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Chapter 1Introdu
tionOne of the amazing features of 
omputers is the ability to do extensive 
omputa-tions impossible to be done by hand. This enables to over
ome the boundaries of
onstru
tive algebra as proposed by mathemati
ians as Krone
ker. He demandedthat de�nitions of mathemati
al obje
ts should be given in su
h a way that it ispossible to de
ide in a �nite number of steps whether a de�nition applies to anobje
t. While in the beginning 
omputers were used to do in
redible numeri
al
al
ulations, a new dimension was added when they were used to do symboli-
al mathemati
al manipulations substantial to many �elds in mathemati
s andphysi
s. These new possibilities led to open up whole new areas of mathemati
sand 
omputer s
ien
e. In the wake of these developments has 
ome a new a

essto abstra
t algebra in a 
omputational fashion { 
omputer algebra. One impor-tant 
ontribution to this �eld whi
h is the subje
t of this work is the theory ofGr�obner bases { the result of Bu
hberger's algorithm for manipulating systemsof polynomials.1.1 The History of Gr�obner BasesIn 1965 Bu
hberger introdu
ed the theory of Gr�obner bases1 for polynomial idealsin 
ommutative polynomial rings over �elds [Bu
65, Bu
70℄. Let K[X1; : : : ;Xn℄ bea polynomial ring over a 
omputable �eld K and i an ideal in K[X1 ; : : : ;Xn℄. Thenthe quotient K[X1 ; : : : ;Xn℄=i is a K-algebra. If this quotient is zero-dimensionalthe algebra has a �nite basis 
onsisting of power produ
ts X i11 : : :X inn . This wasthe starting point for Bu
hberger's PhD thesis. His advisor Wolfgang Gr�obnerwanted to 
ompute the multipli
ation table and had suggested a pro
edure forzero-dimensional ideals, for whi
h termination 
onditions were la
king. The resultof Bu
hberger's studies then was a terminating algorithm whi
h turned a basis ofan ideal into a spe
ial basis whi
h allowed to solve Gr�obner's question of writing1Note that similar 
on
epts appear in a paper of Hironaka where the notion of a 
ompleteset of polynomials is 
alled a standard basis [Hir64℄.



2 Chapter 1 - Introdu
tiondown an expli
it multipli
ation for the multipli
ation table of the quotient in thezero-dimensional 
ase and was even appli
able to arbitrary polynomial ideals.Bu
hberger 
alled these spe
ial bases of ideals Gr�obner bases.1.2 Two De�nitions of Gr�obner BasesIn literature there are two main ways to de�ne Gr�obner bases in polynomial ringsover �elds. They both require an admissible2 ordering on the set of terms. Withrespe
t to su
h an ordering, given a polynomial f the maximal term o

urring inf is 
alled the head term denoted by HT(f).One way to 
hara
terize Gr�obner bases in an algebrai
 fashion is to use the 
on-
ept of term division: A termX i11 : : :X inn is said to divide another termXj11 : : :Xjnnif and only if il � jl for all 1 � l � n. Then a set G of polynomials is 
alled aGr�obner basis of the ideal i it generates if and only if for every f in i there existsa polynomial g 2 G su
h that HT(g) divides HT(f).Another way to de�ne Gr�obner bases in polynomial rings is to establish a rewritingapproa
h to the theory of polynomial ideals. Polynomials 
an be used as rules byusing the largest monomial a

