implies theexistene of a polynomial f 2 F and monomialsm; l 2 M(FK) suh that HT(g) =HT(m?f ? l). Hene HT(g) 2 HT(fm?f ? l j m; l 2 M(FK); f 2 Fgnfog). As theonverse, namely HT(fm?f ? l j m; l 2 M(FK); f 2 Fgnfog) � HT(ideal(F )nfog)trivially holds, F then is a weak Gr�obner basis.Now suppose that F is a weak Gr�obner basis and again let g 2 ideal(F ). We haveto show that g has a standard representation with respet to F . This will be doneby indution on HT(g). In ase g = o the empty sum is our required standardrepresentation. Hene let us assume g 6= o. Sine then HT(g) 2 HT(ideal(F )nfog)by the de�nition of weak Gr�obner bases we know there exists a polynomial f 2 Fand monomials m; l 2 M(FK) suh that HT(g) = HT(m ? f ? l). Then thereexists a monomial ~m 2 M(FK) suh that HM(g) = HM( ~m ? f ? l), namely45~m = (HC(g) �HC(m? f ? l)�1) �m). Let g1 = g� ~m? f ? l. Then HT(g) � HT(g1)implies the existene of a standard representation for g1 whih an be added tothe multiple ~m ? f ? l to give the desired standard representation of g. q.e.d.Inspeting this proof loser we get the following orollary (ompare Corollary4.2.12).Corollary 4.4.6Let a subset F of FKnfog be a weak Gr�obner basis. Then every g 2 ideal(F ) hasa standard representation in terms of F of the form g = Pni=1mi ? fi ? li; fi 2F;mi; li 2 M(FK); n 2 N suh that HM(g) = HM(m1?f1?l1) and HT(m1?f1?l1) �HT(m2 ? f2 ? l2) � : : : � HT(mn ? fn ? ln).45Notie that this step requires that we an view FKas a vetor spae. In order to get asimilar result without introduing vetor spaes we would have to use a di�erent de�nition ofweak Gr�obner bases. E.g. requiring that HM(ideal(F )nfog) = HM(fm ? f ? l j f 2 F;m; l 2M(FK)gnfogg) would be a possibility. However, then no loalization of ritial situations tohead terms is possible, whih is the advantage of having a �eld as oeÆient domain.







4.4 Ideals and Standard Representations 135Notie that we hene get stronger representations as spei�ed in De�nition 4.4.1for the ase that the set F is a weak Gr�obner basis or a standard basis.In order to proeed as before in the ase of one-sided ideals we have to extend ourrestrition of the ordering � on F to ope with two-sided multipliation similarto De�nition 4.2.13.De�nition 4.4.7We will all an ordering � on T a redutive restrition of the ordering � orsimply redutive, if the following hold:1. t � s implies t � s for t; s 2 T .2. � is a partial well-founded ordering on T whih is ompatible with multi-pliation ? in the following sense: if for t; t1; t2; w1; w2 2 T t2 � t1, t1 � tand t2 = HT(w1 ? t1 ? w2) hold, then t2 � HT(w1 ? t ? w2). �Again we an distiguish speial \divisors" of monomials: For m1;m2 2 M(FK)we all m1 a (stable) divisor of m2 if and only if HT(m2) � HT(m1) and thereexist l1; l2 2 M(FK) suh that m2 = HM(l1 ? m1 ? l2). We then all l1; l2 stablemultipliers of m1. The intention is that for all terms t with HT(m1) � t wethen an onlude HT(m2) � HT(l1 ? t ? l2). Redution relations based on thisdivisibility of terms will again have the stability properties we desire. In theommutative polynomial ring we an state a redutive restrition of any termordering by t � s for two terms t and s if and only if s divides t as a term. Inthe non-ommutative polynomial ring we an state a redutive restrition of anyterm ordering by t � s for two terms t and s if and only if s is a subword of t.Let us ontinue with an algebrai onsequene related to this redutive orderingby distinguishing speial standard representations as we have done in De�nition4.2.15.De�nition 4.4.8Let F be a set of polynomials in FK and g a non-zero polynomial in ideal(F ). Arepresentation of the formg = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(FK); n 2 Nsuh that HT(g) = HT(mi ? fi ? li) = HT(mi ?HT(fi) ? li) � HT(fi), 1 � i � k forsome k � 1, and HT(g) � HT(mi ?HT(fi)? li) for k < i � n is alled a redutivestandard representation in terms of F . �Again the empty sum is taken as redutive standard representation of o.In ase we have ? : T � T �! T the ondition an be rephrased as HT(g) =mi ? fi ? li = HT(mi ? HT(fi) ? li) � HT(fi), 1 � i � k.







136 Chapter 4 - Funtion RingsDe�nition 4.4.9A set F � FKnfog is alled a redutive standard basis (with respet to theredutive ordering �) of ideal(F ) if every polynomial f 2 ideal(F ) has a redutivestandard representation in terms of F . �Again, in order to hange an arbitrary representation into one ful�lling our ad-ditional ondition of De�nition 4.4.8 we have to deal with speial sums of poly-nomials.De�nition 4.4.10Let F be a set of polynomials in FK and t an element in T .Then we de�ne the ritial set Cr(t; F ) to ontain all tuples of theform (t; f1; : : : ; fk;m1; : : : ;mk; l1; : : : ; lk), k 2 N, f1; : : : ; fk 2 F 46,m1; : : : ;mk; l1; : : : ; lk 2 M(F) suh that1. HT(mi ? fi ? li) = HT(mi ? HT(fi) ? li) = t, 1 � i � k,2. HT(mi ? fi ? li) � HT(fi), 1 � i � k, and3. Pki=1HM(mi ? fi ? li) = o.We set Cr(F ) = St2T Cr(t; F ). �Unfortunately, as in the ase of right redutive standard bases, these ritialsituations will not be suÆient to haraterize redutive standard bases (ompareagain Example 4.2.18). But we an give an analogon to Theorem 4.2.19.Theorem 4.4.11Let F be a set of polynomials in FKnfog. Then F is a redutive standard basisof ideal(F ) if and only if1. for every f 2 F and everym; l 2 M(FK) the multiplem?f ?l has a redutivestandard representation in terms of F ,2. for every tuple (t; f1; : : : ; fk;m1; : : : ;mk; l1; : : : ; lk) in Cr(F ) the polynomialPki=1mi ? fi ? li (i.e., the element in F orresponding to this sum) has aredutive standard representation with respet to F .Proof :In ase F is a redutive standard basis, sine these polynomials are all elementsof ideal(F ), they must have redutive standard representations with respet toF .46As in the ase of ommutative polynomials, f1; : : : ; fk are not neessarily di�erent polyno-mials from F .







4.4 Ideals and Standard Representations 137To prove the onverse, it remains to show that every element in ideal(F ) has aredutive standard representation with respet to F . Hene, let g = Pmj=1mj ?fj ? lj be an arbitrary representation of a non-zero polynomial g 2 ideal(F )suh that fj 2 F , mj; lj 2 M(FK), m 2 N. By our �rst statement every suhmonomial multiple mj ? fj ? lj has a redutive standard representation in termsof F and we an assume that all multiples are replaed by them. Depending onthis representation of g and the well-founded total ordering � on T we de�net = max�fHT(mj ? fj ? lj) j 1 � j � mg and K as the number of polynomialsmj ? fj ? lj with head term t. Then for eah monomial multiple mj ? fj ? lj withHT(mj ? fj ? lj) = t we know that HT(mj ? fj ? lj) = HT(mj ? HT(fj) ? lj) �HT(fj) holds. Then t � HT(g) and in ase HT(g) = t this immediately impliesthat this representation is already a redutive standard one. Else we proeed byindution on t. Without loss of generality let f1; : : : ; fK be the polynomials in theorresponding representation suh that t = HT(mi ? fi ? li), 1 � i � K. Then thetuple (t; f1; : : : ; fK;m1; : : : ;mK; l1; : : : ; lK) is in Cr(F ) and let h =PKi=1mi?fi?li.We will now hange our representation of g in suh a way that for the newrepresentation of g we have a smaller maximal term. Let us assume h is not o47.By our assumption, h has a redutive standard representation with respet to F ,say Pnj=1 ~mj ? hj ? ~lj, where hj 2 F , and ~mj; ~lj 2 M(FK) and all terms ourringin the sum are bounded by t � HT(h) as PKi=1HM(mi ? fi ? li) = o. This givesus: g = KXi=1 mi ? fi ? li + mXi=K+1mi ? fi ? li= nXj=1 ~mj ? hj ? ~lj + mXi=K+1mi ? fi ? liwhih is a representation of g where the maximal term is smaller than t. q.e.d.An algebrai haraterization of weak Gr�obner bases again an be given by aproperty of head monomials based on stable divisors of terms (ompare De�nition4.2.20).De�nition 4.4.12A set F � FKnfog is alled a weak redutive Gr�obner basis of ideal(F ) (withrespet to the redutive ordering �) if HT(ideal(F )nfog) = HT(fm ? f ? l j f 2F;m; l 2 M(FK);HT(m ? f ? l) = HT(m? HT(f) ? l) � HT(f)gnfog). �We will later on see that an analogon of the Translation Lemma holds for theredution relation related to redutive standard representations. Hene weak47In ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.







138 Chapter 4 - Funtion Ringsredutive Gr�obner bases and Gr�obner bases oinide. This is again due to thefat that the oeÆient domain is a �eld and will not arry over for redutionrings as oeÆient domains.The next lemma states that in fat both haraterizations of speial bases pro-vided so far oinide.Lemma 4.4.13Let F be a subset of FKnfog. Then F is a redutive standard basis if and onlyif it is a weak redutive Gr�obner basis.Proof :Let us �rst assume that F is a redutive standard basis, i.e., every polynomialg in ideal(F ) has a redutive standard representation with respet to F . Inase g 6= o this implies the existene of a polynomial f 2 F and monomialsm; l 2 M(FK) suh that HT(g) = HT(m ? f ? l) = HT(m ? HT(f) ? l) � HT(f).Hene HT(g) 2 HT(fm?f?l j m; l 2 M(FK); f 2 F;HT(m?f?l) = HT(m?HT(f)?l) � HT(f)gnfog). As the onverse, namely HT(fm ? f ? l j m; l 2 M(FK); f 2F;HT(m?f ?l) = HT(m?HT(f)?l) � HT(f)gnfog) � HT(ideal(F )nfog) triviallyholds, F is a weak redutive Gr�obner basis.Now suppose that F is a weak redutive Gr�obner basis and again let g 2 ideal(F ).We have to show that g has a redutive standard representation with respet toF . This will be done by indution on HT(g). In ase g = o the empty sumis our required redutive standard representation. Hene let us assume g 6= o.Sine then HT(g) 2 HT(ideal(F )nfog) by the de�nition of weak redutive Gr�obnerbases we know there exists a polynomial f 2 F and monomials m; l 2 M(FK)suh that HT(m ? f ? l) = HT(m ? HT(f) ? l) � HT(f) and there exists � 2 Ksuh that HC(g) = HC(m ? f ? l) � �, i.e., HM(g) = HM(m ? f ? l � �). Letg1 = g �m ? f ? l � �. Then HT(g) � HT(g1) implies the existene of a redutivestandard representation for g1 whih an be added to the multiplem? f ? l �� togive the desired redutive standard representation of g. q.e.d.A lose inspetion of this proof reveals that in fat we an provide a strongerondition for standard representations in terms of weak redutive Gr�obner bases.Corollary 4.4.14Let a subset F of FKnfog be a weak redutive Gr�obner basis. Every g 2 ideal(F )has a redutive standard representation in terms of F of the form g =Pni=1mi ?fi?li; fi 2 F;mi; li 2 M(FK); n 2 N suh that HT(g) = HT(m1?f1?l1) � HT(m2?f2?l2) � : : : � HT(mn?fn?ln) and HT(mi?fi?li) = HT(mi?HT(fi)?li) � HT(fi)for all 1 � i � n.







4.4 Ideals and Standard Representations 139The importane of Gr�obner bases in ommutative polynomial rings stems fromthe fat that they an be haraterized by speial polynomials, the so-alled s-polynomials. This haraterization an be ombined with a redution relation toan algorithm whih omputes �nite Gr�obner bases.We provide a �rst haraterization for our funtion ring over the �eld K. Hereritial situations lead to s-polynomials as in the original ase and an be iden-ti�ed by studying term multiples of polynomials. Let p and q be two non-zero polynomials in FK. We are interested in terms t; u1; u2; v1; v2 suh thatHT(u1 ? p ? v1) = HT(u1 ?HT(p) ? v1) = t = HT(u2 ? q ? v2) = HT(u2 ?HT(q) ? v2)and HT(p) � t, HT(q) � t. Let Cs(p; q) (this is a speialization of De�nition4.4.2) be the set ontaining all suh tuples (t; u1; u2; v1; v2) (as a short hand for(t; p; q; u1; u2; v1; v2). We all the polynomial HC(u1?p?v1)�1 �u1?p?v1�HC(u2?q?v2)�1 �u2?q?v2 = spol(p; q; t; u1; u2; v1; v2) the s-polynomial of p and q relatedto the tuple (t; u1; u2; v1; v2).Again these ritial situations are not suÆient to haraterize weak Gr�obnerbases (ompare Example 4.2.18) and additionally we have to test monomial mul-tiples of polynomials now from both sides.Theorem 4.4.15Let F be a set of polynomials in FKnfog. Then F is a weak Gr�obner basis ofideal(F ) if and only if1. for all f in F and for all m; l in M(FK) the multiplem?f ? l has a redutivestandard representation in terms of F , and2. for all p and q in F and every tuple (t; u1; u2; v1; v2) in Cs(p; q) the respetives-polynomial spol(p; q; t; u1; u2; v1; v2) has a redutive standard representa-tion in terms of F .Proof :In ase F is a weak Gr�obner basis it is also a redutive standard basis, and sinethe multiples m ? f ? l as well as the respetive s-polynomials are all elements ofideal(F ) they must have redutive standard representations in terms of F .The onverse will be proven by showing that every element in ideal(F ) has aredutive standard representation in terms of F . Now, let g =Pmj=1 �j �vj ?fj ?wjbe an arbitrary representation of a non-zero polynomial g 2 ideal(F ) suh that�j 2 K� ; fj 2 F , and vj; wj 2 T . Sine by our �rst assumption every multiplevj ? fj ? wj in this sum has a redutive standard representation we an assumethat HT(vj ? HT(fj) ? wj) = HT(vj ? fj ? wj) � HT(fj) holds.Depending on this representation of g and the well-founded total ordering � onT we de�ne t = max�fHT(vj ? fj ? wj) j 1 � j � mg and K as the number ofpolynomials vj?fj?wj with head term t. Without loss of generality we an assumethat the polynomial multipleswith head term t are just v1?f1?w1; : : : ; vK?fK?wK.







140 Chapter 4 - Funtion RingsWe proeed by indution on (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or(t0 = t and K 0 < K)48.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and byour assumptions our representation is already of the required form. Hene letus assume K > 1. Then for the two polynomials f1; f2 in the orrespondingrepresentation49 suh that t = HT(v1 ?HT(f1) ? w1) = HT(v1 ? f1 ? w1) = HT(v2 ?f2 ? w2) = HT(v2 ? HT(f2) ? w2) and t � HT(f1), t � HT(f2). Then the tuple(t; v1; v2; w1; w2) is in Cs(f1; f2) and we have an s-polynomial h = HC(v1 ? f1 ?w1)�1 � v1 ? f1 ? w1 � HC(v2 ? f2 ? w2)�1 � v2 ? f2 ? w2 orresponding to this tuple.We will now hange our representation of g by using the additional informationon this s-polynomial in suh a way that for the new representation of g we eitherhave a smaller maximal term or the ourrenes of the term t are dereased byat least 1. Let us assume the s-polynomial is not o50. By our assumption, h hasa redutive standard representation in terms of F , sayPni=1 ~�i � ~vi ? ~fi ? ~wi, where~�i 2 K� ; ~fi 2 F , and ~vi; ~wi 2 T and all terms ourring in this sum are boundedby t � HT(h). This gives us:�1 � v1 ? f1 ? w1 + �2 � v2 ? f2 ? w2= �1 � v1 ? f1 ? w1 + �02 � �1 � v1 ? f1 ? w1 � �02 � �1 � v1 ? f1 ? w1| {z }=0+�02 � �2| {z }�2 �v2 ? f2 ? w2= (�1 + �02 � �1) � v1 ? f1 ? w1 � �02 � (�1 � v1 ? f1 ? w1 � �2 � v2 ? f2 ? w2)| {z }= h= (�1 + �02 � �1) � v1 ? f1 ? w1 � �02 � ( nXi=1 ~�i � ~vi ? ~fi ? ~wi) (4.6)where �1 = HC(v1?f1?w1)�1, �2 = HC(v2?f2?w2)�1 and �02��2 = �2. Substituting(4.6) in the representation of g gives rise to a smaller one. q.e.d.Notie that both test sets in this haraterization in general annot be desribedin a �nitary manner, i.e., provide no �nite test for the property of being a Gr�obnerbasis.A problem whih is related to the fat that the ordering � and the multiplia-tion ? in general are not ompatible is that an important property ful�lled for48Note that this ordering is well-founded sine � is well-founded on T and K 2 N.49Not neessarily f2 6= f1.50In ase h = o, just substitute the empty sum for the redutive representation of h in theequations below.