ording to the admissible ordering as a left hand sideof a rule. Then a term is redu
ible by a polynomial as a rule if the head term ofthe polynomial divides the term. A Gr�obner basis G then is a set of polynomialssu
h that every polynomial in the polynomial ring has a unique normal form withrespe
t to this redu
tion relation using the polynomials in G as rules (espe
iallythe polynomials in the ideal generated by G redu
e to zero using G).Of 
ourse both de�nitions 
oin
ide for polynomial rings sin
e the redu
tion rela-tion de�ned by Bu
hberger 
an be 
ompared to division of one polynomial by aset of �nitely many polynomials.1.3 Appli
ations of Gr�obner BasesThe method of Gr�obner bases allows to solve many problems related to poly-nomial ideals in a 
omputational fashion. It was shown by Hilbert (
ompareHilbert's basis theorem) that every ideal in a polynomial ring has a �nite gen-erating set. However, an arbitrary �nite generating set need not provide mu
hinsight into the nature of the ideal. Let f1 = X21 +X2 and f2 = X21 +X3 be twopolynomials in the polynomial ring3 Q[X1;X2;X3℄. Then i = ff1 � g1 + f2 � g2 jg1; g2 2 Q[X1;X2;X3℄g is the ideal they generate and it is not hard to see that2An ordering � on the set of terms is 
alled an admissible term ordering if for every terms; t; u, s � 1 holds, and s � t implies s Æ u � t Æ u. An ordering ful�lling the latter 
ondition isalso said to be 
ompatible with the respe
tive multipli
ation Æ.3Q denotes the rational numbers.



1.4 Generalizations of Gr�obner Bases 3the polynomial X2 �X3 belongs to i sin
e X2 �X3 = f1 � f2. But what 
an besaid about the polynomial f = X33 +X1 +X3? Does it belong to i or not?The problem to de
ide whether a given polynomial lies in a given ideal is 
alledthe membership problem for ideals. In 
ase the generating set is a Gr�obner basisthis problem be
omes immediately de
idable, as the membership problem thenredu
es to 
he
king whether the polynomial redu
es to zero using the elementsof the Gr�obner basis for redu
tion.In our example the set fX21 + X3;X2 � X3g is a generating set of i whi
h is infa
t a Gr�obner basis. Now returning to the polynomial f = X33 + X1 + X3 we�nd that it 
annot belong to i sin
e neither X21 nor X2 is a divisor of a term inf and hen
e f 
annot be redu
ed to zero using the polynomials in the Gr�obnerbasis as rules.The terms X i11 X i22 X i33 whi
h are not redu
ible by the set fX21 + X3;X2 � X3gform a basis of the Q-algebra Q[X1;X2;X3℄=i. By inspe
ting the head terms X21and X2 of the Gr�obner basis we �nd that the (in�nite) set fX i3;X1X i3 j i 2 Ngis su
h a basis. Moreover, an ideal is zero-dimensional, i.e. this set is �nite, ifand only if for ea
h variable Xi the Gr�obner basis 
ontains a polynomial withhead term Xkii for some ki 2 N+. Similarly the form of the Gr�obner basis revealswhether the ideal is trivial: i = K[X1 ; : : : ;Xn℄ if and only if every4 Gr�obner basis
ontains an element from K.Further appli
ations of Gr�obner bases 
ome from areas as widespread as roboti
s,
omputer vision, 
omputer-aided design, geometri
 theorem proving, Petrie netsand many more. More details 
an be found e.g. in Bu
hberger [Bu
87℄, or thebooks of Be
ker and Weispfenning [BW92℄, Cox, Little and O'Shea [CLO92℄, andAdams and Loustaunau [AL94℄.1.4 Generalizations of Gr�obner BasesIn the last years, the method of Gr�obner bases and its appli
ations have beenextended from 
ommutative polynomial rings over �elds to various types of al-gebras over �elds and other rings. In general for su
h rings arbitrary �nitelygenerated ideals will not have �nite Gr�obner bases. Nevertheless, there are in-teresting 
lasses for whi
h every �nitely generated (left, right or even two-sided)ideal has a �nite Gr�obner basis whi
h 
an be 
omputed by appropriate variantsof 
ompletion based algorithms.First su

essful generalizations were extensions to 
ommutative polynomialrings over 
oeÆ
ient domains other than �elds. It was shown by several au-thors in
luding Bu
hberger, Kandri-Rody, Kapur, Narendran, Lauer, Stifter,and Weispfenning that Bu
hberger's approa
h remains valid for polynomial4Noti
e that if one Gr�obner basis 
ontains an element from K so will all the others.



4 Chapter 1 - Introdu
tionrings over the integers, or even Eu
lidean rings, and over regular rings (seee.g. [Bu
83, Bu
85, KRK84, KRK88, KN85, Lau76, Sti87, Wei87b℄). For reg-ular rings Weispfenning has to deal with the situation that zero-divisors in the
oeÆ
ient domain have to be 
onsidered. He uses a te
hnique he 
alls Boolean
losure to repair this problem and this te
hnique 
an be regarded as a spe
ialsaturating pro
ess5. We will later on see how su
h saturating te
hniques be
omeimportant ingredients of Gr�obner basis methods in many algebrai
 stru
tures.Sin
e the development of 
omputer algebra systems for 
ommutative algebrasmade it possible to perform tedious 
al
ulations using 
omputers, attempts togeneralize su
h systems and espe
ially Bu
hberger's ideas to non-
ommutative al-gebras followed. Originating from spe
ial problems in physi
s, Lassner in [Las85℄suggested how to extend existing 
omputer algebra systems in order to addition-ally handle spe
ial 
lasses of non-
ommutative algebras, e.g. Weyl algebras. Hestudied stru
tures where the elements 
ould be represented using the usual rep-resentations of polynomials in 
ommutative variables and the non-
ommutativemultipli
ation 
ould be performed by a so-
alled \twisted produ
t" whi
h requiredonly pro
edures involving 
ommutative algebra operations and di�erentiation.Later on together with Apel he extended Bu
hberger's algorithm to enveloping�elds of Lie algebras [AL88℄. Be
ause these ideas use representations of the ele-ments by 
ommutative polynomials, Di
kson's Lemma6 
an be 
arried over. Bythis the existen
e and 
onstru
tion of �nite Gr�obner bases for �nitely generatedleft ideals 
an be ensured using the same arguments as in the original approa
h.On the other hand, Mora gave a 
on
ept of Gr�obner bases for a 
lass of non-
ommutative algebras by saving an other property of the 
ommutative polynomialring { admissible orderings { while losing the validity of Di
kson's Lemma. Theusual polynomial ring 
an be viewed as a monoid ring where the monoid is a�nitely generated free 
ommutative monoid. Mora studied the 
lass where thefree 
ommutative monoid is substituted by a free monoid { the 
lass of �nitelygenerated free monoid rings (
ompare e.g. [Mor85, Mor94℄). The ring operationsare mainly performed in the 
oeÆ
ient domain while the terms are treated likewords, i.e., the variables no longer 
ommute with ea
h other and multipli
ationis 
on
atenation. The de�nitions of (one- and two-sided) ideals, redu
tion andGr�obner bases are 
arried over from the 
ommutative 
ase to establish a similartheory of Gr�obner bases in \free non-
ommutative polynomial rings over �elds".But these rings are no longer Noetherian if they are generated by more thanone variable. Mora presented a terminating 
ompletion pro
edure for �nitelygenerated one-sided ideals and an enumeration pro
edure for �nitely generatedtwo-sided ideals with respe
t to some term ordering in free monoid rings. For5Saturation te
hniques are used in various �elds to enri
h a generating set of a stru
ture insu
h a way, that the new set still des
ribes the same stru
ture but allows more insight. Forexample symmetrization in groups 
an be regarded as su
h a saturating pro
ess.6Di
kson's Lemma in the 
ontext of 
ommutative terms is as follows: For every in�nitesequen
e of terms ts, s 2 N, there exists an index k 2 N su
h that for every index i > k thereexists an index j � k and a term w su
h that ti = tjw.