4.4 Ideals and Standard Representations 141representations of polynomials in ommutative polynomial rings no longer holds:As in the ase of right ideals the existene of a standard representation for somepolynomial f 2 FK no longer implies the existene of one for a multiplem? f ? lwhere m; l 2 M(FK). However there are restritions where this impliation willhold (ompare Lemma 4.2.26).Lemma 4.4.16Let F be a subset of FKnfog and p a non-zero polynomial in FK. If p has aredutive standard representation with respet to F and m; l are monomials suhthat HT(m?p ? l) = HT(m?HT(p) ? l) � HT(p), then the multiplem?p ? l againhas a redutive standard representation with respet to F .Proof :Let p = Pni=1mi ? fi ? li with n 2 N, fi 2 F , mi; li 2 M(FK) be a redutivestandard representation of p in terms of F , i.e., HT(p) = HT(mi ? HT(fi) ? li) =HT(mi ? fi ? li) � HT(fi), 1 � i � k and HT(p) � HT(mi ? fi ? li) for allk + 1 � i � n.Let us �rst analyze the multiple m ? mj ? fj ? lj ? l.Let T(mj?fj ?lj) = fs1; : : : ; skg with s1 � si, 2 � i � l, i.e. s1 = HT(mj?fj ?lj) =HT(mj ? HT(fj) ? lj) = HT(p). Hene HT(m ? HT(p) ? l) = HT(m ? s1 ? l) �HT(p) = s1 and as s1 � si, 2 � i � l, by De�nition 4.4.7 we an onludeHT(m ? HT(p) ? l) = HT(m ? s1 ? l) � m ? si ? l � HT(m ? si ? l) for 2 � i � l.This implies HT(m? HT(mj ? fj ? lj) ? l) = HT(m?mj ? fj ? lj ? l). Hene we getHT(p ? m) = HT(m ? HT(p) ? l)= HT(m ? HT(mj ? fj ? lj) ? l); as HT(p) = HT(mj ? fj ? lj)= HT(m ?mj ? fj ? lj ? l)and sine HT(m?p?l) � HT(p) � HT(fj) we an onlude HT(m?mj ?fj ?lj?l) �HT(fj). It remains to show that m ? mj ? fj ? lj ? l has a redutive standardrepresentation in terms of F . First we show that HT(m ? mj ? HT(fj) ? lj ? l) �HT(fj). We know mj ? HT(fj) ? lj � HT(mj ? HT(fj) ? lj) = HT(mj ? fj ? lj)51and hene HT(m ? mj ? HT(fj) ? lj ? l) = HT(m ? HT(mj ? fj ? lj) ? l) = HT(m ?mj ? fj ? lj ? l) � HT(fj). Now in ase m?mj; lj ? l 2 M(FK) we are done as then(mj ? m) ? fj ? (lj ? l) is a redutive standard representation in terms of F .Hene let us assume m ? mj = Pk1i=1 ~mi, lj ? l = Pk01i0=1 ~li0, ~mi; ~li0 2 M(FK). LetT(fj) = ft1; : : : ; twg with t1 � ti, 2 � i � w, i.e. t1 = HT(fj). As HT(mj ?HT(fj) ? lj) � HT(fj) � tp, 2 � p � w, again by De�nition 4.4.7 we an onludeHT(mj ? HT(fj) ? lj) � mj ? tp ? lj � HT(mj ? tp ? lj), and mj ? HT(fj) ? lj �Pwp=2mj ? tp ? lj. Then for eah si, 2 � i � l there exists tq 2 T(f1) suh that51Notie that mj?HT(fj)?lj an be a polynomial and hene we annot onlude mj ?HT(fj)?lj = HT(mj ? HT(fj) ? lj).







142 Chapter 4 - Funtion Ringssi 2 supp(mj ?tq ? lj). Sine HT(p) � si and even HT(p) � mj ?tq ? lj we �nd thateither HT(m?p ? l) � HT(m? (mj ? tq ? lj) ? l) = HT((m?mj) ? tq ? (lj ? l)) in aseHT(mj ? tq ? lj) = HT(mj ? fj ? lj) or HT(m? p ? l) � HT(m? (mj ? tq ? lj) ? l) =HT((m ? mj) ? tq ? (lj ? l)). Hene we an onlude ~mi ? fj ? ~li0 � HT(m ? p ? l),1 � i � k1, 1 � i0 � k01 and for at least one suh multiple we get HT( ~mi?f1?~li0) =HT(m? mj ? fj ? lj ? l) � HT(fj).It remains to analyze the situation for the funtion (Pni=k+1m ? (mi ? fi ? li) ? l.Again we �nd that for all terms s in themi?fi?li, k+1 � i � n, we have HT(p) � sand we get HT(m?p?l) � HT(m?s?l). Hene all polynomial multiples of the fi inthe representationPni=k+1((Pkij=1 ~mij) ? fi ? (Pk0ij=1 ~lij)), where m?mi =Pkij=1 ~mij,li ? l =Pk0ij=1 ~lij, are bounded by HT(m ? p ? l). q.e.d.Notie that this lemma no longer holds in ase we only require HT(m?HT(p)?l) =HT(m ? p ? l) � HT(p), as then HT(p) � s no longer implies HT(m ? p ? l) �HT(m? s ? l).Our standard representations from De�nition 4.4.8 are losely related to a re-dution relation based on the divisibility of terms as de�ned in the ontext ofredutive restritions of orderings on page 135.De�nition 4.4.17Let f; p be two non-zero polynomials in FK. We say f redues p to q at amonomial � � t in one step, denoted by p�!f q, if there exist m; l 2 M(FK)suh that1. t 2 supp(p) and p(t) = �,2. HT(m? HT(f) ? l) = HT(m? f ? l) = t � HT(f),3. HM(m? f ? l) = � � t, and4. q = p �m ? f ? l.We write p�!f if there is a polynomial q as de�ned above and p is then alledreduible by f . Further, we an de�ne ��! ; +�! and n�! as usual. Redutionby a set F � FKnfog is denoted by p�!F q and abbreviates p�!f q for somef 2 F . �Due to the fat that the oeÆients lie in a �eld, again if for some terms w1; w2 2T we have HT(w1 ? f ? w2) = HT(w1 ? HT(f) ? w2) = t � HT(f) this impliesreduibility at the monomial � � t.Lemma 4.4.18Let F be a set of polynomials in FKnfog.







4.4 Ideals and Standard Representations 1431. For p; q 2 FK we have that p�!F q implies p � q, in partiular HT(p) �HT(q).2. �!F is Noetherian.Proof :1. Assuming that the redution step takes plae at a monomial � � t, by De�ni-tion 4.4.17 we know HM(m1?f ?m2) = � � t whih yields p � p�m1 ?f ?m2sine HM(m1 ? f ? m2) � RED(m1 ? f ? m2).2. This follows diretly from 1. as the ordering � on T is well-founded (om-pare Lemma 4.2.3). q.e.d.The next lemma shows how redution sequenes and redutive standard repre-sentations are related.Lemma 4.4.19Let F be a set of polynomials in FK and p a non-zero polynomial in FK. Thenp ��!F o implies that p has a redutive standard representation in terms of F .Proof :This follows diretly by adding up the polynomials used in the redution stepsourring in the redution sequene p ��!F o. q.e.d.If p ��!F q, then p has a redutive standard representation in terms of F [ fqg,espeially p� q has one in terms of F .As stated before an analogon to the Translation Lemma holds.Lemma 4.4.20Let F be a set of polynomials in FK and p; q; h polynomials in FK.1. Let p � q�!F h. Then there exist p0; q0 2 FK suh that p ��!F p0 andq ��!F q0 and h = p0 � q0.2. Let o be a normal form of p�q with respet to F . Then there exists g 2 FKsuh that p ��!F g and q ��!F g.







144 Chapter 4 - Funtion RingsProof :1. Let p � q�!F h at the monomial � � t, i.e., h = p � q �m ? f ? l for somem; l 2 M(FK) suh that HT(m ? HT(f) ? l) = HT(m ? f ? l) = t � HT(f)and HM(m ? f ? l) = � � t. We have to distinguish three ases:(a) t 2 supp(p) and t 2 supp(q): Then we an eliminate the ourene of tin the respetive polynomials by redution and get p�!f p��1 � (m?f ? l) = p0, q�!f q� �2 � (m? f ? l) = q0, where �1 �HC(m? f ? l) and�2 �HC(m?f ? l) are the oeÆients of t in p respetively q. Moreover,�1 � HC(m ? f ? l)� �2 � HC(m ? f ? l) = � and hene �1 � �2 = 1, asHC(m? f ? l) = �. This gives us p0� q0 = p��1 � (m? f ? l)� q+ �2 �(m ? f ? l) = p� q � (�1 � �2) � (m? f ? l) = p� q �m ? f ? l = h.(b) t 2 supp(p) and t 62 supp(q): Then we an eliminate the term t in thepolynomial p by right redution and get p�!f p�m?f ?l = p0, q = q0,and, therefore, p0 � q0 = p�m ? f ? l � q = h.() t 2 supp(q) and t 62 supp(p): Then we an eliminate the term t in thepolynomial q by right redution and get q�!f q+m?f ?l = q0, p = p0,and, therefore, p0 � q0 = p� (q +m ? f ? l) = h.2. We show our laim by indution on k, where p� q k�!F o. In the base asek = 0 there is nothing to show as then p = q. Hene, let p�q�!F h k�!F o.Then by 1. there are polynomials p0; q0 2 FK suh that p ��!F p0 andq ��!F q0 and h = p0 � q0. Now the indution hypothesis for p0 � q0 k�!F oyields the existene of a polynomial g 2 FK suh that p ��!F g and q ��!F g.q.e.d.The essential part of the proof is that reduibility as de�ned in De�nition 4.4.17is onneted to stable divisors of terms and not to oeÆients. We will later seethat for funtion rings over redution rings, when the oeÆient is also involvedin the redution step, this lemma no longer holds.Next we state the de�nition of Gr�obner bases based on the redution relation.De�nition 4.4.21A subset G of FK is alled a Gr�obner basis (with respet to the redutionrelation �! ) of the ideal i = ideal(G), if � !G = �i and �!G is onuent.Remember the free group ring in Example 4.2.18 where the polynomial b+� liesin the ideal generated by the polynomial a+ �. Then of ourse b+ � also lies in







4.4 Ideals and Standard Representations 145the ideal generated by a + �. Unlike in the ase of polynomial rings over �eldswhere for any set of polynomials F we have � !bF = �ideal(F ), here we haveb + � �ideal(fa+�g) 0 but b + � 6 � !a+� 0. Hene the �rst ondition of De�nition4.4.21 is again neessary.Now by Lemma 4.4.20 and Theorem 3.1.5 weak Gr�obner bases are Gr�obner basesand an be haraterized as follows:Corollary 4.4.22Let G be a set of polynomials in FKnfog. G is a (weak) Gr�obner basis of ideal(G)if and only if for every g 2 ideal(G) we have g ��!G o.Finally we an haraterize Gr�obner bases similar to Theorem 2.3.11.Theorem 4.4.23Let F be a set of polynomials in FKnfog. Then F is a Gr�obner basis of ideal(G)if and only if1. for all f in F and for all m; l in M(FK) we have m ? f ? l ��!F o, and2. for all p and q in F and every tuple (t; u1; u2; v1; v2) in C(p; q)and the respetive s-polynomial spol(p; q; t; u1; u2; v1; v2) we havespol(p; q; t; u1; u2; v1; v2) ��!F o.We will later on prove a stronger version of this theorem.The importane of Gr�obner bases in the lassial ase stems from the fat that weonly have to hek a �nite set of s-polynomials for F in order to deide, whether Fis a Gr�obner basis. Hene, we are interested in loalizing the test sets in Theorem4.4.23 { if possible to �nite ones.De�nition 4.4.24A set of polynomials F � FKnfog is alled weakly saturated, if for all mono-mials m; l in M(FK) and every polynomial f 2 F we have m ? f ? l ��!F o. �This of ourse implies that for a weakly saturated set F and any m; l 2 M(FK),f 2 F the multiple m ? f ? l has a redutive standard representation in terms ofF .Notie that sine the oeÆient domain is a �eld we ould restrit ourselves tomultiples with elements of T . However, as we will later on allow redution ringsas oeÆient domains, we present this more general de�nition.







146 Chapter 4 - Funtion RingsDe�nition 4.4.25Let F be a set of polynomials in FKnf0g. A set SAT(F ) � fm ? f ? l j f 2F;m; l 2 M(FK)g is alled a stable saturator for F if for any f 2 F , m; l 2M(FK) there exist s 2 SAT(F ), m0; l0 2 M(FK) suh that m ? f ? l = m0 ? s ? l0,HT(m? f ? l) = HT(m0 ? HT(s) ? l0) � HT(s).Corollary 4.4.26Let SAT(F ) be a stable saturator of a set F � FK. Then for any f 2 F ,m; l 2 M(FK) there exists s 2 SAT(F ) suh that m ? f ? l�!s o.Lemma 4.4.27Let F be a set of polynomials in FKnf0g. If for all s 2 SAT(F ) we have s ��!F o,then for every m, l in M(FK) and every polynomial f in F the multiplem? f ? lhas a redutive standard representation in terms of F .Proof :This follows immediately from Lemma 4.4.16 and Lemma 4.4.19. q.e.d.De�nition 4.4.28Let p and q be two non-zero polynomials in FK. Then a subset C �fspol(p; q; t; u1; u2; v1; v2) j (t; u1; u2; v1; v2) 2 Cs(p; q)g is alled a stable loaliza-tion for the ritial situations if for every s-polynomial spol(p; q; t; u1; u2; v1; v2)related to a tuple (t; u1; u2; v1; v2) in Cs(p; q) there exists a polynomial h 2 C andmonomials � � w1; 1 �w2 2 M(FK) suh that1. HT(h) � HT(spol(p; q; t; u1; u2; v1; v2)),2. HT(w1 ? h ? w2) = HT(w1 ? HT(h) ? w2) = HT(spol(p; q; t; u1; u2; v1; v2)),3. spol(p; q; t; u1; u2; v1; v2) = (� � w1) ? h ? w2. �The idea behind this de�nition is to redue the number of s-polynomials, whihhave to be onsidered when heking for the Gr�obner basis property.Corollary 4.4.29Let C � fspol(p; q; t; u1; u2; v1; v2) j (t; u1; u2; v1; v2) 2 Cs(p; q)g bea stable loalization for two polynomials p; q 2 FK. Then for anys-polynomial spol(p; q; t; u1; u2; v1; v2) there exists h 2 C suh thatspol(p; q; t; u1; u2; v1; v2)�!h o.







4.4 Ideals and Standard Representations 147Lemma 4.4.30Let F be a set of polynomials in FKnf0g. If for all h in a stable loalizationC � fspol(p; q; t; u1; u2; v1; v2) j (t; u1; u2; v1; v2) 2 Cs(p; q)g, we have h ��!F o,then for every (t; u1; u2; v1; v2) in Cs(p; q) the s-polynomial spol(p; q; t; u1; u2; v1; v2)has a redutive standard representation in terms of F .Proof :This follows immediately from Lemma 4.4.16 and Lemma 4.4.19. q.e.d.Theorem 4.4.31Let F be a set of polynomials in FKnf0g. Then F is a Gr�obner basis if and onlyif 1. for all s in SAT(F ) we have s ��!F o, and2. for all p and q in F , and every polynomial h in a stable loalization C �fspol(p; q; t; u1; u2; v1; v2) j (t; u1; u2; v1; v2) 2 C(p; q)g, we have h ��!F o.Proof :In ase F is a Gr�obner basis by Lemma 4.4.22 all elements of ideal(F ) mustredue to zero by F . Sine the polynomials in the saturator and the respetiveloalizations of the s-polynomials all belong to the ideal generated by F we aredone.The onverse will be proven by showing that every element in ideal(F ) has aredutive standard representation in terms of F . Now, let g =Pnj=1(�j �wj)?fj?zjbe an arbitrary representation of a non-zero polynomial g 2 ideal(F ) suh that�j 2 K� ; fj 2 F , and wj; zj 2 T .By the de�nition of the stable saturator for every multiple wj ? fj ? zj in thissum we have some s 2 SAT(F ), m; l 2 M(FK) suh that wj ? fj ? zj = m ? s ? land HT(wj ? fj ? zj) = HT(m ? s ? l) = HT(m ? HT(s) ? l) � HT(s). Sine wehave s ��!F o, by Lemma 4.4.16 we an onlude that eah wj ? fj ? zj has aredutive standard representation in terms of F . Therefore, we an assume thatHT(wj ? HT(fj) ? zj) = HT(wj ? fj ? zj) � HT(fj) holds.Depending on this representation of g and the well-founded total ordering � onT we de�ne t = max�fHT(wj ? fj ? zj) j 1 � j � ng and K as the number ofpolynomials wj ? fj ? zj with head term t.Without loss of generality we an assume that the polynomial multiples withhead term t are just (�1 � w1) ? f1 ? z1; : : : ; (�K � wK) ? fK ? zK. We proeed byindution on (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and







148 Chapter 4 - Funtion RingsK 0 < K)52.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and by ourassumption our representation is already of the required form.Hene let us assumeK > 1, then for the two not neessarily di�erent polynomialsf1; f2 in the orresponding representation we have t = HT(w1 ? HT(f1) ? z1) =HT(w1 ? f1 ? z1) = HT(w2 ? f2 ? z2) = HT(w2 ? HT(f2) ? z2) and t � HT(f1), t �HT(f2). Then the tuple (t; w1; w2; z1; z2) is in C(f1; f2) and we have a polynomialh in a stable loalization C � fspol(f1; f2; t; w1; w2; z1; z2) j (t; w1; w2; z1; z2) 2C(f1; f2)g and � �w; 1 �z 2 M(FK) suh that spol(f1; f2; t; w1; w2; z1; z2) = HC(w1?f1 ? z1)�1 � w1 ? f1 ? z1 � HC(w2 ? f2 ? z2)�1 � w2 ? f2 ? z2 = (� � w) ? h ? z andHT(spol(f1; f2; t; w1; w2; z1; z2) = HT(w ? h ? z) = HT(w ? HT(h) ? z) � HT(h).We will now hange our representation of g by using the additional informationon this situation in suh a way that for the new representation of g we eitherhave a smaller maximal term or the ourrenes of the term t are dereasedby at least 1. Let us assume the s-polynomial is not o53. By our assumption,h ��!F o and by Lemma 4.4.19 h has a redutive standard representation in termsof F . Then by Lemma 4.4.16 the multiple (� � w) ? h ? z again has a rightredutive standard representation in terms of F , say Pni=1mi ? hi ? li, wherehi 2 F , and mi; li 2 M(FK) and all terms ourring in this sum are bounded byt � HT((� � w) ? h ? z). This gives us:(�1 � w1) ? f1 ? z1 + (�2 � w2) ? f2 ? z2= (�1 � w1) ? f1 ? z1 + (�02 � �1 � w1) ? f1 ? z1 � (�02 � �1 � w1) ? f1 ? z1| {z }=0+(�02 � �2| {z }=�2 �w2) ? f2 ? z2= ((�1 + �02 � �1) � w1) ? f1 ? z1 � �02 � ((�1 � w1) ? f1 ? z1 � (�2 �w2) ? f2 ? z2)| {z }= (��w)?h?z= ((�1 + �02 � �1) � w1) ? f1 ? z1 � �02 � ( nXi=1 mi ? hi ? li) (4.7)where �1 = HC(w1 ? f1 ? z1)�1, �2 = HC(w2 ? f2 ? z2)�1 and �02 � �2 = �2. Bysubstituting (4.7) in our representation of g the representation beomes smaller.q.e.d.Obviously this theorem states a riterion for when a set is a Gr�obner basis. Asin the ase of ompletion proedures suh as the Knuth-Bendix proedure or52Note that this ordering is well-founded sine � is well-founded on T and K 2 N.53In ase h = o, just substitute the empty sum for the right redutive representation of h inthe equations below.