1.4 Generalizations of Gr�obner Bases 5the spe
ial instan
e of ideals generated by bases of the restri
ted form f`i �ri j `i; ri words; 1 � i � ng, Mora's pro
edure 
oin
ides with Knuth-Bendix
ompletion for string rewriting systems and the one-sided 
ases 
an be related topre�x respe
tively suÆx rewriting [MR98d, MR98
℄. Hen
e many results knownfor �nite string rewriting systems and their 
ompletion 
arry over to �nitelygenerated ideals and the 
omputation of their Gr�obner bases. Espe
ially theunde
idability of the word problem yields non-termination for Mora's generalpro
edure (see also [Mor87℄).Gr�obner bases and Mora's pro
edure have been generalized to path algebras (see[FCF93, Kel98℄); free non-
ommutative polynomial rings are in fa
t a parti
ularinstan
e of path algebras.Another 
lass of non-
ommutative rings where the elements 
an be represented bythe usual polynomials and whi
h allow the 
onstru
tion of �nite Gr�obner basesfor arbitrary ideals are the solvable polynomial rings, a 
lass intermediate be-tween 
ommutative and general non-
ommutative polynomial rings. They werestudied by Kandri-Rody, Weispfenning and Kredel [KRW90, Kre93℄. Solvablepolynomial rings 
an be des
ribed by ordinary polynomial rings K[X1 ; : : : ;Xn℄provided with a \new" de�nition of multipli
ation whi
h 
oin
ides with the or-dinary multipli
ation ex
ept for the 
ase that a variable Xj is multiplied with avariable Xi with lower index, i.e., i < j. In the latter 
ase multipli
ation 
anbe de�ned by equations of the form Xj ? Xi = 
ijXiXj + pij where 
ij lies inK� = Knf0g and pij is a polynomial \smaller" than XiXj with respe
t to a �xedadmissible term ordering on the polynomial ring.The more spe
ial 
ase of twisted semi-group rings, where 
ij = 0 is possible, hasbeen studied in [Ape88, Mor89℄.In [Wei87a℄ Weispfenning showed the existen
e of �nite Gr�obner bases for arbi-trary �nitely generated ideals in non-Noetherian skew polynomial rings over twovariablesX;Y where a \new" multipli
ation ? is introdu
ed su
h thatX?Y = XYand Y ? X = XeY for some �xed e in N+.Ore extensions have been su

essfully studied by Pes
h in his PhD Thesis [Pes97℄and his results on two-sided Gr�obner bases are also presented in [Pes98℄.Most of the results 
ited so far assume admissible well-founded orderings on theset of terms so that in fa
t the redu
tion relations 
an be de�ned by 
onsideringthe head monomials mainly (
ompare the algebrai
 de�nition of Gr�obner bases inSe
tion 1.2). This is essential to 
hara
terize Gr�obner bases in the respe
tive ringwith respe
t to the 
orresponding redu
tion relation7 in a �nitary manner and toenable to de
ide whether a �nite set is a Gr�obner basis by 
he
king whether thes-polynomials are redu
ible to zero8.7These redu
tion relations are based on divisibility of terms, namely the term to be redu
edis divisible by the head term of the polynomial used as rule for the redu
tion step.8Note that we always assume that the redu
tion relation in the ring is e�e
tive.



6 Chapter 1 - Introdu
tionThere are rings 
ombined with redu
tion relations where admissible well-foundedorderings 
annot be a

omplished and, therefore, other 
on
epts to 
hara
terizeGr�obner bases have been developed. For example in 
ase the ring 
ontains zero-divisors a well-founded ordering on the ring is no longer 
ompatible with the ringmultipli
ation9. This phenomenon has been studied for the 
ase of zero-divisorsin the 
oeÆ
ient domain by Kapur and Madlener [KM89℄ and by Weispfenningfor the spe
ial 
ase of regular rings [Wei87b℄. In his PhD thesis [Kre93℄, Kre-del des
ribed problems o