4.4 Ideals and Standard Representations 149Buhberger's algorithm, elements from these test sets whih do not redue tozero an be added to the set being tested, to gradually desribe a not neessarily�nite Gr�obner basis. Of ourse in order to get a omputable ompletion proedureertain assumptions on the test sets have to be made, e.g. they should themselvesbe reursively enumerable, and normal forms with respet to �nite sets have to beomputable. The examples from page 97 an also be studied with respet to two-sided ideals. For polynomial rings, skew-polynomial rings ommutative monoidrings and ommutative respetively poly-yli group rings �nite Gr�obner basesan be omputed in the respetive setting.4.4.2 Funtion Rings over Redution RingsThe situation beomes more ompliated if R is not a �eld.Let R be a non-ommutative ring with a redution relation =)B assoiated withsubsets B � R as desribed in Setion 3.1.When following the path of linking speial standard representations and redutionrelations we get the same results as in Setion 4.2.2, i.e., suh representationsnaturally arise from the respetive redution relations. Hene we proeed bystudying a speial redution relation whih subsumes the two redution relationspresented for one-sided ideals in funtion rings over redution rings. As beforefor our ordering >R on R we require: for �; � 2 R, � >R � if and only if thereexists a �nite set B � R suh that � +=)B �. This ordering will ensure that theredution relation on F is terminating. The redution relation on R an be usedto de�ne various redution relations on the funtion ring. Here we want to presenta redution relation whih in some sense is based on the \divisibility" of the termto be redued by the head term of the polynomial used for redution.De�nition 4.4.32Let f; p be two non-zero polynomials in F . We say f redues p to q at amonomial � � t in one step, denoted by p�!f q, if there exist monomialsm; l 2 M(F) suh that1. t 2 supp(p) and p(t) = �,2. HT(m ? HT(f) ? l) = HT(m ? f ? l) = t � HT(f),3. � =)HC(m?f?l) �, with54 � = Pki=1 i � HC(m ? f ? l) � Æi + � for some�; i; Æi 2 R, 1 � i � k, and4. q = p �Pki=1 i �m? f ? l � Æi.54Remember that by Axiom (A2) for redution rings � =) � implies � � � 2 ideal() andhene � =Pki=1 i �  � Æi + �, i; Æi 2 R.







150 Chapter 4 - Funtion RingsWe write p�!f if there is a polynomial q as de�ned above and p is then alledreduible by f . Further, we an de�ne ��! ; +�! and n�! as usual. Redutionby a set F � Fnfog is denoted by p�!F q and abbreviates p�!f q for somef 2 F . �By speializing item 3. of this de�nition to3: � =)HC(m?f?l) suh that � = HC(m ? f ? l)we get an analogon to De�nition 4.2.43. Similarly, speializing 3. to3: � =)HC(m?f?l) � suh that HC(m? f ? l) + �gives us an analogon to De�nition 4.2.53.Reviewing Example 4.2.54 we �nd that the redution relation is not terminatingwhen using in�nite sets of polynomials for redution. But for �nite sets we getthe following analogon of Lemma 4.2.55.Lemma 4.4.33Let F be a �nite set of polynomials in Fnfog.1. For p; q 2 F , p�!F q implies p � q, in partiular HT(p) � HT(q).2. �!F is Noetherian.Proof :1. Assuming that the redution step takes plae at a monomial � � t, by De�-nition 4.4.32 we know HM(p�Pki=1 i �m1 ? f ?m2 � Æi) = � � t whih yieldsp � p �Pki=1 i �m1 ? f ? m2 � Æi sine � >R �.2. This follows from 1. and Axiom (A1) as long as only �nite sets of polyno-mials are involved. q.e.d.As for the one-sided ase a Translation Lemma does not hold for this redutionrelation. Hene we have to distinguish between weak Gr�obner bases and Gr�obnerbases.De�nition 4.4.34A set F � Fnfog is alled a weak Gr�obner basis of ideal(F ) if for all g 2 ideal(F )we have g ��!F o. �







4.4 Ideals and Standard Representations 151Now as for one-sided weak Gr�obner bases, weak Gr�obner bases allow speialrepresentations of the polynomials in the ideal they generate.Corollary 4.4.35Let F be a set of polynomials in F and g a non-zero polynomial in ideal(F ) suhthat g ��!F o. Then g has a representation of the formg = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(F); n 2 Nsuh that HT(g) = HT(mi ?HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi) for 1 � i � k,and HT(g) � HT(mi ? fi ? li) for all k + 1 � i � n.Proof :We show our laim by indution on n where g n�!F o. If n = 0 we are done.Else let g 1�!F g1 n�!F o. In ase the redution step takes plae at the headmonomial, there exists a polynomial f 2 F and monomialm; l 2 M(F) suh thatHT(m ? HT(f) ? l) = HT(m ? f ? l) = HT(g) � HT(f) and HC(g) =)HC(m?f?l) �with HC(g) =)HC(m?f?l) � with HC(g) = � + Pki=1 i � HC(m ? f ? l) � Æi forsome i; Æi 2 R, 1 � i � k. Moreover the indution hypothesis then is applied tog1 = g�Pki=1 i �m?f ?l �Æi. If the redution step takes plae at a monomial withterm smaller HT(g) for the respetive monomial multiplem?f ?l we immediatelyget HT(g) � HT(m ? f ? l) and we an apply our indution hypothesis to theresulting polynomial g1. In both ases we an arrange the monomial multiplesm ? f ? l arising from the redution steps in suh a way that gives us th desiredrepresentation. q.e.d.As in Theorem 4.4.15 we an haraterize weak Gr�obner bases using g- and m-polynomials instead of s-polynomials.De�nition 4.4.36Let P = fp1; : : : ; pkg be a multiset of (not neessarily di�erent) polynomials inF and t an element in T suh that there are u1; : : : ; uk; v1; : : : ; vk 2 T withHT(ui ? pi ? vi) = HT(ui ? HT(pi) ? vi) = t, for all 1 � i � k. Further leti = HC(ui ? pi ? vi) for 1 � i � k.Let G be a (weak) Gr�obner basis of f1; : : : ; kg with respet to =) in R and� = kXi=1 niXj=1 �i;j � i � Æi;jfor � 2 G, �i;j; Æi;j 2 R, 1 � i � k, and 1 � j � ni. Then we de�ne theg-polynomials (Gr�obner polynomials) orresponding to p1; : : : ; pk and t by







152 Chapter 4 - Funtion Ringssetting g� = kXi=1 niXj=1 �i;j � ui ? pi ? vi � Æi;j:Notie that HM(g�) = � � t.We de�ne them-polynomials (module polynomials) orresponding to P andt as those h = kXi=1 niXj=1 �i;j � ui ? pi ? vi � Æi;jwhere Pki=1Pnij=1 �i;j � i � Æi;j = 0. Notie that HT(h) � t. �Notie that while we allow the multipliation of two terms to have inuene onthe oeÆients of the result55 we require that t � � = � � t.Given a set of polynomials F , the set of orresponding g- and m-polynomials isagain de�ned for all possible multisets of polynomials in F and appropriate termst as spei�ed by De�nition 4.4.36. Notie that given a �nite set of polynomialsthe orresponding sets of g- and m-polynomials in general will be in�nite.We an use g- and m-polynomials to haraterize speial bases in funtion ringsover redution rings satisfying Axiom (A4) in ase we add an additional onditionas before.Theorem 4.4.37Let F be a �nite set of polynomials in Fnfog where the redution ring satis�es(A4). Then F is a weak Gr�obner basis if and only if1. for all f in F and for all m; l in M(F) we have m ? f ? l ��!F o, and2. all g- and all m-polynomials orresponding to F as spei�ed in De�nition4.4.36 redue to zero using F .Proof :In ase F is a weak Gr�obner basis, sine the multiples m ? f ? l as well as therespetive g- and m-polynomials are all elements of ideal(F ) they must redue tozero using F .The onverse will be proven by showing that every element in ideal(F ) is reduibleby F . Then as g 2 ideal(F ) and g�!F g0 implies g0 2 ideal(F ) we have g ��!F o.Notie that this only holds in ase the redution relation �!F is Noetherian.This follows as by our assumption F is �nite.Let g 2 ideal(F ) have a representation in terms of F of the following form: g =Pnj=1mj ?fj ?lj, fj 2 F and mj; lj 2 M(F). Depending on this representation of g55Skew-polynomial rings are a lassial example, see Setion 4.2.1.







4.4 Ideals and Standard Representations 153and the well-founded total ordering � on T we de�ne t = max�fHT(mj ?fj ? lj) j1 � j � ng and K as the number of polynomials mj ? fj ? lj with head term t.We show our laim by indution on (t;K), where (t0;K 0) < (t;K) if and only ift0 � t or (t0 = t and K 0 < K).Sine by our �rst assumption every multiple mj ? fj ? lj in this sum redues tozero using F and hene has a representation as desribed in Corollary 4.4.35 wean assume that HT(mj ?HT(fj)? lj) = HT(mj ?fj ? lj) � HT(fj) holds. Withoutloss of generality we an assume that the polynomial multiples with head term tare just m1 ? f1 ? l1; : : : ;mK ? fK ? lK.Obviously, t � HT(g) = HT(m1 ? HT(f1) ? l1) � HT(f1) must hold. If K = 1this gives us t = HT(g) and even HM(g) = HM(m1 ? f1 ? l1), implying that g isreduible at HM(g) by f1.Hene let us assume K > 1.First letPKj=1HM(mj?fj?lj) = o. Then there is a m-polynomial h, orrespondingto the polynomials f1; : : : ; fK and the term t suh that PKj=1 lj ? fj ? mj = h.We will now hange our representation of g by using the additional informationon this m-polynomial in suh a way that for the new representation of g we havea smaller maximal term. Let us assume the m-polynomial is not o56. By ourassumption, h is reduible to zero using F and hene has a representation withrespet to F as desribed in Corollary 4.4.35, sayPni=1 ~mi ? ~fi ? ~li, where ~fi 2 F ,~mi; ~li 2 M(F) and all terms ourring in the sum are bounded by t � HT(h).Hene replaing the sum PKj=1mj ? fj ? lj by Pni=1 ~mi ? ~fi ? ~li gives us a smallerrepresentation of g.Hene let us assumePKj=1 HM(mj ? fj ? lj) 6= 0. Then we have HT(m1 ? f1 ? l1 +: : :+mK ? fK ? lK) = t = HT(g), HC(g) = HC(m1 ? f1 ? l1+ : : :+mK ? fK ? lK) 2idealr(fHC(m1 ? f1 ? l1); : : : ;HC(mK ? fK ? lK)g) and even HM(m1 ? f1 ? l1+ : : :+mK ? fK ? lK) = HM(g). Hene HC(g) is =)-reduible by �, � 2 G, G<a (weak)right Gr�obner basis of idealr(fHC(m1 ? f1 ? l1); : : : ;HC(mK ? fK ? lK)g) in R withrespet to the redution relation =). Let g� be the respetive g-polynomialorresponding to �. Then we know that g� ��!F o. Moreover, we know that thehead monomial of g� is reduible by some polynomial f 2 F and we assumeHT(g�) = HT(m ? HT(f) ? l) = HT(m ? f ? l) � HT(f) and HC(g�) =)HC(m?f?l).Then, as HC(g) is =)-reduible by HC(g�), HC(g�) is =)-reduible to zero and(A4) holds, the head monomial of g is also reduible by some f 0 2 F and we aredone. q.e.d.Of ourse this theorem is still true for in�nite F if we an show that for therespetive funtion ring the redution relation is terminating.56In ase h = o, just substitute the empty sum for the redutive representation of h in theequations below.







154 Chapter 4 - Funtion RingsNow the question arises when the ritial situations in this haraterization anbe loalized to subsets of the respetive sets. Reviewing the Proof of Theorem4.4.31 we �nd that Lemma 4.4.16 is entral as it desribes when multiples ofpolynomials whih have a redutive standard representation in terms of some setF again have suh a representation. As before, this does not hold for funtionrings over redution rings in general. We have stated that it is not natural to linkright redution as de�ned in De�nition 4.4.32 to speial standard representations.Hene, to give loalizations of Theorem 4.4.37 another property for F is suÆient:De�nition 4.4.38A set C � S � F is alled a stable loalization of S if for every g 2 S thereexists f 2 C suh that g�!f o. �In ase F and �! allow suh stable loalizations, we an rephrase Theorem4.4.37 as follows:Theorem 4.4.39Let F be a �nite set of polynomials in Fnfog where the redution ring satis�es(A4). Then F is a weak Gr�obner basis of ideal(F ) if and only if1. for all s in a stable loalization of fm? f ? l j f 2 F ;m; l 2 M(F)g we haves ��!F o, and2. for all h in a stable loalization of the g- and m-polynomials orrespondingto F as spei�ed in De�nition 4.4.36 we have h ��!F o.We have stated that for arbitrary redution relations in F it is not natural to linkthem to speial standard representations. Still, when proving Theorem 4.4.39, wewill �nd that in order to hange the representation of an arbitrary ideal element,De�nition 4.4.38 is not enough to ensure reduibility. However, we an substitutethe ritial situation using an analogon of Lemma 4.4.16, whih while not re-lated to reduibility in this ase will still be suÆient to make the representationsmaller.Lemma 4.4.40Let F � Fnfog and f , p non-zero polynomials in F . If p�!f o and f ��!F o,then p has a standard representation of the formp = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(F); n 2 Nsuh that HT(p) = HT(mi ?HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi) for 1 � i � kand HT(p) � HT(mi ? fi ? li) for all k + 1 � i � n.







4.4 Ideals and Standard Representations 155Proof :If p�!f o then p = Psj=1 j �m0 ? f ? l0 � Æj with m0; l0 2 M(F), j; Æj 2 R, andHT(p) = HT(m?HT(f)? l) = HT(m?f ?l) � HT(f). Similarly f ��!F o implies57f = Pni=1mi ? fi ? li; fi 2 F;mi; li 2 M(F); n 2 N suh that HT(f) = HT(mi ?HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi), 1 � i � k, and HT(f) � HT(mi ? fi ? li)for all k + 1 � i � n.We show our laim for all multiples with j � m0 and l0 � Æj for 1 � j � s.Let m = j ? m0 and l = l0 � Æj and let us analyze m ? mi ? fi ? li ? l withHT(mi ? fi ? li) = HT(f), 1 � i � k. Let T(mi ? fi ? li) = fsi1; : : : ; siwig withsi1 � sij, 2 � j � wi, i.e. si1 = HT(mi ? fi ? li) = HT(p). Hene m ? HT(p) ? l =m ? si1 ? l � HT(p) = si1 and as si1 � sij, 2 � j � wi, by De�nition 4.4.7 we anonlude HT(m ? HT(p) ? l) = HT(m ? si1 ? l) � m ? sij ? l � HT(m ? sij ? l) for2 � j � wi. This implies HT(m ? HT(mi ? fi ? li) ? l) = HT(m ? mi ? fi ? li ? l)Hene we get HT(m ? f ? l)= HT(m ? HT(f) ? l)= HT(m ? HT(mi ? fi ? li) ? l); as HT(p) = HT(mi ? fi ? li)= HT(m ?mi ? fi ? li ? l)and sine HT(m?f ?l) � HT(f) � HT(fi) we an onlude HT(m?mi?fi?li?l) �HT(fi). It remains to show that m ? (mi ? fi ? li) ? l = (m ? mi) ? fi ? (li ? l) hasrepresentations of the desired form in terms of F . First we show that HT((m ?mi ?HT(fi) ? li ? l) � HT(fi). We know mi ?HT(fi) ? li � HT(mi ?HT(fi) ? li) =HT(mi?fi ?li) and hene HT(m?mi?HT(fi)?li?l) = HT(m?HT(mi?fi ?li)?l) =HT(m ? mi ? fi ? li ? l) � HT(fi).Now in ase m ?mi; li ? l 2 M(F) we are done as then (m ?mi) ? fi ? (li ? l) is arepresentation of the desired form.Hene let us assume m ? mi = Pkij=1 ~mij,li ? l = Pk0ij0=1 ~lij ~mij; ~lij0 2 M(F). LetT(fi) = fti1; : : : ; tiwg with ti1 � tij, 2 � j � w, i.e. ti1 = HT(fi). As HT(mi?HT(fi)?li) � HT(fi) � tj, 2 � j � w, again by De�nition 4.4.7 we an onlude thatHT(mi?HT(fi)?li) � mi?tij ?li � HT(mi?tij ?li), 2 � j � l, and mi?HT(fi)?li �Pwj=2mi ? tij ? li. Then for eah sij, 2 � j � wi, there exists tij0 2 T(fi) suh thatsij 2 supp(mi?tij0 ?li). Sine HT(f) � sij and even HT(f) � mi?tij0 ?li we �nd thateither HT(m?f ? l) � HT(m? (mi ? tij0 ? li)? l) = HT((m?mi)? tij0 ? (li ? l)) in aseHT(mi?tij0?li) = HT(mi?f1?li) or HT(m?f?l) � m?(mi?tij0?li)?l = (m?mi)?tij0?(li?l). Hene we an onlude ~mij ?fi ?~lij0 � HT(m?f ?l), 1 � j � ki, 1 � j0 � Kiand for at least one ~mij, ~lij0 we get HT( ~mij?fi?~lij0) = HT(m?mi?fi?li?l) � HT(fi).It remains to analyze the situation for the funtions (Pni=k+1m? (mi ? fi ? li) ? l.57Notie that in this representation we write the produts of the form  �m respetively l � Æarising in the redution steps as simple monomials.







156 Chapter 4 - Funtion RingsAgain we �nd that for all terms s in the mi ? fi ? li, k + 1 � i � n, we haveHT(f) � s and we get HT(m ? f ? l) � HT(m ? s ? l). Hene all polynomialmultiples of the fi in the representationPni=k+1(Pkij=1 ~mij) ? fi ? (PKij=1 ~lij0), wherem ?mi =Pkij=1 ~mij, li ? l =PKij=1 ~lij0, are bounded by HT(m? f ? l). q.e.d.Proof Theorem 4.4.39:The proof is basially the same as for Theorem 4.4.37. Due to Lemma 4.4.40 wean substitute the multiples mj ? fj ? lj by appropriate representations withouthanging (t;K). Hene, we only have to ensure that despite testing less polyno-mials we are able to apply our indution hypothesis. Taking the notations fromthe proof of Theorem 4.4.37, let us �rst hek the situation for m-polynomials.Let PKj=1 HM(mj ? fj ? lj) = o. Then by De�nition 4.4.36 there exists a modulepolynomial h = PKj=1mj ? fj ? lj and by our assumption there is a polynomialh0 in the stable loalization suh that h�!h0 o. Moreover, h0 ��!F o. Then byLemma 4.4.40 the m-polynomial h has a standard representations bounded byt. Hene we an hange the representation of g by substituting h by its repre-sentation giving us a smaller representation and by our indution hypothesis g isreduible by F and we are done.It remains to study the ase where PKj=1 HM(mj ? fj ? lj) 6= 0. Then wehave HT(PKj=1mj ? fj ? lj) = t = HT(g), HC(g) = HC(PKj=1mj ? fj ? lj) 2ideal(fHC(m1 ? f1 ? l1); : : : ;HC(mK ? fK ? lK)g) and even HM(PKj=1mj ? fj ? lj) =HM(g). Hene HC(g) is =)-reduible by �, � 2 G, G a (weak) Gr�obner basis ofideal(fHC(m1 ? f1 ? l1); : : : ;HC(mK ? fK ? lK)g) in R with respet to the redutionrelation =). Let g� be the respetive g-polynomial orresponding to �. Then weknow that g��!g0� o for some g0� in the stable loalization and g0� ��!F o. More-over, we know that the head monomial of g0� is reduible by some polynomialf 2 F and we assume HT(g�) = HT(m ? HT(f) ? l) = HT(m ? f ? l) � HT(f)and HC(g�) =)HC(m?f?l). Then, as HC(g) is =)-reduible by HC(g�), HC(g�)is =)-reduible by HC(g0�), HC(g0�) is =)-reduible to zero and (A4) holds, thehead monomial of g is also reduible by some f 0 2 F and we are done. q.e.d.Again, if for in�nite F we an assure that the redution relation is Noetherian,the proof still holds.4.4.3 Funtion Rings over the IntegersIn the previous setion we have seen that for the redution relation for F based onthe abstrat notion of the redution relation =)R there is not enough information







4.4 Ideals and Standard Representations 157on the redution step involving the oeÆient and hene we annot prove ananalogon of the Translation Lemma.As in the ase of studying one-sided ideals, when studying speial redutionrings where we have more information on the spei� redution relation =)Rthe situation often an be improved. Again we go into the details for the asethat R is the ring of the integersZ. The redution relation presented in De�nition4.4.32 then an be reformulated for this speial ase as follows:De�nition 4.4.41Let p, f be two non-zero polynomials in FZ. We say f redues p to q at � � t inone step, i.e. p�!f q, if there exist u; v 2 T(FZ) suh that1. t 2 supp(p) and p(t) = �,2. HT(u ? HT(f) ? v) = HT(u ? f ? v) = t � HT(f),3. � �ZHC(u ? f ? v) > 0 and � =)HC(u?f?v) Æ where � = HC(u ? f ? v) � �+ Æwith �; Æ 2 Z, 0 � Æ < HC(u ? f ? v), and4. q = p � u ? f ? v � �.We write p�!f if there is a polynomial q as de�ned above and p is then alledreduible by f . Further, we an de�ne ��! ; +�! and n�! as usual. Redutionby a set F � Fnfog is denoted by p�!F q and abbreviates p�!f q for somef 2 F . �As before, for this redution relation we an still have t 2 supp(q). The importantpart in showing termination now is that if we still have t 2 supp(q) then itsoeÆient will be smaller aording to our ordering hosen forZ(ompare Setion4.2.3) and sine this ordering is well-founded we are done. Due to the additionalinformation on the oeÆents, again we do not have to restrit ourselves to �nitesets of polynomials in order to ensure termination.Corollary 4.4.42Let F be a set of polynomials in FZnfog.1. For p; q 2 FZ, p�!F q implies p � q, in partiular HT(p) � HT(q).2. �!F is Noetherian.Similarly, the additional information we have on the oeÆients before and afterthe redution step now enables us to prove an analogon of the Translation Lemmafor funtion rings over the integers. The �rst and seond part of the lemma areonly needed to prove the essential third part.







158 Chapter 4 - Funtion RingsLemma 4.4.43Let F be a set of polynomials in FZand p; q; h polynomials in FZ.1. Let p � q�!F h suh that the redution step takes plae at the monomial� � t and we additionally have t 62 supp(h). Then there exist p0; q0 2 FZsuhthat p ��!F p0 and q ��!F q0 and h = p0 � q0.2. Let o be the unique normal form of p with respet to F and t = HT(p).Then there exists a polynomial f 2 F suh that p�!f p0 and t 62 supp(p0).3. Let o be the unique normal form of p � q with respet to F . Then thereexists g 2 FZsuh that p ��!F g and q ��!F g.Proof :1. Let p� q�!F h at the monomial � � t, i.e., h = p� q�u ? f ? v �� for someu; v 2 T(FZ); � 2Zsuh that HT(u?HT(f)?v) = HT(u?f ?v) = t � HT(f)and HC(u ? f ? v) > 0. Remember that � is the oeÆient of t in p � q.Then as t 62 supp(h) we know � = HC(u ? f ? v) � �. Let �1 respetively �2be the oeÆients of t in p respetively q and �1 = (HC(u?f ?v) ��) ��1+1respetively �2 = (HC(u?f ?v) ��) ��2+2 for some �1; �2; 1; 2 2Zwhere0 � 1; 2 < HC(u ? f ? v) � �. Then � = HC(u ? f ? v) � � = �1 � �2 =(HC(u ? f ? v) � �) � (�1 � �2) + (1 � 2), and as 1 � 2 is no multiple ofHC(u ? f ? v) � � we have 1 � 2 = 0 and hene �1 � �2 = 1. We have todistinguish two ases:(a) �1 6= 0 and �2 6= 0: Then p�!F p�u ? f ? v �� ��1 = p0, q�!F q�u ?f ? v �� ��2 = q0 and p0� q0 = p�u ? f ? v �� ��1� q+u ? f ? v �� ��2 =p � q � u ? f ? v � � � � = h.(b) �1 = 0 and �2 = �1 (the ase �2 = 0 and �1 = 1 being symmetri):Then p0 = p, q�!F q � u ? f ? v � � � �2 = q + u ? f ? v � � = q0 andp0 � q0 = p � q � u ? f ? v � � = h.2. Sine p ��!F o, HM(p) = � � t must be F -reduible. Let fi 2 F , i 2 Ibe a series of all not neessarily di�erent polynomials in F suh that � � tis reduible by them involving terms ui; vi. Then HC(ui ? fi ? vi) > 0.Moreover, let  = min�fHC(ui?fi?vi) j i 2 Ig and without loss of generalityHM(u?f?v) = �t for some f 2 F , HT(u?HT(f)?v) = HT(u?f?v) � HT(f).We laim that for p�!f p� � � u ? f ? v = p0 where � = � �  + Æ, �; Æ 2Z,0 � Æ < , we have t 62 supp(p0). Suppose HT(p0) = t. Then by ourde�nition of redution we must have 0 < HC(p0) < HC(u ? f ? v). But thenp0 would no longer be F -reduible ontraditing our assumption that o isthe unique normal form of p.







4.4 Ideals and Standard Representations 1593. Sine o is the unique normal form of p � q by 2. there exists a redutionsequene p � q�!fi1 h1�!fi2 h2�!fi3 : : : �!fik o suh that HT(p � q) �HT(h1) � HT(h2) � : : :. We show our laim by indution on k, wherep � q k�!F o is suh a redution sequene. In the base ase k = 0 thereis nothing to show as then p = q. Hene, let p � q�!F h k�!F o. Thenby 1. there are polynomials p0; q0 2 FZsuh that p ��!F p0 and q ��!F q0and h = p0 � q0. Now the indution hypothesis for p0 � q0 k�!F o yields theexistene of a polynomial g 2 FZsuh that p ��!F g and q ��!F g. q.e.d.Hene weak Gr�obner bases are in fat Gr�obner bases and an hene be hara-terized as follows (ompare De�nition 4.2.10):De�nition 4.4.44A set F � FZnfog is alled a (weak) Gr�obner basis of ideal(F ) if for all g 2ideal(F ) we have g ��!F o. �Corollary 4.4.45Let F be a set of polynomials in FZand g a non-zero polynomial in ideal(F ) suhthat g ��!F o. Then g has a representation of the formg = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(FZ); n 2 Nsuh that HT(g) = HT(mi ? HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi), 1 � i � k,and HT(g) � HT(mi ? fi ? li) = HT(mi ? HT(fi) ? li) for all k + 1 � i � n.In ase o is the unique normal form of g with respet to F we even an �nd arepresentation where additionally HT(m1 ? f1 ? l1) � HT(m2 ? f2 ? l2) � : : : �HT(mn ? fn ? ln).Proof :We show our laim by indution on n where g n�!F o. If n = 0 we are done.Else let g 1�!F g1 n�!F o. In ase the redution step takes plae at the headmonomial, there exists a polynomial f 2 F and u; v 2 T(FZ); � 2 Zsuh thatHT(u ? HT(f) ? v) = HT(u ? f ? v) = HT(g) � HT(f) and HC(g) =)HC(u?f?v) Æwith HC(g) = HC(u ? f ? v) � � + Æ for some �; Æ 2 Z, 0 � Æ < HC(u ? f ? v).Moreover the indution hypothesis then is applied to g1 = g � u ? f ? v � �. Ifthe redution step takes plae at a monomial with term smaller HT(g) for therespetive monomial multiple u?f ?v �� we immediately get HT(g) � u?f ?v ��and we an apply our indution hypothesis to the resulting polynomial g1. In







160 Chapter 4 - Funtion Ringsboth ases we an arrange the monomial multiples u ? f ? v � � arising from theredution steps in suh a way that gives us the desired representation. q.e.d.Now Gr�obner bases an be haraterized using the onept of s-polynomials om-bined with the tehnique of saturation whih is neessary in order to desribethe whole ideal ongruene by the redution relation.De�nition 4.4.46Let p1; p2 be polynomials in FZ. If there are respetive terms t; u1; u2; v1; v2 2 Tsuh that HT(ui?HT(pi)?vi) = HT(ui?pi?vi) = t � HT(pi) letHC(ui?pi?vi) = i.Assuming 1 � 2 > 058, there are �; Æ 2Zsuh that 1 = 2 ��+Æ and 0 � Æ < 2and we get the following s-polynomialspol(p1; p2; t; u1; u2; v1; v2) = u2 ? p2 ? v2 � � � u1 ? p1 ? v1:The set SPOL(fp1; p2g) then is the set of all suh s-polynomials orresponding top1 and p2. �Again these sets in general are not �nite.Theorem 4.4.47Let F be a set of polynomials in FZnfog. Then F is a Gr�obner basis if and onlyif 1. for all f in F and for all m; l in M(FZ) we have m? f ? l ��!F o, and2. all s-polynomials orresponding to F as spei�ed in De�nition 4.4.46 redueto o using F .Proof :In ase F is a Gr�obner basis, sine these polynomials are all elements of ideal(F )they must redue to zero using F .The onverse will be proven by showing that every element in ideal(F ) is reduibleby F . Then as g 2 ideal(F ) and g�!F g0 implies g0 2 ideal(F ) we have g ��!F o.Notie that this is suÆient as the redution relation �!F is Noetherian.Let g 2 ideal(F ) have a representation in terms of F of the following form:g = Pnj=1 vj ? fj ? wj � �j suh that fj 2 F , vj; wj 2 T and �j 2 Z. Dependingon this representation of g and the well-founded total ordering � on T we de�net = max�fHT(vj ? fj ? wj) j 1 � j � mg, K as the number of polynomials fj ? wjwith head term t, and M = ffHC(vj ? fj ? wj) j HT(vj ? fj ? wj) = tgg a multiset58Notie that i > 0 an always be ahieved by studying the situation for �pi in ase wehave HC(ui ? pi ? vi) < 0.







4.4 Ideals and Standard Representations 161in Z. We show our laim by indution on (t;M), where (t0;M 0) < (t;M) if andonly if t0 � t or (t0 = t and M 0 �M).Sine by our �rst assumption every multiple vj ?fj ?wj in this sum redues to zerousing F and hene has a representation as spei�ed in Corollary 4.4.45, we anassume that HT(vj ? HT(fj) ? wj) = HT(vj ? fj ? wj) � HT(fj) holds. Moreover,without loss of generality we an assume that the polynomial multiples withhead term t are just v1 ?f1 ?w1; : : : ; vK ?fK ?wK and additionally we an assumeHC(vj ? fj ? wj) > 059.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and evenHM(g) = HM(v1 ? f1 ? w1 ��1), implying that g is right reduible at HM(g) by f1.Hene let us assume K > 1.Without loss of generality we an assume that HC(v1?f1?w1) � HC(v2?f2?w2) > 0and there are �; � 2Zsuh that HC(v2?f2?w2)��+� = HC(v1?f1?w1) and HC(v2?f2?w2) > � � 0. Sine t = HT(v1?f1?w1) = HT(v2?f2?w2) by De�nition 4.4.46we have an s-polynomial spol(f1; f2; t; v1; v2; w1; w2) = v2 ?f2 ?w2 ���v1 ?f1 ?w1.If spol(f1; f2; t; v1; v2; w1; w2) 6= o60 then spol(f1; f2; t; v1; v2; w1; w2) ��!F o impliesspol(f1; f2; t; v1; v2; w1; w2) =Pki=1mi ? hi ? li, hi 2 F , mi; li 2 M(FZ) where thissum is a representation in the sense of Corollary 4.4.45 with terms bounded byHT(spol(f1; f2; t; v1; v2; w1; w2)) � t. This gives usv1 ? f1 ? w1 � �1 + v2 ? f2 ? w2 � �2 (4.8)= v1 ? f1 ? w1 � �1 + v2 ? f2 ? w2 � �1 � �� v2 ? f2 ? w2 � �1 � �| {z }=o +v2 ? f2 ? w2 � �2= v2 ? f2 ? w2 � (�1 � � + �2)� (v2 ? f2 ? w2 � �� v1 ? f1 ? w1)| {z }=spol(f1;f2;t;v1;v2;w1;w2) ��1= v2 ? f2 ? w2 � (�1 � � + �2)� ( kXi=1 mi ? hi ? li) � �1and substituting this in the representation of g we get a new rep-resentation with t0 = max�fHT(vj ? fj ? wj);HT(mj ? hj ? lj) jfj; hj appearing in the new representation g, and M 0 = ffHC(vj ? fj ?wj);HC(mj ? hj ? lj) j HT(vj ? fj ? wj) = HT(mj ? hj ? lj) = t0gg and eithert0 � t and we have a smaller representation for g or in ase t0 = t we have todistinguish two ases:1. �1 � �+ �2 = 0.ThenM 0 = (M �ffHC(v1?f1 ?w1);HC(v2?f2 ?w2)gg)[ffHC(mj ?hj ? lj) j59This an easily be ahieved by adding �f to F for all f 2 F and using vj ?(�fj)?wj �(��j)in ase HC(vj ? fj ? wj) < 0.60In ase spol(f1; f2; t; v1; v2; w1; w2) = o the proof is similar. We just have to subsitute o inthe equations below whih immediately gives us a smaller representation of g.







162 Chapter 4 - Funtion RingsHT(mj ? hj ? lj) = tgg. As those polynomials hj with HT(mj ? hj ? lj) = tare used to redue the monomial � � t = HM(spol(f1; f2; t; v1; v2; w1; w2)) weknow that for them we have 0 < HC(mj ? hj ? lj) � � < HC(v2 ? f2 ? w2) �HC(v1 ? f1 ? w1) and hene M 0 � M and we have a smaller representationfor g.2. �1 � �+ �2 6= 0.ThenM 0 = (M�ffHC(v1?f1?w1)gg)[ffHC(mj?hj ?lj) j HT(mj?hj ?lj) =tgg. Again M 0 �M and we have a smaller representation for g.Notie that the ase t0 = t and M 0 �M annot our in�nitely often but has toresult in either t0 < t or will lead to t0 = t and K = 1 and hene to reduibilityby �!F . q.e.d.Now the question arises when the ritial situations in this haraterization anbe loalized to subsets of the respetive sets as in Theorem 4.4.31. Reviewing theProof of Theorem 4.4.31 we �nd that Lemma 4.4.16 is entral as it desribes whenmultiples of polynomials whih have a redutive standard representation in termsof some set F again have suh a representation. As we have seen before, this willnot hold for funtion rings over redution rings in general. As in Setion 4.4.2,to give loalizations of Theorem 4.4.47 the onept of stable subsets is suÆient:De�nition 4.4.48A set C � S � FZis alled a stable loalization of S if for every g 2 S thereexists f 2 C suh that g�!f o. �In ase FZand �! allow suh stable loalizations, we an rephrase Theorem4.4.47 as follows:Theorem 4.4.49Let F be a set of polynomials in FZnfog. Then F is a Gr�obner basis of ideal(F )if and only if1. for all s in a stable loalization of fm ? f ? l j f 2 FZ;m; l 2 M(FZ)g wehave s ��!F o, and2. for all h in a stable loalization of the s-polynomials orresponding to F asspei�ed in De�nition 4.4.46 we have h ��!F o.When proving Theorem 4.4.49, we an substitute the ritial situation using ananalogon of Lemma 4.4.16, whih will be suÆient to make the representationused in the proof smaller. It is a diret onsequene of Lemma 4.4.40.