urring when dropping the axioms guaranteeing theexisten
e of admissible orderings in the theory of solvable polynomial rings byallowing 
ij = 0 in the de�ning equations above. He sket
hed the idea of usingsaturation te
hniques to repair some of them. Saturation enlarges the generatingsets of ideals in order to ensure that enough head terms exist to do all ne
essaryredu
tion steps and this pro
ess 
an often be related to additional spe
ial 
riti
alpairs. Similar ideas 
an be found in the PhD thesis of Apel [Ape88℄. For spe
ial
ases, e.g. for the Grassmann (exterior) algebras, positive results 
an be a
hieved(
ompare the paper of Stokes [Sto90℄).Another important 
lass of rings where redu
tion relations 
an be introdu
edand 
ompletion te
hniques 
an be applied to enumerate and sometimes 
omputeGr�obner bases are monoid and group rings. They have been studied in detail byvarious authors, e.g. free group rings ([Ros93℄), monoid and group rings ([MR93a,MR97a, Rei95, Rei96, MR98a℄) (in
luding �nite and free monoids and �nite, free,plain and poly
y
li
 groups), and poly
y
li
 group rings ([Lo98℄). In this settingwe again need saturation te
hniques to repair a severe defe
t due to the fa
t thatin general we 
annot expe
t the ordering on the set of terms (here of 
ourse nowthe monoid or group elements) to be both, well-founded and admissible. Let F bethe free group generated by one element a. Then for the polynomial a+1 in Q[F ℄we have (a+1) � a�1 = 1+ a�1, i.e., after multipli
ation with the inverse elementa�1 the largest term of the new polynomial no longer results from the largest oneof the original polynomial. Moreover, assuming our ordering is well-founded, it
annot be 
ompatible with the group multipli
ation10.All approa
hes 
ited in this se
tion 
an be basi
ally divided into twomain streams:One extension was to study stru
tures whi
h still allow to present their elementsby ordinary \
ommutative" polynomials. The advantage of this generalization isthat Di
kson's Lemma, whi
h is essential in proving termination for Bu
hberger'salgorithm, 
arries over. The other idea of generalization was to view the polyno-mial ring as a spe
ial monoid ring and to try to extend Bu
hberger's approa
hto other monoid and group rings. Sin
e then in general Di
kson's Lemma nolonger holds, other ways to prove termination, if possible, have to be established.9When studying monoid rings over redu
tion rings it is possible that the ordering on thering is not 
ompatible with s
alar multipli
ation as well as with multipli
ation with monomialsor polynomials.10Assuming a � 1 
ompatibility with multipli
ation would imply 1 � a�1 giving rise to anin�nite des
ending 
hain a�1 � a�2 � : : : 
ontradi
ting the well-foundedness of the ordering.On the other hand for 1 � a 
ompatibility with multipli
ation immediately gives us an in�nitedes
ending 
hain a � a2 � : : :.



1.5 Gr�obner Bases in Fun
tion Rings { A Guide for Introdu
ing Redu
tion Relations to Algebrai
 Stru
tures 7Noti
e that solvable rings, skew-polynomial rings and arbitrary quotients of non-
ommutative polynomial rings 
annot be interpreted as monoid rings. Hen
e to�nd a generalization whi
h will subsume all results 
ited here, a more generalsetting is needed. In his habilitation thesis [Ape98℄, Apel provides one gener-alization whi
h basi
ally extends the �rst one of these two in su
h a way thatMora's approa
h 
an be in
orporated. He uses an abstra
tion of graded stru
-tures whi
h needs admissible well-founded orderings. Hen
e he 
annot deal withgroup rings and many 
ases of monoid rings where su
h orderings 
annot exists.On the other hand he is mu
h more interested in algebrai
 