4.4 Ideals and Standard Representations 163Corollary 4.4.50Let F � FZnfog and f , p non-zero polynomials in FZ. If p�!f o and f ��!F o,then p has a representation of the formp = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(FZ); n 2 Nsuh that HT(p) = HT(mi ?HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi) for 1 � i � kand HT(p) � HT(mi ? fi ? li) for all k + 1 � i � n.Proof Theorem 4.4.49:The proof is basially the same as for Theorem 4.4.47. Due to Corollary 4.4.50 wean substitute the multiples vj ?fj ?wj by appropriate representations. Hene, weonly have to ensure that despite testing less polynomials we are able to apply ourindution hypothesis. Taking the notations from the proof of Theorem 4.4.47, letus hek the situation for K > 1.Without loss of generality we an assume that HC(v1?f1?w1) � HC(v2?f2?w2) > 0and there are �; � 2 Zsuh that HC(v2 ? f2 ? w2) � � + � = HC(v1 ? f1 ? w1) andHC(v2?f2?w2) > � � 0. Sine t = HT(v1?f1?w1) = HT(v2?f2?w2) by De�nition4.4.46 we have an s-polynomial h in the stable loalization of SPOL(f1; f2) suhthat v2?f2?w2 ���v1?f1?w1�!h o. If h 6= o61 then by Corollary 4.4.50 h ��!F oimplies v2 ? f2 ? w2 � � � v1 ? f1 ? w1 = Pki=1mi ? hi ? li, hi 2 F , mi; li 2 M(FZ)where this sum is a representation in the sense of Corollary 4.4.45 with termsbounded by HT(m ? h ? l) � t. This gives usv1 ? f1 ? w1 � �1 + v2 ? f2 ? w2 � �2 (4.9)= v1 ? f1 ? w1 � �1 + v2 ? f2 ? w2 � �1 � �� v2 ? f2 ? w2 � �1 � �| {z }=o +v2 ? f2 ? w2 � �2= v2 ? f2 ? w2 � (�1 � � + �2)� (v2 ? f2 ? w2 � �� v1 ? f1 ? w1) � �1= v2 ? f2 ? w2 � (�1 � � + �2)� ( kXi=1 mi ? hi ? li) � �1and substituting this in the representation of g we get a new rep-resentation with t0 = max�fHT(vj ? fj ? wj);HT(mj ? hj ? lj) jfj; hj appearing in the new representation g, and M 0 = ffHC(vj ? fj ?wj);HC(mj ? hj ? lj) j HT(vj ? fj ? wj) = HT(mj ? hj ? lj) = t0gg and eithert0 � t or (t0 = t andM 0 �M) and in both ases we have a smaller representationfor g. Notie that the ase t0 = t and M 0 � M annot our in�nitely oftenbut has to result in either t0 < t or will lead to t0 = t and K = 1 and hene to61In ase h = o the proof is similar. We just have to subsitute o in the equations below whihimmediately gives us a smaller representation of g.







164 Chapter 4 - Funtion Ringsreduibility by �!F . q.e.d.4.5 Two-sided ModulesGiven a funtion ring F with unit 1 and a natural number k, let Fk =f(f1; : : : ; fk) j fi 2 Fg be the set of all vetors of length k with oordinates in F .Obviously Fk is an additive ommutative group with respet to ordinary vetoraddition. Moreover, Fk is suh an F-module with respet to the salar multipli-ation f ?(f1; : : : ; fk) = (f ?f1; : : : ; f ?fk) and (f1; : : : ; fk)?f = (f1?f; : : : ; fk ?f).Additionally Fk is alled free as it has a basis62. One suh basis is the set ofunit vetors e1 = (1; o; : : : ; o); e2 = (o;1; o; : : : ; o); : : : ; ek = (o; : : : ; o;1). Usingthis basis the elements of Fk an be written uniquely as f = Pki=1 fi ? ei wheref = (f1; : : : ; fk).De�nition 4.5.1A subset of Fk whih is again an F -module is alled a submodule of Fk.As before any ideal of F is an F -module and even a submodule of the F -moduleF1. Provided a set of vetors S = ff1; : : : ; fsg the set fPsi=1Pnij=1 gij ? fi ? hij jgij ; hij 2 Fg is a submodule of Fk. This set is denoted as hSi and S is alled agenerating set.Theorem 4.5.2Let F be Noetherian. Then every submodule of Fk is �nitely generated.Proof :Let S be a submodule of Fk. Again we show our laim by indution on k. Fork = 1 we �nd that S is in fat an ideal in F and hene by our hypothesis �nitelygenerated. For k > 1 let us look at the set I = ff1 j (f1; : : : ; fk) 2 Sg. Thenagain I is an ideal in F and hene �nitely generated. Let fg1; : : : ; gs j gi 2 Fg bea generating set of I. Choose g1; : : : ;gs 2 S suh that the �rst oordinate of giis gi. Note that the set f(f2; : : : ; fk) j (o; f2; : : : ; fk) 2 Sg is a submodule of Fk�1and hene �nitely generated by some set f(ni2; : : : ; nik); 1 � i � wg. Then the setfg1; : : : ;gsg [ fni = (o; ni2; : : : ; nik) j 1 � i � wg is a generating set for S. To seethis assumem = (m1; : : : ;mk) 2 S. Then m1 =Psi=1Pnij=1 hij ? gi ? hij 0 for some62Here the term basis is used in the meaning of being a linearly independent set of generatingvetors.







4.5 Two-sided Modules 165hij; hij 0 2 F and m0 = m�Psi=1Pnij=1 hij ? gi ? hij 0 2 S with �rst oordinate o.Hene m0 =Pwi=1Pmij=1 lij ? ni ? lij 0 for some lij; lij0 2 F giving rise tom =m0+ sXi=1 niXj=1 hij ? gi ? hij 0 = wXi=1 miXj=1 lij ? ni ? lij 0 + sXi=1 niXj=1 hij ? gi ? hij 0:q.e.d.Fk is alled Noetherian if and only if all its submodules are �nitely generated.If F is a redution ring Setion 4.5 outlines how the existene of Gr�obner basesfor submodules an be shown.Now given a submodule S of Fk, we an de�ne Fk=S = ff + S j f 2 Fkg. Thenwith addition de�ned as (f+S)+(g+S) = (f+g)+S the set Fk=S is an abeliangroup and an be turned into an F -module by the ation g?(f+S)?h = g?f?h+Sfor g; h 2 F . Fk=S is alled the quotient module of Fk by S.As usual this quotient an be related to homomorphisms. The results arry overfrom ommutative module theory as an be found in [AL94℄. Reall that for twoF -modulesM and N , a funtion � :M �! N is an F -module homomorphismif �(f + g) = �(f) + �(g) for all f ;g 2 Mand �(g ? f ? h) = g ? �(f) ? h for all f 2 M; g; h 2 F :The homomorphism is alled an isomorphism if � is one to one and we writeM �= N . Let S = ker(�) = ff 2 M j �(f) = 0g. Then S is a submoduleof M and �(M) is a submodule of N . Sine all are abelian groups we knowM=S �= �(M) under the mapping M=S �! �(M) with f + S 7! �(f) whihis in fat an isomorphism. All submodules of the quotientM=S are of the formL=S where L is a submodule ofM ontaining S.Unfortunately, ontrary to the one-sided ase we an no longer show that every�nitely generated F -moduleM is isomorphi to some quotient of Fk. LetM bea �nitely generated F -module with generating set f1; : : : fk 2 M. Consider themapping � : Fk �!M de�ned by �(g1; : : : ; gk) =Pki=1 gi ? fi forM. The imageof the F -module homomorphis is no longerM.
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Chapter 5Appliations of Gr�obner BasesIn this hapter we outline how the onept of Gr�obner bases an be used to de-sribe algebrai questions and when solutions an be ahieved. We will desribethe problems in the following mannerProblemGiven: A desription of the algebrai setting of the problem.Problem: A desription of the problem itself.Proeeding: A desription of how the problem an be analyzed usingGr�obner bases.In a �rst step we do not require �niteness or omputability of the operations,espeially of a Gr�obner basis. Sine an ideal itself is always a Gr�obner basisitself, the assumption \Let G be a respetive Gr�obner basis" always holds andmeans a Gr�obner basis of the ideal generated by G.In ase a Gr�obner basis is omputable (though not neessarily �nite) and thenormal form omputation for a polynomial with respet to a �nite set is e�e-tive, our so-alled proeedings give rise to proedures whih an then be used totreat the problem in a onstrutive manner. If additionally the Gr�obner basisomputation terminates, these proedures terminate as well and the instane ofthe problem is deidable. In ase Gr�obner basis omputation always terminatesfor a hosen setting the whole problem is deidable in this setting.Of ourse \termination" here is meant in a theoretial sense while as we knowpratial \termination" is already often not ahievable for the Gr�obner basisomputation in the ordinary polynomial ring due to omplexity issues although�nite Gr�obner bases always exist.The terminology extends to one-sided ideals and we note those problems, wherethe one-sided ase also makes sense.







168 Chapter 5 - Appliations of Gr�obner BasesWe will also note when weak Gr�obner bases are suÆient for the solution of aproblem.5.1 Natural AppliationsThe most obvious problem related to Gr�obner bases is the ideal membershipproblem. Charaterizing Gr�obner bases with respet to a redution relation usesthe important fat that an element belonging to the ideal will redue to zero usingthe Gr�obner basis.Ideal Membership ProblemGiven: A set F � F and an element f 2 F .Problem: f 2 ideal(F )?Proeeding: 1. Let G be a Gr�obner basis of ideal(F ).2. If f ��!G o, then f 2 ideal(F ).Hene Gr�obner bases give a semi-answer to this question in ase they are om-putable and the normal form omputation is e�etive. To give a negative an-swer the Gr�obner basis omputation must either terminate or one must expliitlyprove, e.g. using properties of the enumerated Gr�obner basis, that the elementwill never redue to zero.These results arry over to one-sided ideals using the appropriate one-sidedGr�obner bases.Moreover, weak Gr�obner bases are suÆient to solve the problem.A normal form omputation always gives rise to a speial representation in termsof the polynomials used for redution and in ase the normal form is zero suhrepresentations are speial standard representations. We give two instanes ofthis problem.Representation Problem 1Given: A Gr�obner basis G � F and an element f 2 ideal(G).Problem: Give a representation of f in terms of G.Proeeding: Reduing f to o using G yields suh a representation.In ase the normal form omputation is e�etive, we an ollet the polynomialsand multiples used in the redution proess and ombine them to the desiredrepresentation. Notie that sine we know that the element is in the ideal, it isenough to additionally require that the Gr�obner basis is reursively enumerableas a set.







5.1 Natural Appliations 169The result arries over to one-sided ideals using the appropriate one-sided Gr�obnerbases.Again, weak Gr�obner bases are suÆient to solve the problem.Often the ideal is not presented in terms of a Gr�obner basis. Then additionalinformation is neessary whih in the omputational ase is related to olletingthe history of polynomials reated during ompletion. Notie that the proeedingsin this ase require some equivalent to Lemma 4.4.16 to hold and hene theproblem is restrited to funtion rings over �elds.Representation Problem 2Given: A set F � FK and an element f 2 ideal(F ).Problem: Give a representation of f in terms of F .Proeeding: 1. Let G be a Gr�obner basis of ideal(F ).2. Let g =Pkgi=1mi ? fi ? ~mi be representations of the elementsg 2 G in terms of F .3. Let f =Pkj=1 ni ? gi ? ~ni be a representation of f in terms ofG.4. The sums in 2. and 3. yield a representation of f in terms ofF .In ase the Gr�obner basis is omputable by a ompletion proedure the proedurehas to keep trak of the history of polynomials by storing their representationsin terms of F . If the ompletion stops we an redue f to zero and substitutethe representations of the polynomials used by their \history representation".If the Gr�obner basis is only reursively enumerable both proesses have to beinterwoven and to ontinue until the normal form omputation for f reahes o.The result arries over to one-sided ideals using the appropriate one-sided Gr�obnerbases.Moreover, weak Gr�obner bases are suÆient to solve the problem.Other problems are related to the omparison of ideals. For example given twoideals one an ask whether one is inluded in the other.Ideal Inlusion ProblemGiven: Two sets F1; F2 � F .Problem: ideal(F1) � ideal(F2)?Proeeding: 1. Let G be a Gr�obner basis of ideal(F2) .2. If F1 ��!G o, then ideal(F1) � ideal(F2).







170 Chapter 5 - Appliations of Gr�obner BasesIn ase the Gr�obner basis is omputable and the normal form omputation ise�etive this yields a semi-deision proedure for the problem. If additionally theGr�obner basis omputation terminates for F1 or we an prove that some elementof the set F1 does not belong to ideal(F2), e.g. by deriving knowledge from theenumerated Gr�obner basis, we an also give a negative answer.The result arries over to one-sided ideals using the appropriate one-sided Gr�obnerbases.Weak Gr�obner bases are suÆient to solve the problem.Applying the inlusion problem in both diretions we get a haraterization forequality of ideals.Ideal Equality ProblemGiven: Two sets F1; F2 � F .Problem: ideal(F1) = ideal(F2)?Proeeding: 1. Let G1, G2 be Gr�obner bases of ideal(F1) respetivelyideal(F2).2. If F1 ��!G2 o, then ideal(F1) � ideal(F2).3. If F2 ��!G1 o, then ideal(F2) � ideal(F1).4. If 2. and 3. both hold, then ideal(F1) = ideal(F2).Again, Gr�obner bases at least give a semi-answer in ase they are omputable andthe normal form proedure is e�etive. We an on�rm whether two generatingsets are bases of one ideal. Of ourse, in ase the omputed Gr�obner bases are�nite, we an also give a negative answer. However, if the Gr�obner bases are not�nite, a negative answer is only possible, if we an prove either F1 6� ideal(F2) orF2 6� ideal(F1).The result arries over to one-sided ideals using the appropriate one-sided Gr�obnerbases.Again, weak Gr�obner bases are suÆient to solve the problem.In ase F ontains a unit say 1, we an ask whether an ideal is equal to the trivialideal in F generated by the unit.Ideal Triviality Problem 1Given: A set F � F .Problem: ideal(F ) = ideal(f1g)?Proeeding: 1. Let G be a respetive Gr�obner basis.2. If 1 ��!G o, then ideal(F ) = ideal(f1g).







5.1 Natural Appliations 171Again Gr�obner bases give a semi-answer in ase they an be omputed. If theGr�obner basis is additionally �nite or we an prove that 1 62 ideal(F ), then wean also on�rm ideal(F ) 6= ideal(f1g).Sine ideal(f1g) = F one an also rephrase the question for rings without a unit.Ideal Triviality Problem 2Given: A set F � F .Problem: ideal(F ) = F?Proeeding: 1. Let G be a Gr�obner basis of ideal(F ).2. If for every t 2 T , t ��!G o, then ideal(F ) = F .Of ourse now we have the problem that the test set T in general will not be�nite. Hene a Gr�obner basis an give a semi-answer in ase we an restrit thistest set to a �nite subset. If the Gr�obner basis is additionally �nite or we anprove that t 6 ��!G o for some t in the �nite sub test set of T , then we an alsoon�rm ideal(F ) 6= F .Both of these result arry over to one-sided ideals using the appropriate one-sidedGr�obner bases.As before, weak Gr�obner bases are suÆient to solve the problem.Ideal Union ProblemGiven: Two sets F1; F2 � F and an element f 2 F .Problem: f 2 ideal(F1) [ ideal(F2)?Proeeding: 1. Let G1, G2 be Gr�obner bases of ideal(F1) respetivelyideal(F2).2. If f ��!G1 o, then f 2 ideal(F1) [ ideal(F2).3. If f ��!G2 o, then f 2 ideal(F1) [ ideal(F2).Notie that ideal(F1) [ ideal(F2) 6= ideal(F1 [ F2). Moreover G1 [G2 is neither aGr�obner basis of ideal(F1) [ ideal(F2), whih in general is no ideal itself, nor ofideal(F1 [ F2).Again, weak Gr�obner bases are suÆient to solve the problem.The ideal generated by the set F1 [ F2 is alled the sum of the two ideals.De�nition 5.1.1For two ideals i; j � F the sum is de�ned as the seti + j = ff � g j f 2 i; g 2 jg:







172 Chapter 5 - Appliations of Gr�obner BasesAs in the ase of ommutative polynomials one an show the following theorem.Theorem 5.1.2For two ideals i; j � F the sum i + j is again an ideal. In fat, it is the smallestideal ontaining both, i and j. If F and G are the respetive generating sets for iand j, then F [ G is a generating set for i + j.Proof : First we hek that the sum is indeed an ideal:1. as o � o = o we get o 2 i+ j,2. for h1; h2 2 i + j we have that there are f1; f2 2 i and g1; g2 2 j suh thath1 = f1 � g1 and h2 = f2 � g2. Then h1 � h2 = (f1 � g1) � (f2 � g2) =(f1 � f2) � (g1 � g2) 2 i + j, and3. for h1 2 i + j, h2 2 F we have that there are f 2 i and g 2 j suh thath1 = f � g. Then h1 ? h2 = (f � g) ? h2 = f ? h2 � g ? h2 2 i + j as well ash2 ? h1 = h2 ? (f � g) = h2 ? f � h2 ? g 2 i + j.Sine any ideal ontaining i and j ontains i+j, this is the smallest ideal ontainingthem. It is easy to see that F [G is a generating set for the sum. q.e.d.Of ourse F[G in general will not be a Gr�obner basis. This beomes immediatelylear when looking at the following orollary.Corollary 5.1.3For F � F we have ideal(F ) = [f2F ideal(f):But we have already seen that for funtion rings a polynomial in general is noGr�obner basis of the ideal or one-sided ideal it generates.Ideal Sum ProblemGiven: Two sets F1; F2 � F and an element f 2 F .Problem: f 2 ideal(F1) + ideal(F2)?Proeeding: 1. Let G be a Gr�obner basis of ideal(F1 [ F2).2. If f ��!G o, then f 2 ideal(F1) + ideal(F2).Both of these result arry over to one-sided ideals using the appropriate one-sidedGr�obner bases.As before, weak Gr�obner bases are suÆient to solve the problem.Similar to sums for ommutative funtion rings we an de�ne produts of ideals.







5.1 Natural Appliations 173De�nition 5.1.4For two ideals i; j in a ommutative funtion ring F the produt is de�ned asthe set hi ? ji = ideal(ffi ? gi j fi 2 i; gi 2 jg): �Theorem 5.1.5For two ideals i; j in a ommutative funtion ring F the produt hi ? ji is againan ideal. If F and G are the respetive generating sets for i and j, then F ? G =ff ? g j f 2 F; g 2 Gg is a generating set for i ? j.Proof : First we hek that the produt is indeed an ideal:1. as o 2 i and o 2 j we get o 2 i ? j,2. for f; g 2 i ? j we have f � g 2 i ? j by our de�nition, and3. for f 2 i ? j, h 2 F we have that there are fi 2 i and gi 2 j suh thatf =Pki=1 fi ?gi and then f ?h = (Pki=1 fi ?gi)?h =Pki=1 fi ? (gi ?h) 2 i? j.It is obvious that ideal(F ? G) � hi ? ji as F ? G � i ? j. On the other handevery polynomial in hi ? ji an be written as a sum of produts ~f ? ~g where~f =Pni=1 hi ? fi 2 i, fi 2 F , hi 2 F and ~g =Pmj=1 gj ? ~hj , gj 2 G, ~hj 2 F . Heneevery suh produt ~f ? ~g is again of the desired form. q.e.d.Ideal Produt ProblemGiven: Two subsets F1; F2 of a ommutative funtion ring F and anelement f 2 F .Problem: f 2 hideal(F1) ? ideal(F2)i?Proeeding: 1. Let G be a Gr�obner basis of ideal(F1 ? F2).2. If f ��!G o, then f 2 hideal(F1) ? ideal(F2)i.Again, weak Gr�obner bases are suÆient to solve the problem.We lose this setion by showing how Gr�obner bases an help to detet the exis-tene of inverse elements in F in ase F has a unit say 1.De�nition 5.1.6Let F be a funtion ring with unit 1 and f 2 F . An element g 2 F is alled aright inverse of f in F if f ? g = 1. Similarly g is alled a left inverse of f inF if g ? f = 1. �







174 Chapter 5 - Appliations of Gr�obner BasesInverse Element ProblemGiven: An element f 2 F .Problem: Does f have a right or left inverse in F?Proeeding: 1. Let Gr be a respetive right Gr�obner basis of idealr(f).2. If 1 ��!rGr o, then f has a right inverse.1'. Let G` be a respetive left Gr�obner basis of ideal`(f).2'. If 1 ��!rG` o, then f has a left inverse.To see that this is orret we give the following argument for the right inversease: It is lear that f has a right inverse in F if and only if idealr(ffg) = Fsine f ? g � 1 = o for some g 2 F if and only if 1 2 idealr(ffg). So, in orderto deide whether f has a right inverse in F one has to distinguish the followingtwo ases provided we have a right Gr�obner basis Gr of idealr(ffg): If 1 6 ��!rGr othen f has no right inverse. If 1 ��!rGr o then we know 1 2 idealr(ffg), i.e. thereexist h 2 F suh that 1 = f ? h and hene h is a right inverse of f in F .A symmetri argument holds for the ase of left inverses.Of ourse in ase F is ommutative, left inverses and right inverses oinide inase they exist and we an use the fat that f ? g� 1 = g ? f � 1 = o if and onlyif 1 2 ideal(ffg).Again, weak Gr�obner bases are suÆient to solve the problem.It is also possible to ask for the existene of left and right inverses for elementsof the quotient rings desribed in the next setion.5.2 Quotient RingsLet F be a subset of F generating an ideal i = ideal(F ). The anonial homo-morphism from F onto F=i is de�ned asf 7�! [f ℄iwith [f ℄i = f+ i denoting the ongruene lass of f modulo i. The ring operationsare given by [f ℄i + [g℄i = [f + g℄i;[f ℄i � [g℄i = [f ? g℄i:A natural question now is whether two elements of F are in fat in the sameongruene lass modulo i.







5.2 Quotient Rings 175Congruene ProblemGiven: A set F � F and two elements f; g 2 F .Problem: f = g in F=ideal(F )?Proeeding: 1. Let G be a Gr�obner basis of ideal(F ).2. If f � g ��!G o, then f = g in F=ideal(F ).Hene if G is a Gr�obner basis for whih normal form omputation is e�etive, theongruene problem is solvable.Usually one element of the ongruene lass is identi�ed as its representative andsine normal forms with respet to Gr�obner bases are unique, they an be hosenas suh representatives.Notie that for weak Gr�obner bases unique representations for the quotient anno longer be determined by redution (review Example 3.1.1).Unique Representatives ProblemGiven: A set F � F and an element f 2 F .Problem: Determine a unique representative for f in F=ideal(F ).Proeeding: 1. Let G be a respetive Gr�obner basis.2. The normal form of f with respet to G is a unique represen-tative.Provided a Gr�obner basis of i together with an e�etive normal form algorithmwe an speify unique representatives by[f ℄i := normal form(f;G);and de�ne addition and multipliation in the quotient by[f ℄i + [g℄i := normal form(f + g;G);[f ℄i � [g℄i := normal form(f ? g;G):Similar to the ase of polynomial rings for a funtion ring over a �eld K we anshow that this struture is a K-vetor spae with a speial basis.Lemma 5.2.1For any ideal i � FK the following hold:1. FK=i is a K-vetor spae.2. The set B = f[t℄i j t 2 T g is a vetor spae basis and we an hose[t℄i = moni(normal form(t;G)) for G being a Gr�obner basis of i.







176 Chapter 5 - Appliations of Gr�obner BasesProof :1. We have to show that the following properties hold for V = FK=i:(a) There exists a mapping K � V �! V , (�; [f ℄i) 7�! � � [f ℄i alledmultipliation with salars.(b) (� � �) � [f ℄i = � � (� � [f ℄i) for all �; � 2 K, [f ℄i 2 V .() � � ([f ℄i + [g℄i) = � � [f ℄i + � � [g℄i for all � 2 K, [f ℄i; [g℄i 2 V .(d) (� + �) � [f ℄i = � � [f ℄i + � � [f ℄i for all �; � 2 K, [f ℄i 2 V .(e) 1 � [f ℄i = [f ℄i for all [f ℄i 2 V .It is easy to show that this follows from the natural de�nition� � [f ℄i := [� � f ℄ifor � 2 K, [f ℄i 2 V .2. It follows immediately that B generates the quotient FK=i. So it remainsto show that this basis is free in the sense that o annot be represented as anon-trivial linear ombination of elements in B. Let G be a Gr�obner basisof i. Then we an hoose the elements of B as the normal forms of theelements in T with respet to G. Sine for a polynomial in normal form allits terms are also in normal form we an onlude that these normal formsare elements of M(FK) and sine K is a �eld we an make them moni. Thisleaves us with a basis f~t = moni(normal form(t;G)) j t 2 T g . Now let usassume that B is not free, i.e. there exists k 2 N minimal with �i 2 Knf0gand [ti℄i 2 B, 1 � i � k suh that Pki �i � [ti℄i = o. Sine then we also getnormal form(Pki �i � ~ti; G) = o and all ~ti are di�erent and in normal form,all �i must equal 0 ontraditing our assumption. q.e.d.If we an ompute normal forms for the quotient elements, we an give a multi-pliation table for the quotient in terms of the vetor spae basis by[ti℄i � [tj℄i = [ti ? tj℄i = normal form(ti Æ tj; G):Notie that for a funtion ring over a redution ring the set B = f[t℄i j t 2 T galso is a generating set where we an hose [t℄i = normal form(t;G). But we anno longer hoose the representatives to be a subset of T . This is due to the fatthat if a monomial � � t is reduible by some polynomial g this does not implythat some other monomial � � t or even the term t is reduible by g. For example







5.2 Quotient Rings 177let R =Z, T = fa; �g and a ? a = 2 � a, � ? � = �, a ? � = � ? a = a. Then 2 � a isreduible by a while of ourse a isn't.In ase FK ontains a unit say 1 we an ask whether an element of FK=i isinvertible.De�nition 5.2.2Let f 2 FK. An element g 2 FK is alled a right inverse of f in FK=i iff ?g = 1 mod i. Similarly g is alled a left inverse of f in FK=i if g?f = 1 mod i.�In ase FK is ommutative, right and left inverses oinide if they exist and wean takle the problem by using the fat that f has an inverse in i if and onlyif f ? g � 1 2 i if and only if 1 2 i + ideal(ffg). Hene, if we have a Gr�obnerbasis G of the ideal i+ ideal(ffg) the existene of an inverse of f is equivalent to1 ��!G o.Even, weak Gr�obner bases are suÆient to solve the problem.For the non-ommutative ase we introdue a new non-ommuting tag variablez by lifting the multipliation z ? z = z, z ? t = zt and t ? z = tz for t 2 T andextending T to zT = fzit1zt2z : : : ztkzj j k 2 N; i; j 2 f0; 1g; ti 2 T g. The orderon this enlarged set of terms is indued by ombining a syllable ordering withrespet to z with the original ordering on T . By F zTK we denote the funtion ringover zT .This tehnique of using a tag variable now allows to study the right ideal generatedby f in FK=i, where i = ideal(F ) for some set F � FK, by studying the idealgenerated by F [ fz ? fg in F zTK beause of the following fat:Lemma 5.2.3Let F � FK and f 2 FK. Then idealFzTK (F [ fz ? fg) has a Gr�obner basis of theform G [ fz ? pi j i 2 I; pi 2 FKg with G � FK. In fat the set fpi j i 2 Ig thenis a right Gr�obner basis of idealFK =ir (ffg).Proof :Let G � FK be a Gr�obner basis of idealFK (F ). Then obviously idealFzTK (F [ fz ?fg) = idealFzTK (G[fz ?fg). Theorem 4.4.31 spei�es a riterion to hek whethera set is a Gr�obner basis and gives rise to test sets for a ompletion proedure.Notie that due to the ordering on zT whih uses the tag variable to induesyllables, we an state the following important result:If for a polynomial q 2 FK the multiple z ? q has a standard represen-tation, then so has every multiple u ? (z ? q) ? z ? v for u; v 2 zT .







178 Chapter 5 - Appliations of Gr�obner BasesMoreover, sine G is already a Gr�obner basis, no ritial situation for polynomialsin G have to be onsidered.Then a ompletion of G [ fz ? fg an be obtained as follows:In a �rst step only three kinds of ritial situations have to be onsidered:1. s-polynomials of the form zu ? g ? v� z ? f ? w where u; v; w 2 T suh thatHT(zu ? g ? v) = HT(z ? f ? w),2. s-polynomials of the form z ? f ? u � z ? f ? v where u; v 2 T suh thatHT(z ? f ? u) = HT(z ? f ? v), and3. polynomials of the form z?f?u where u 2 T suh that HT(f?u) 6= HT(f)?u.Sine normal forms of polynomials of the form z ? p, p 2 FK, with respet tosubsets of FK [ z ? FK are again elements of z ? FK [ fog, we an assume thatfrom then on we are ompleting a set G[fz ? qi j qi 2 FKg and again three kindsof ritial situations have to be onsidered:1. s-polynomials of the form zu ? g ? v� z ? qi ? w where u; v; w 2 T suh thatHT(zu ? g ? v) = HT(z ? qi ? w),2. s-polynomials of the form z ? qi ? u � z ? qj ? v where u; v 2 T suh thatHT(z ? qi ? u) = HT(z ? qj ? v), and3. polynomials of the form z ? pi ? u where u 2 T suh that HT(pi ? u) 6=HT(pi) ? u.Normal forms again are elements of z ? FK [ fog. Hene a Gr�obner basis of theform G [ fz ? pi j i 2 I; pi 2 FKg with G � FK must exist.It remains to show that the set fpi j i 2 Ig is in fat a right Gr�obner basis ofidealFK =ir (ffg). This follows immediately if we reall the history of the polynomialspi. In the �rst step they arise as a normal form with respet to G [ fz ? fg of apolynomial either of the form zu ? g ? v� z ? f ? w, z ? f ? u� z ? f ? v or z ? f ? u,hene belonging to idealFK =ir (ffg). In the iteration step, the new pn arises as anormal form with respet to G [ fz ? pi j i 2 Ioldg of a polynomial either of theform zu ? g ? v � z ? pi ? w, z ? pi ? u� z ? pj ? v or z ? pi ? u, hene belonging toidealFK =ir (fpi j i 2 Ioldg) = idealFK =ir (ffg). q.e.d.Sine we require FK to have a unit (otherwise looking for inverse elements makesno sense), F zTK then will ontain z.







5.3 Elimination Theory 179Inverse Element ProblemGiven: An element f 2 FK and a generating set F for i.Problem: Does f have a right or left inverse in FK=i?Proeeding: 1. Let G be a Gr�obner basis of idealFzTK (F [ fz ? fg).2. If z ��!G o, then f has a right inverse.1'. Let G be a Gr�obner basis of idealFzTK (F [ ff ? zg).2'. If z ��!G o, then f has a left inverse.To see that this is orret we give the following argument for the ase of rightinverses: It is lear that f has a right inverse in FK=i if and only if f ? g � 1 2i for some g 2 FK. On the other hand we get f ? g � 1 2 i if and only ifz?f ?g�z 2 idealFzTK (F )\z?FK: f ?g�1 2 i immediately implies z?(f ?g�1) 2idealFzTK (F )\z ?FK as i � idealFzTK (F ), z 2 zT � F zTK and z ? (f ?g�1) 2 z ?FK.On the other hand, if z ? f ? g � z 2 idealFzTK (F )\ z ?FK � idealFzTK (F ), then wehave a representation z ? f ? g � z =Pki=1 hi ? fi ? ~hi, hi; ~hi 2 F zTK , fi 2 F � FK.For a polynomial p 2 F zTK and some element� 2 K let p[z = �℄ be the polynomialwhih arises from p by substituting � for the variable z. Then by substitutingz = 1 we get f?g�1 =Pki=1 hi[z = 1℄?fi?~hi[z = 1℄ with hi[z = 1℄; ~hi[z = 1℄ 2 FKand are done.Now, in order to deide whether f has a right inverse in i one has to distinguish thefollowing two ases provided we have a Gr�obner basis G of idealFzTK (F [ fz ? fg):If z 6 ��!G o then there exists no g 2 FK suh that f ? g � 1 2 i and hene f hasno right inverse. If z ��!G o then we know z 2 idealFzTK (F [ fz ? fg), and evenz 2 idealFK =ir (fz ? fg) Hene there exist mi; ~mi; nj 2 M(F zTK ), fi 2 F suh thatz = kXi=1 mi ? fi ? ~mi + lXj=1 z ? f ? nj :Now substituting z = 1 gives us that for h =Plj=1 nj we have f ? h = 1( mod i)and we are done.As before, weak Gr�obner bases are suÆient to solve the problem.5.3 Elimination TheoryIn ordinary polynomial rings speial term orderings alled elimination orderingsan be used to produe Gr�obner bases with useful properties. Many problems,e.g. the ideal intersetion problem or the subalgebra problem, an be solved usingtag variables. The elimination orderings are then used to separate the ordinary







180 Chapter 5 - Appliations of Gr�obner Basesvariables from these additional tag variables. Something similar an be ahievedfor funtion rings.Let Z = fzi j i 2 Ig be a set of new tag variables ommuting with terms. Themultipliation ? an be extended by zi ? zj = zizj, z ? t = zt and t ? z = zt forz; zi; zj 2 Z and t 2 T . The ordering � is lifted to Z�T = fwt j w 2 Z�; t 2 T gby w1t1 � w2t2 if and only if w1 �lex w2 or (w1 = w2 and t1 � t2) for allw1; w2 2 Z�, t1; t2 2 T . Moreover, we require w � t for all w 2 Z�, t 2 T . Thisordering is alled an elimination ordering.Up to now we have studied ideals in FT . Now we an view FT as a subringof FZ�T and study ideals in both rings. For a generating set F � FT wehave idealFT (F ) � idealFZ�T (F ). This follows immediately sine for every f =Pki=1mi ? fi ? ~mi, mi; ~mi 2 M(FT ) this immediately implies mi; ~mi 2 M(FZ�T ).Lemma 5.3.1Let G be a weak Gr�obner basis of an ideal in FZ�T with respet to an eliminationordering. Then the following hold:1. idealFZ�T (G) \ FT = idealFT (G \ FT ).2. G \ FT is a weak Gr�obner basis for idealFT (G \ FT ) with respet to �.3. If G is a Gr�obner basis, then G\FT is a Gr�obner basis for idealFT (G\FT )with respet to �.Proof :1. � idealFZ�T (G) \ FT � idealFT (G \ FT ):Let f 2 idealFZ�T (G) \ FT . By the elimination ordering propertyfor w 2 Z� and t 2 T we have that wt � w � t holds and we getthat HT(f) 2 T if and only if f 2 FT . Sine f 2 idealFZ�T (G) weknow that f ��!G o and as all monomials in f are also in FT for eahg 2 G used in this redution sequene we know HT(g) 2 T and heneg 2 FT . Moreover, the redution sequene gives us a representationf =Pki=1mi ?fi ? ~mi with fi 2 G\FT and mi; ~mi 2 M(FT ), implyingf 2 idealFT (G \ FT ).� idealFT (G \ FT ) � idealFZ�T (G) \ FT :Let f 2 idealFT (G\FT ). Then f =Pki=1mi?fi ? ~mi with fi 2 G\FTand mi; ~mi 2 M(FT ). Hene f 2 idealFT (G) � idealFZ�T (G) andf 2 FT imply f 2 idealFZ�T (G) \ FT .