hara
terizations ofGr�obner bases and the division algorithms asso
iated to them.In order to 
hara
terize stru
tures where the well-founded ordering is no longeradmissible, we extend Gr�obner basis te
hniques to an abstra
t setting 
alledfun
tion rings.1.5 Gr�obner Bases in Fun
tion Rings { A Guidefor Introdu
ing Redu
tion Relations to Al-gebrai
 Stru
turesThe aim of this work is to give a general setting whi
h 
omprises all generalizationsmentioned above and whi
h is a basis for studying further stru
tures in the lightof introdu
ing redu
tion relations and Gr�obner basis te
hniques. All stru
turesmentioned so far 
an be viewed as rings of fun
tions with �nite support. For su
hrings we introdu
e the familiar 
on
epts of polynomials, (right) ideals, standardrepresentations, standard bases, redu
tion relations and Gr�obner bases. A general
hara
terization of Gr�obner bases in an \algorithmi
 fashion" is provided. It isshown that in fa
t polynomial rings, solvable polynomial rings, free respe
tively�nite monoid rings, and free, �nite, plain, respe
tively poly
y
li
 group ringsare examples of our generalization where �nite Gr�obner bases 
an be 
omputed.While most of the examples 
ited above are presented in the literature as ringsover �elds we will here also present the more general 
on
ept of fun
tion ringsover redu
tion rings (
ompare [Mad86, Rei95, MR98b℄) and the impotant spe
ial
ase of fun
tion rings over the integers.1.6 Appli
ations of Gr�obner Bases Generalizedto Fun
tion RingsFor polynomial rings over �elds many algebrai
 questions related to ideals 
anbe solved using Gr�obner bases and their asso
iated redu
tion relations. Hen
ethe question arises whi
h of these appli
ations 
an be extended to more generalsettings. While some questions e.g. 
on
erning algebrai
 geometry are strongly
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tion
onne
ted to polynomial rings over �elds, many other appli
ations 
arry over.They in
lude natural ones su
h as the membership problem for ideals, as wellas spe
ial te
hniques su
h as elimination theory or the treatment of systems oflinear equations.1.7 Organization of the ContentsChapter 2 introdu
es some of the basi
 themes of this book. We need somebasi
 notions from the theory of algebra as well as from the theory of rewritingsystems. Furthermore, as the aim of this book is to provide a systemati
 studyof Gr�obner basis methods, a short introdu
tion to the original 
ase of Gr�obnerbases in polynomial rings over �elds is presented.Chapter 3 
on
entrates on rings with redu
tion relations, whi
h are studied withregard to the existen
e of Gr�obner bases. They are 
alled redu
tion rings in 
asethey allow �nite Gr�obner bases for �nitely generated ideals. Moreover, spe
ialring 
onstru
tions are presented, whi
h in many 
ases preserve the existen
e ofGr�obner bases. These 
onstru
tions in
lude quotients and sums of redu
tion ringsas well as modules and polynomial rings over redu
tion rings. Many stru
tureswith redu
tion relations allowing Gr�obner bases 
an already be found in thissetting. For example knowing that the integers Zfor 
ertain redu
tion relationsallow �nite Gr�obner bases, using the results of this 
hapter, we 
an 
on
lude thatthe module Zk as well as the polynomial rings Z[X1; : : : ;Xn℄ and Zk[X1; : : : ;Xn℄allow the 
omputation of �nite Gr�obner bases.Chapter 4 is the heart of this book. It establishes a generalizing frameworkfor stru
tures enri
hed with redu
tion relations and studied with respe
t to theexisten
e of Gr�obner bases in the literature. Redu
tion relations are de�ned forthe setting of fun
tion rings over �elds and later on generalized to redu
tion rings.De�nitions for terms su
h as variations of standard representations, standardbases and Gr�obner bases are given and 
ompared to the known terms from thetheory of Gr�obner bases over polynomial rings. It turns out that while 
ompletionpro
edures will still involve equivalents to s-polynomials or the more general
on
ept of g- and m-polynomials for the ring 
ase, these situations are no longersuÆ
ient to 
hara
terize Gr�obner bases. Saturation te
hniques, whi
h enri
h thebases by additional polynomials, are needed. Moreover, for fun
tion rings overredu
tion rings the 
hara
terizations no longer des
ribe Gr�obner bases but onlyweak11 Gr�obner bases, sin
e the Translation Lemma12 no longer holds. Sin
e the11Weak Gr�obner bases are bases su
h that any polynomial in the ideal they generate 
an beredu
ed to zero. For �elds this property already 
hara
terizes Gr�obner bases as the TranslationLemma holds. In general this is not true and while weak Gr�obner bases allows to solve theideal membership problem they no longer guarantee the existen
e of unique normal forms forelements of the quotient.12The Translation Lemma establishes that if for two polynomials f; g we have that f � gredu
es to zero, both polynomials redu
e to the same normal form.