5.3 Elimination Theory 1812. We show this by proving that for every f 2 idealFT (G \ FT ) we havef ��!G\FT o. Sine G is a weak Gr�obner basis of idealFZ�T (G) andidealFT (G \ FT ) � idealFZ�T (G \ FT ) � idealFZ�T (G) we get f ��!G o. Onthe other hand, as every monomial in f is an element of FT , only elementsof G \ FT are appliable for redution.3. Let G be a Gr�obner basis with respet to some redution relation �!. Toshow that G\FT is a Gr�obner basis of idealFT (G\FT ) we proeed in twosteps:(a) � !G\FT = �idealFT (G\FT ):� !G\FT � �idealFT (G\FT ) trivially holds as beause of Axiom (A2)redution steps stay within the ideal ongruene. To see the onverselet f �ideal(G\FT ) g for f; g 2 FT . Then, as G is a Gr�obner basis andalso f �idealFZ�T (G) g holds, we know f � !G g and as HT(f);HT(g) 2FT , only elements from G \ FT an be involved and we are done.(b) �!G\FT is onuent:Let g; g1; g2 2 FT suh that g�!G\FT g1 and g�!G\FT g2. Then,as �!G is onuent we know that there exists f 2 FZ�T suh thatg1 ��!G f and g2 ��!G f . Now sine HT(g) 2 FT we an onlude thatg1; g2; f 2 FT and hene all polynomials used for redution in theredution sequenes lie in G \ FT proving our laim. q.e.d.Given an ideal i � FZ�T the set i\FT is again an ideal, now in FT . This followsas 1. o 2 i \ FT sine o 2 i and o 2 FT .2. For f; g 2 i\FT we have f + g 2 i as f; g 2 i and f + g 2 FT as f; g 2 FTyielding f + g 2 i \ FT .3. For f 2 i \ FT and h 2 FT we have that f ? h; h ? f 2 i as f 2 i andf ? h; h ? f 2 FT as f; h 2 FT yielding f ? h; h ? f 2 i \ FT .The ideal i \ FT is alled the elimination ideal of i with respet to Z sine theourrenes of the tag variables Z are eliminated.De�nition 5.3.2For an ideal i in F the setpi = ff 2 F j there exists m 2 N with fm 2 igis alled the radial of i. �







182 Chapter 5 - Appliations of Gr�obner BasesObviously we always have i � pi. Moreover, if F is ommutative the radial ofan ideal is again an ideal. This follows as1. o 2 pi sine o 2 i,2. For f; g 2 pi we know fm; gn 2 i for some m;n 2 N. Now f + g 2 pi if wean show that (f+g)q 2 i for some q 2 N. Remember that for q = m+n�1every term in the binomial expansion of (f + g)q has a fator of the formf i ? gj with i+ j = m+ n� 1. As either i � m or j � n we �nd f i ? gj 2 iyielding (f + g)q 2 i and hene f + g 2 pi. Notie that ommutativity isessential in this setting.3. For f 2 pi we know fm 2 i for some m 2 N. Hene for h 2 FT we get(f ?h)m = fm ?hm 2 i yielding f ?h 2 pi. Again ommutativity is essentialin the proof.Unfortunately this no longer holds for non-ommutative funtion rings. Forexample take T = fa; bg� with onatenation as multipliation. Then fori = ideal(fa2g) = fPni=1 �i � uia2vi j n 2 N; �i 2 Q; ui; vi 2 T g we get a 2 pi.But for b 2 F there exists no m 2 N suh that (ab)m 2 i and hene pi is no ideal.In the ommutative polynomial ring the question whether some polynomial f liesin the radial of some ideal generated by a set F an be answered by introduinga tag variable z and omputing a Gr�obner basis of the ideal generated by the setF [ ffz � 1g. It an be shown that if a ommutative funtion ring F ontains aunit 1 we get a similar result.Theorem 5.3.3Let F � F and f 2 F where F is a ommutative funtion ring ontaining a unit1. Then f 2 pidealFT (F ) if and only if 1 2 idealFfzg�T (F [ fz ? f � 1g) for somenew tag variable z.Proof :If f 2 pidealFT (F ), then fm 2 idealFT (F ) � idealFfzg�T (F [fz ?f �1g) for somem 2 N. But we also have that z ?f �1 2 idealFfzg�T (F [fz ?f �1g). Rememberthat for the tag variable we have t ? z = zt for all t 2 T and hene f ? z = z ? fyielding 1 = zm ? fm � (zm ? fm � 1)= zm ? fm| {z }2idealFT (F )� (z ? f � 1) ? (m�1Xi=0 zi ? f i)| {z }idealFfzg�T (F[fz?f�1g)







5.3 Elimination Theory 183and hene 1 2 idealFfzg�T (F [ fz ? f � 1g) and we are done.On the other hand, 1 2 idealFfzg�T (F [ fz ? f � 1g) implies 1 = Pki=1mi ? fi ?~mi +Plj=1 nj ? (z ? f � 1) ? ~nj with mi; ~mi; nj; ~nj 2 M(Ffzg�T ). Moreover, sinefor the tag variable we have z ? t = t ? z = zt for all t 2 T all terms ourringin Pki=1 gi ? fi ? hi are of the form zjt for some t 2 T , j 2 N. Now, sinez ? f � 1 2 idealFfzg�T (F [ fz ? f � 1g), we have zjt ? f j = t ? zj ? f j = t aswell as f j ? zj ? t = zj ? f j ? t = t. Hene, the ourrenes of z in a term zjtwith t 2 T an be \anelled" by multipliation with fm, m � j. Therefore, byhoosing m 2 N suÆiently large to anel all ourrenes of z in the terms ofPki=1mi ? fi ? ~mi, multiplying the equation with fm from both sides yieldsf2m = kXi=1 (fm ? mi) ? fi ? ( ~mi ? fm)and fm ? mi; ~mi ? fm 2 FT . Hene f2m 2 idealFT (F ) and therefore f 2pidealFT (F ). q.e.d.This theorem now enables us to desribe the membership problem for radials ofideals in terms of Gr�obner bases.Radial Membership ProblemGiven: A set F � F and an element f 2 F , F ontaining a unit 1.Problem: f 2 pideal(F )?Proeeding: 1. Let G be a respetive Gr�obner basis of idealFfzg�T (F [fz ?f�1g) for some new tag variable z.2. If 1 ��!G o, then f 2 pideal(F ).If additionally the funtion ring is ommutative, remember that then pi is anideal and we then desribe the equality problem for radials of ideals.Notie that weak Gr�obner bases are suÆient to solve the problem.Radial Equality ProblemGiven: Two sets F1; F2 � F , F ommutative ontaining a unit.Problem: pideal(F1) = pideal(F2)?Proeeding: 1. If for all f 2 F1 we have f 2 pideal(F2), then pideal(F1) �pideal(F2).2. If for all f 2 F2 we have f 2 pideal(F1), then pideal(F2) �pideal(F1).3. If 1. and 2. both hold, then pideal(F1) = pideal(F2).







184 Chapter 5 - Appliations of Gr�obner BasesCorretness an be shown as follows: Let us assume that for all f 2 F1 we havef 2 pideal(F2). Then, as F is ommutative ideal(F1) � pideal(F2) holds. Nowlet f 2 pideal(F1). Then for some m 2 N we have fm 2 ideal(F1) � pideal(F2)and hene pideal(F1) � pideal(F2).If F is not ommutative, ideal(F1) � pideal(F2) need not hold. Rememberthe funtion ring with T = fa; bg�. Take F1 = fag and F2 = fa2g. Thena 2 pideal(F2) sine a2 2 ideal(F2). But while ab 2 ideal(F1) we have ab 62pideal(F2).Radials of one-sided ideals an be de�ned as well and Theorem 5.3.3 is alsovalid in this setting and an be used to state the radial membership problem forone-sided ideals.Another problem whih an be handled using tag variables and elimination order-ings in the ommutative polynomial ring is that of ideal intersetions. Somethingsimilar an be done for funtion rings ontaining a unit.Theorem 5.3.4Let i and j be two ideals in F and z a new tag variable. Theni \ j = idealFfzg�T (z ? i [ (z � 1) ? j) \ Fwhere z ? i = fz ? f j f 2 ig and (z � 1) ? j = f(z � 1) ? f j f 2 jg.Proof :Every polynomial f 2 i \ j an be written as f = z ? f � (z � 1) ? f and henef 2 idealFfzg�T (z ? i [ (z � 1) ? j) \ F . On the other hand, f 2 idealFfzg�T (z ? i [(z� 1) ? j)\F implies f =Pki=1mi ? z ? fi ? ~mi+Plj=1 nj ? (z� 1) ? ~fj ? ~nj withfi 2 i, ~fj 2 j and mi; ~mi; nj; ~nj 2 M(Ffzg�T ). Sine f 2 FT , substituting z = 1gives us f 2 i and z = 0 gives us f 2 j and hene f 2 i \ j. q.e.d.Moreover, ombining this result with Lemma 5.3.1 gives us the means to hara-terize a Gr�obner basis of the intersetion ideal.Intersetion ProblemGiven: Two sets F1; F2 � F .Problem: Determine a basis of ideal(F1) \ ideal(F2).Proeeding: 1. Let G be a Gr�obner basis of idealFfzg�T (z ? i[ (z�1) ? j) withrespet to an elimination ordering with z > T .2. Then G \ F is a Gr�obner basis of ideal(F1) \ ideal(F2).These ideas extend to one-sided ideals as well.







5.3 Elimination Theory 185Again, weak Gr�obner bases are suÆient to solve the problem.Of ourse Theorem 5.3.4 an be generalized to intersetions of more than twoideals.The tehniques an also be applied to treat quotients of ideals in ase FK isommutative.De�nition 5.3.5For two ideals i and j in a ommutative funtion ring FK we de�ne the quotientto be the set i=j = fg j g 2 FK with g ? j � igwhere g ? j = fg ? f j f 2 jg. �Lemma 5.3.6Let FK be a ommutative funtion ring. Let i and j = ideal(F ) be two ideals inFK. Then i=j = \f2F(i=ideal(ffg):Proof : First let g 2 i=j. Then g ? j � i. Sine j = ideal(F ) we get g ? f 2 i forall f 2 F . As FK is ommutative we an onlude g ? ideal(ffg) � i for all f 2 Fand hene g 2 i=ideal(ffg) for all f 2 F yielding g 2 Tf2F (i=ideal(ffg).On the other hand, g 2 Tf2F (i=ideal(ffg) implies g 2 i=ideal(ffg) for all f 2 Fand hene g ? ideal(ffg) � i for all f 2 F . Sine j = ideal(F ) then g ? j � i andhene g 2 i=j. q.e.d.Hene we an desribe quotients of ideals in terms of quotients of the speial formi=ideal(ffg). These speial quotients now an be desribed using ideal intersetionin ase FK ontains a unit element 1.Lemma 5.3.7Let FK be a ommutative funtion ring. Let i be an ideal and f 6= o a polynomialin FK. Then i=ideal(ffg) = (i \ ideal(ffg)) ? f�1where f�1 is an element in FK suh that f ? f�1 = 1.Proof :First let g 2 i=ideal(ffg). Then g ? ideal(ffg) � i and g ? f 2 i, eveng ? f 2 i \ ideal(ffg). Hene g 2 (i \ ideal(ffg)) ? f�1.On the other hand let g 2 (i \ ideal(ffg)) ? f�1. Then g ? f 2 i \ ideal(ffg) � i.Sine FK is ommutative, this implies g ? ideal(ffg) � i and hene g 2







186 Chapter 5 - Appliations of Gr�obner Basesi=ideal(ffg). q.e.d.Hene we an study the quotient of i and j = ideal(F ) by studying (i\ideal(ffg))?f�1 for all f 2 F .5.4 Polynomial MappingsIn this setion we are interested in K-algebra homomorphisms between the non-ommutative polynomial ring K[Z� ℄ where Z = fz1; : : : ; zng, and FTK . Let� : K[Z�℄ �! FTKbe a ring homomorphism whih is determined by a linear mapping� : zi 7�! fiwith fi 2 FTK , 1 � i � n. Then for a non-ommutative polynomial g 2 K[Z�℄with g = Pmj=1 �j � wj, wj 2 Z� we get �(g) = Pmj=1 �j � �(wj) where �(wj) =wj[z1 7�! f1; : : : ; zn 7�! fn℄. The kernel of suh a mapping is de�ned asker(�) = fg 2 K[Z�℄ j �(g) = ogand the image is de�ned asim(�) = ff 2 FTK j there exists g 2 K[Z�℄ suh that �(g) = fg:Note that im(�) is a subalgebra of FTK .Lemma 5.4.1Let � : K[Z� ℄ �! FTK be a ring homomorphism. Then K[Z�℄=ker(�) �= im(�).Proof :To see this inspet the mapping  : K[Z� ℄=ker(�) �! im(�) de�ned by g +ker(�) 7! �(g). Then  is an isomorphism.1.  (g + ker(�)) = o for g 2 ker(�) by the de�nition of ker(�).2.  ((g1+ker(�))+(g2+ker(�))) = �(g1+g2) =  (g1+ker(�))+ (g2+ker(�)).3.  ((g1+ker(�))? (g2+ker(�))) = �(g1 ?g2) =  (g1+ker(�))? (g2+ker(�)),as for g 2 K[Z� ℄ and h 2 ker(�) we have  (g ? h) =  (h ? g) = o.4.  is onto as its image is the image of � and by the de�nition of the latter foreah f 2 im(�) = im( ) there exists g 2 K[Z�℄ suh that �(g) = f . Sinefor all h 2 ker(�) we have �(h) = o then  (g + ker(�)) =  (g) = �(g).







5.4 Polynomial Mappings 1875. Assume that for g1; g2 2 K[Z�℄ we have  (g1 + ker(�)) =  (g2 + ker(�)).Then �(g1) = �(g2) and this immediately implies that g1 � g2 2 ker(�) andhene  is also a monomorphism. q.e.d.Now the theory of elimination desribed in the previous setion an be used toprovide a Gr�obner basis for ker(�). Remember that the tag variables ommutewith the elements on T . Again we use the funtion ring FZ�TK and the fatthat K[Z�℄ � FZ�TK by mapping the polynomials to the respetive funtions inFZ�K � FZ�TK .Theorem 5.4.2Let i = ideal(fz1 � f1; : : : ; zn � fng) � FZ�TK . Then ker(�) = i \ K[Z� ℄.Proof :Let g 2 i \ K[Z�℄ . Then g = Pnj=1 hj ? sj ? h0j with sj 2 fz1 � f1; : : : ; zn � fng,hj; h0j 2 FZ�TK . As �(zj � fj) = o for all 1 � j � n we get �(g) = o and heneg 2 ker(�).To see the onverse let g 2 ker(�). Then g 2 K[Z�℄ and hene g =Pmj=1 �j � wjwhere wj 2 Z�, 1 � j � m. On the other hand we know �(g) = o. Theng = g � �(g)= mXj=1 �j � wj � mXj=1 �j � �(wj)= mXj=1 �j � (wj � �(wj))It remains to show that w��(w) 2 i for all w 2 Z� as this implies g 2 i\K[Z� ℄.This will be done by indution on k = jwj. For k = 1 we get w = zi for some1 � i � n and w � �(w) = zi � fi 2 i. In the indution step let w � a1 : : : ak,ai 2 Z. Then we geta1(a2 : : : ak � �(a2 : : : ak)) + (a1 � �(a1))�(a2 : : : ak)= a1a2 : : : ak � a1�(a2 : : : ak) + a1�(a2 : : : ak)� �(a1)�(a2 : : : ak)= a1a2 : : : ak � �(a1 : : : ak)Then, as ja2 : : : akj = k�1 the indution hypothesis yields a2 : : : ak��(a2 : : : ak) 2i and as of ourse a1 � �(a1) 2 i we �nd that a1a2 : : : ak � �(a1 : : : ak) 2 i. q.e.d.Now if G is a (weak) Gr�obner basis of i in FZ�TK with respet to an eliminationordering where the elements in Z� are made smaller than those in T , then G \







188 Chapter 5 - Appliations of Gr�obner BasesK[Z�℄ is a (weak) Gr�obner basis of the kernel of �. Hene, in ase �nite suhbases exist or bases allowing to solve the membership problem, they an be usedto treat the following question.Kernel of a Polynomial MappingGiven: A set F = fz1� f1; : : : ; zn� fng � FZ�TK enoding a mapping� : K[Z� ℄ �! FTK and an element f 2 K[Z�℄.Problem: f 2 ker(�)?Proeeding: 1. Let G be a (weak) Gr�obner basis of ideal(fz1�f1; : : : ; zn�fng)with respet to an elimination ordering.2. Let G0 = G \ K[Z�℄.3. If f ��!G0 o, then f 2 ker(�).A similar question an be asked for the image of a polynomial mapping.Image of a Polynomial MappingGiven: A set F = fz1� f1; : : : ; zn� fng � FZ�TK enoding a mapping� : K[Z� ℄ �! FTK and an element f 2 FTK .Problem: f 2 im(�)?Proeeding: 1. Let G be a Gr�obner basis of ideal(fz1� f1; : : : ; zn� fng) withrespet to an elimination ordering.2. If f ��!G h, with h 2 K[Z�℄, then f 2 im(�).The basis for this solution is the following theorem.Theorem 5.4.3Let i = ideal(fz1 � f1; : : : ; zn � fng) � FZ�TK and let G be a Gr�obner basis ofi with respet to an elimination ordering where the elements in Z� are smallerthan those in T . Then f 2 FTK lies in the image of � if and only if there existsh 2 K[Z�℄ suh that f ��!G h. Moreover, f = �(h).Proof :Let f 2 im(�), i.e., f 2 FTK . Then f = �(g) for some g 2 K[Z� ℄. Moreover,f�g = �(g)�g, and similar to the proof of Theorem 5.4.2 we an show f�g 2 i.Hene, f and g must redue to the same normal form h with respet to G. Asg 2 K[Z�℄ this implies h 2 K[Z� ℄ and we are done.To see the onverse, for f 2 FTK let f ��!G h with h 2 K[Z�℄. Then f �h 2 i andhene f � h =Pkj=1 gj ? sj ? g0j with sj 2 fz1 � f1; : : : ; zn � fng, gj ; g0j 2 FTK . As�(sj) = o we get f � �(h) = o and hene f = �(h) is in the image of �. q.e.d.







5.5 Systems of One-sided Linear Equations in Funtion Rings over the Integers 189Obviously the question of whether an element lies in the image of � then anbe answered in ase we an ompute a unique normal form of the element withrespet to the Gr�obner basis of i = ideal(fz1 � f1; : : : ; zn � fng).Another question is whether the mapping � : K[Z�℄ �! FTK is onto. This is thease if for every t 2 T we have t 2 im(�). A simpler solution an be found inase T � �� for some �nite set of letters � = fa1; : : : ; akg and additionally T issubword losed as a subset of ��.Theorem 5.4.4Let i = ideal(fz1 � f1; : : : ; zn � fng) � FZ�TK and let G be a Gr�obner basis ofi with respet to an elimination ordering where the elements in Z� are smallerthan those in T . Then f 2 FTK is onto if and only if for eah aj 2 �, we haveaj ��!G hj where hj 2 K[Z�℄. Moreover, aj = �(hj).Proof :Remember that � is onto if and only if aj 2 im(�) for 1 � j � k.Let us �rst assume that � is onto, i.e., a1; : : : ; ak 2 im(�). Then by Theorem5.4.3 there exist hj 2 K[Z�℄ suh that aj ��!G hj, 1 � j � k.To see the onverse, again, by Theorem 5.4.3 the existene of hj 2 K[Z�℄ suhthat aj ��!G hj , 1 � j � k now implies a1; : : : ; ak 2 im(�) and we are done.q.e.d.5.5 Systems of One-sided Linear Equations inFuntion Rings over the IntegersLet FZbe the funtion ring over the integers Z as spei�ed in Setion 4.2.3.Additionally we require that multiplying terms by terms results in terms, i.e., ? :T � T �! T . Then a redution relation an be de�ned for FZas follows:De�nition 5.5.1Let p, f be two non-zero polynomials in FZ. We say f redues p to q at � � t inone step, i.e. p�!g q, if(a) t = HT(f ? u) = HT(f) ? u for some u 2 T .(b) HC(f) > 0 and � = HC(f) ��+ Æ with �; Æ 2Z, � 6= 0, and 0 � Æ < HC(f).() q = p � f ? (� � u).The de�nition of s-polynomials an be derived from De�nition 4.2.66.







190 Chapter 5 - Appliations of Gr�obner BasesDe�nition 5.5.2Let p1; p2 be two polynomials in FZ. If there are respetive terms t; u1; u2 2 Tsuh that HT(pi) ? ui = HT(pi ? ui) = t � HT(pi) let HC(pi) = i.Assuming 1 � 2 > 01, there are �; Æ 2Zsuh that 1 = 2 ��+Æ and 0 � Æ < 2and we get the following s-polynomialspol(p1; p2; t; u1; u2) = � � p2 ? u2 � p1 ? u1:The set SPOL(fp1; p2g) then is the set of all suh s-polynomials orresponding top1 and p2. �Notie that two polynomials an give rise to in�nitely many s-polynomials. Asubset C of these possible s-polynomials SPOL(p1; p2) is alled a stable loal-ization if for any possible s-polynomial p 2 SPOL(p1; p2) there exists a speials-polynomial h 2 C suh that p�!h o.In the following let f1; : : : ; fm 2 FZ. We desribe a generating set of solutionsfor the linear one-sided inhomogeneous equation f1 ? X1 + : : :+ fm ? Xm = f0 inthe variables X1; : : : ;Xm provided a �nite omputable right Gr�obner basis of theright ideal generated by ff1; : : : ; fmg in FZexists.In order to �nd a generating set of solutions we have to �nd one solution off1 ? X1 + : : :+ fm ? Xm = f0 (5.1)and if possible a �nite set of generators for the solutions of the homogeneousequation f1 ? X1 + : : :+ fm ? Xm = o: (5.2)We proeed as follows assuming that we have a �nite right Gr�obner basis of theright ideal generated by ff1; : : : ; fmg:1. Let G = fg1; : : : ; gng be a right Gr�obner basis of the right ideal generated byff1; : : : ; fmg in FZ, and f = (f1; : : : ; fm), g = (g1; : : : ; gn) the orrespondingvetors. There are two linear mappings given by matries P 2 Mm�n(FZ),Q 2 Mn�m(FZ) suh that f � P = g and g �Q = f .2. Equation 5.1 is solvable if and only if f0 2 idealr(ff1; : : : ; fmg). This isequivalent to f0 ��!rG 0 and the redution sequene gives rise to a represen-tation f0 =Pni=1 gi ? hi = g � h where h = (h1; : : : ; hn). Then, as f � P = g,we get g � h = (f � P ) � h and P � h is suh a solution of equation 5.1.3. Let fz1; : : : ; zrg be a generating set for the solutions of the homogeneousequation g1 ? X1 + : : :+ gn ? Xn = 0 (5.3)1Notie that i > 0 an always be ahieved by studying the situation for �pi in ase wehave HC(pi) < 0.







5.5 Systems of One-sided Linear Equations in Funtion Rings over the Integers 191and let Im be the m � m identity matrix. Further let w1; : : : ;wm be theolumns of the matrix P �Q� Im. Sine f � (P �Q� Im) = f �P �Q� f � Im =g �Q� f = 0 these are solutions of equation 5.2. We an even show that theset fP � z1; : : : ; P � zr;w1; : : : ;wmg generates all solutions of equation 5.2:Let q = (q1; : : : ; qm) be an arbitrary solution of equation 5.2. Then Q � qis a solution of equation 5.3 as f = g � Q. Hene there are h1; : : : ; hr 2 FZsuh that Q � q = z1 � h1 + : : :zr � hr. Further we �ndq = P �Q�q�(P �Q�Im)�q = P �z1 �h1+: : : P �zr �hr+w1 �q1+: : :+wm �qmand hene q is a right linear ombination of elements in fP � z1; : : : ; P �zr;w1; : : : ;wmg.Now the important part is to �nd a generating set for the solutions of the ho-mogeneous equation 5.3. In ommutative polynomial rings is was suÆient tolook at speial vetors arising from those situations ausing s-polynomials. Thesesituations are again important in our setting:For every gi; gj 2 G not neessarily di�erent suh that the stable loalizationCi;j � SPOL(gi; gj) for the s-polynomials is not empty and additionally we requirethese sets to be �nite, we ompute vetors aìj, 1 � ` � jCj as follows:Let t = HT(gi ? u) = HT(gi) ? u = HT(gj) ? v = HT(gj ? v), t � HT(gi), t �HT(gj), be the overlapping term orresponding to h` 2 Ci;j. Further let HC(gi) �HC(gj) > 0 and HC(gi) = � � HC(gj) + � for some �; � 2 Z, 0 � � < HC(gj).Then h` = gi ? u� gj ? (� � v) = nXl=1 gl ? hl;where the polynomials hl 2 FZare due to the redution sequene h` ��!rG 0.Then aìj = (a1; : : : ; an), where ai = hi � u;aj = hj + � � v;al = hl;l 6= i; j, is a solution of 5.3 as Pnl=1 gl ? hl � gi ? u+ gj ? � � v = 0.If all sets SPOL(gi; gj) are empty for gi; gj 2 G, in the ase of ordinary Gr�obnerbases in polynomial rings one ould onlude that the homogeneous equation 5.3had no solution. This is no longer true for arbitrary funtion rings.Example 5.5.3LetZ[M℄ be a monoid ring whereM is presented by the omplete string rewritingsystem � = fa; bg, T = fab �! �g. Then for the homogeneous equation(a+ 1) ? X1 + (b+ 1) ? X2 = 0







192 Chapter 5 - Appliations of Gr�obner Baseswe �nd that the set fa + 1; b + 1g is a pre�x Gr�obner basis of the right idealit generates. Moreover neither of the head terms of the polynomials in thisbasis is pre�x of the other and hene no s-polynomials with respet to pre�xredution exist. Still the equation an be solved: (b;�1) is a solution sine(a+ 1) ? b� (b+ 1) = b+ 1� (b+ 1) = 0.Hene inspeting s-polynomials is not suÆient to desribe all solutions. Thisphenomenon is due to the fat that as seen before in most funtion rings s-polynomials are not suÆient for a Gr�obner basis test. Additionally the oneptof saturation has to be inorporated. In Example 5.5.3 we know that (a+1)?b =1+b, i.e. b+1 2 SAT(a+1). Of ourse (a+1)?b�!b+1 0 and hene (a+1)?b = b+1gives rise to a solution (b;�1) as required above.More general we an express these additional solutions as follows: For everygi 2 G with SAT(gi) a stable saturator for fgig and again we additionally requireit to be �nte, we de�ne vetors bi;` = (b1; : : : ; bn) 1 � ` � jSAT(gi)j as follows:For gi ? w` 2 SAT(gi) we know gi ? w` = Pnl=1 gl ? hl as G is a Gr�obner basis.Then bi;` = (b1; : : : ; bn), where bi = hi � w`;bl = hl;l 6= i, is a solution of equation 5.3 as Pnl=1 gl ? hl � gi ? w` = 0.Lemma 5.5.4Let fg1; : : : ; gng be a �nite right Gr�obner basis. For gi; gj let Ci;j be a stableloalization of SPOL(gi; gj). The �nitely many vetors a`1i;j;bi;`2 , 1 � i; j � n,1 � `1 � jCi;jj, 1 � `2 � jSAT(gi)j form a right generating set for all solutions ofequation 5.3.Proof :Let p = (p1; : : : ; pn) be an arbitrary (non-trivial) solution of equation 5.3, i.e.,Pni=1 gi ? pi = 0. Let Tp = maxfHT(gi ? tpij ) j 1 � i � n; pi = Pnij=1 �pij � tpij g,Kp the number of multiples gi ? tpij with Tp = HT(gi ? tpij ) 6= HT(gi) ? tpij , andMp = ffHC(gi) j HT(gi?tpij ) = Tpgg a multiset inZ. A solution q is alled smallerthan p if either Tq � Tp or (Tq = Tp and Kq < Kp) or (Tq = Tp and Kq = Kp andMq �Mp). We will prove our laim by indution on Tp, Kp and Mp and have todistinguish two ases:1. If there is 1 � i � n, 1 � j � ni suh that Tp = HT(gi ? tpij ) 6= HT(gi) ? tpij ,then there exists s` 2 SAT(gi) suh that gi ? tpij = s` ? v for some v 2 T ,HT(s` ? v) = HT(s`) ? v and s` = gi ? w`, w` 2 T . Then we an setq = p+ �pij � bi;` ? v withqi = pi + �pij � (hi � w`) ? vql = pl + �pij � hl ? v for l 6= i







5.5 Systems of One-sided Linear Equations in Funtion Rings over the Integers 193whih is again a solution of equation 5.3. It remains to show that it isa smaller one. To see this we have to examine the multiples gl ? tqlj forall 1 � l � n, 1 � j � ml where ql = Pmlj=1 �qlj � tqlj . Remember thatHT(s`) � HT(s` ? v) = HT(s`) ? v = Tp. Moreover, for all terms whljin hl = Pmlj=1 �hlj � whlj we know whlj � HT(s`), as the hl arise from theredution sequene gi ?w` ��!pG 0, and hene HT(whlj ?v) � HT(s` ?v) = Tp.(a) For l = i we get gi?qi = gi?(pi+�pij �(hi�w`)?v) = gi?pi+�pij �gi?hi?v��pij �gi ?w` ?v and as HT(gi ?tpij ) = HT(gi ?w` ?v) and the resultingmonomials add up to zero we get maxfHT(gi?whij ) j 1 � j � mig � Tp.(b) For l 6= i we get gl ?ql = gl ? (pl+�pij �hl?v) = gl ?pl+�pij �gl?hl ?v andmaxfHT(gi ? whlj ) j 1 � j � mlg � Tp as well as maxfHT(gi ? whlj ) j1 � j � mlg � Tp.Hene while still in one of the ases we must have Tq = Tp, the elementgi ? tpij is replaed by the sum Pnl=1 gl ? hl ? v where the hl arise from theredution sequene s` ��!G 0. Let hl =Pklj=1 �hlj � thlj . Sine s` is stable, forall elements gl ?thlj involved in the redution of the head term of s` we knowHT(gl ? thlj ? v) = HT(gl) ? thlj ? v = Tp and no other elements result in thisterm. Hene Kq < Kp and q is smaller than p.2. Let us now assume there are 1 � i1; i2 � n, 1 � j1 � ni1, 1 � j2 � ni2 suhthat HT(gi1 ? tpi1j1 ) = HT(gi1) ? tpi1j1 = Tp = HT(gi2) ? tpi2j2 = HT(gi2 ? tpi2j2 ).Moreover, we assume HC(gi1) � HC(gi2) > 0 and HC(gi1) = � �HC(gi2) + �,�; � 2Z, 0 � � < HC(gi2). Let h`2 2 Ci1;i2 suh that for the orrespondings-polynomial p = gi1 ? tpi1j1 � � � gi2 ? tpi2j2 we have p = h`2 ? v and h`2 =gi1 ? u1 � gi2 ? (� � u2). Sine we have a vetor a`2i1;i2 orresponding to h`2 ,we an de�ne a new solution q = p+ �pi1j1 � ai1;i2 ? v withqi1 = pi1 + �pi1j1 � (hi1 � u1) ? vqi2 = pi2 + �pi1j1 � (hi2 + � � u2) ? vql = pl + �pi1j1 � hl ? v for l 6= i; j:It remains to show that this solution indeed is smaller. To do this weexamine the multiples gl ? tqlj for all 1 � l � n, 1 � j � ml where ql =Pmlj=1 �qlj � tqlj . Let hl =Pklj=1 �hlj � thlj . Sine the elements gl ? thlj arise fromthe redution sequene h`2 ��!G 0 and the s-polynomial is stable we haveadditional information on how these elements a�et the size of the newsolution q. Sine HT(gl ? thlj ) = HT(gl) ? thlj � HT(h`2) we an onludeHT(gl ? tqlj ) � HT(h`2) ? v � Tp and we get the following boundaries:(a) For l 6= i1; i2 we get gl ? ql = gl ? pl + �pi1j1 � gl ? hl ? v. This impliesmaxfHT(gl ? tqlj ) j 1 � j � mlg � Tp.







194 Chapter 5 - Appliations of Gr�obner Bases(b) For l = i1 we get gi1?qi1 = gi1?pi1+�pi1j1 �gi1?hi1?v��pi1j1 �gi1?u1?v. Sine�pi1j1 �HM(gi1) ? tpi1j1 = �pi1j1 �HM(gi1) ? u1 ? v we get maxffHT(gi1 ? tqi1j ) j1 � j � mi1gnfHT(gi1) ? tpi1j1 ;HT(gi1) ? u1 ? vgg � Tp.() For l = i2 we get gi2 ?qi2 = gi2 ?pi2+�pi1j1 �gi2 ?hi2 ?v+�pi1j1 �gi2 ?�?u2?v.Again maxfHT(gi1 ? tqi1j ) j 1 � j � mi1g � Tp.Now in ase � = 0 we know that the equations are strit as then HT(h`2) ?v � Tp holds. Then either Tq � Tp or (Tq = Tp and Kq < Kp). If � 6= 0we have to be more arefull and have to show that then Mq � Mp. Forthe elements gl ? thlj arising from reduing the head of the s-polynomialwe know that gl ? thlj ? v again has the same head oeÆient as gl ? thlj .Now as HC(h`2) = �, by the de�nition of our redution relation we knowthat only gl with HC(gl) � � are appliable. Hene while two elementsHC(gi1);HC(gi2) are removed from the multiset Mp only ones less equal to� < HC(gi2) � HC(gi1) are added and hene the multiset beomes smaller.Hene we �nd that in all ases above either Tq � Tp or ( Tq = Tp andKq < Kp) or (Tq = Tp, Kq = Kp and Mq � Mp). Therefore, in all ases,we an reah a smaller solution and sine our ordering on solutions is well-founded, or laim holds. q.e.d.Corollary 5.5.5Let fg1; : : : ; gng be a �nite right Gr�obner basis. For not neessarily �nite loal-izations Ci;j � SPOL(gi; gj) and SAT(gi) the not neessarily �nite set of vetorsa`1i;j;bi;`2 , 1 � i; j � n, h`1 2 Ci;j, s`2 2 SAT(gi) forms a right generating set forall solutions of equation 5.3.The approah extends to systems of linear equations by using Gr�obner bases inright modules. A study of the situation for one-sided equations in integer monidand group rings an be found in [Rei00℄.







Chapter 6ConlusionsThe aim of this work was to give a guide for introduing redution relations andGr�obner basis theory to algebrai strutures. We hose funtion rings as theyallow a representation of their elements by formal sums. This gives a natural linkto those algebrai strutures known in the literature where the Gr�obner basismethod works. At the same time funtion rings provide enough exibility tosubsume these algebrai strutures.In the general setting of funtion rings we introdued the algebrai terms whihare vital in Gr�obner basis theory: head monomials, head terms, standard rep-resentations, standard bases, redution relations and of ourse (weak) Gr�obnerbases. Inorporating the tehnique of saturation we ould give haraterizationsof Gr�obner bases in terms of ritial situations similar to the original approah.We have established the theory �rst for right ideals in funtion rings over �eldsas this is the easiest setting. This has been generalized to funtion rings overredution rings - a very general setting. Then in order to show how more knowl-edge on the redution relation an be used to get deeper results on haraterizingGr�obner bases, we have studied the speial redution ring Z, whih is of interestin the literature. The same approah has been applied to two-sided ideals infuntion rings with of ourse weaker results but still providing haraterizationsof Gr�obner bases.Important algebrai strutures where the Gr�obner basis method has been su-essfully applied in the literature have been outlined in the setting of funtionrings. It has also been shown how speial appliations from Gr�obner basis theoryin polynomial rings an be lifted to funtion rings.What remains to be done is to �nd out if this approah an be extended tofuntion rings allowing in�nite formal sums as elements. Suh an extension wouldallow to subsume the work of Mora et. al. on power series whih resulted in thetangent one algorithm. These rings are overed by graded strutures as de�nedby Apel in his habilitation ([Ape98℄), by monomial strutures as de�ned by Peshin his PhD Thesis ([Pes97℄) and by Mora in \The Eigth variation" (on Gr�obner







196 Chapter 6 - Conlusionsbases). However, these approahes require admissible orderings and hene do notover general monoid rings.
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