1.7 Organization of the Contents 9ring of integers viewed as a redu
tion ring is of spe
ial interest in the literatureand allows more insight into the respe
tive 
hosen redu
tion relations, this spe
ial
ase is studied.Chapter 5 outlines how some appli
ations known for Gr�obner bases in the liter-ature 
arry over to fun
tion rings. These appli
ations in
lude natural ones su
has the ideal membership problem, representation problems, the ideal in
lusionproblem, the ideal triviality problem, and many more. Another fo
us is on doing
omputations in quotient rings using Gr�obner bases. The powerful eliminationmethods are also generalized. One of their appli
ations to study polynomialmappings is outlined. Finally solutions for linear equations over fun
tion rings interms of Gr�obner bases are provided.
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Chapter 2Basi
 De�nitionsAfter introdu
ing the ne
essary de�nitions required from algebra we fo
us on thesubje
t of this book | Gr�obner bases. One way of 
hara
terizing Gr�obner basesis in terms of algebrai
 simpli�
ation or redu
tion. The aim of this 
hapter is tointrodu
e an abstra
t 
on
ept for the notion of redu
tion whi
h is the basis ofmany synta
ti
al methods for studying stru
tures in mathemati
s or theoreti
al
omputer s
ien
e in Se
tion 2.2. It is the foundation for e.g. term rewriting andstring rewriting and we introdu
e a redu
tion relation for polynomials in the
ommutative polynomial ring over a �eld in a similar fashion. Gr�obner basesthen arise naturally when doing 
ompletion in this setting in Se
tion 2.3.2.1 AlgebraMathemati
al theories are 
losely related with the study of two obje
ts, namelysets and fun
tions. Algebra 
an be regarded as the study of algebrai
 operationson sets, i.e., fun
tions that take elements from a set to the set itself. Certainalgebrai
 operations on sets 
ombined with 
ertain axioms are again the obje
ts ofindependent theories. This 
hapter is a short introdu
tion to some of the algebrai
systems used later on: monoids, groups, rings, �elds, ideals and modules.De�nition 2.1.1A non-empty set of elementsM together with a binary operation ÆM is said toform a monoid, if for all �; �; 
 inM1. M is 
losed under ÆM, i.e., � ÆM � 2 M,2. the asso
iative law holds for ÆM, i.e., � ÆM (� ÆM 
) =M (� ÆM �) ÆM 
,and3. there exists 1M 2 M su
h that � ÆM 1M =M 1M ÆM � =M �. The element1M is 
alled identity. �
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 De�nitionsFor simpli
ity of notation we will hen
eforth drop the index M and write Ærespe
tively = if no 
onfusion is likely to arise. Furthermore, we will often talkabout a monoid without mentioning its binary operation expli
itly. The monoidoperation will often be 
alled multipli
ation or addition. Sin
e the algebrai
operation is asso
iative we 
an omit bra
kets, hen
e the produ
t �1 Æ : : : Æ �n isuniquely de�ned.Example 2.1.2Let � = fa1; : : : ; ang be a set of letters. Then �� denotes the set of words overthis alphabet. For two words u; v 2 �� we de�ne u Æ v = uv, i.e., the wordwhi
h arises from 
on
atenating the two words u and v. Then �� is a monoidwith respe
t to this binary operation and its identity element is the empty word,i.e., the word 
ontaining no letters. This monoid is 
alled the free monoid overthe alphabet �. �For some n in N1 the produ
t of n times the same element � is 
alled the n-thpower of � and will be denoted by �n, where �0 = 1.De�nition 2.1.3An element � of a monoid M is said to have in�nite order in 
ase for alln;m 2 N, �n = �m implies n = m. We say that � has �nite order in 
ase theset f�n j n 2 N+g is �nite and the 
ardinality of this set is then 
alled the orderof �. �A subset of a monoidM whi
h is again a monoid is 
alled a submonoid ofM.Other spe
ial subsets of monoids are (one-sided) ideals.De�nition 2.1.4For a subset S of a monoidM we 
all1. idealMr (S) = f� Æ � j � 2 S; � 2 Mg the right ideal,2. idealMl (S) = f� Æ � j � 2 S; � 2 Mg the left ideal, and3. idealM(S) = f� Æ � Æ �0 j � 2 S; �; �0 2 Mg the idealgenerated by S inM. �A monoid M is 
alled 
ommutative (Abelian) if we have � Æ � = � Æ � forall elements �; � in M. A natural example for a 
ommutative monoid are theintegers together with multipli
ation or addition. Another example whi
h will beof interest later on is the set of terms.1In the following N denotes the set of natural numbers in
luding zero and N+ = Nnf0g.



2.1 Algebra 13Example 2.1.5Let X1; : : : ;Xn be a set of (ordered) variables. Then T = fX i11 : : :X inn j i1; : : : in 2Ng is 
alled the set of terms over these variables. The multipli
ation Æ is de�nedas X i11 : : :X inn Æ Xj11 : : :Xjnn = X i1+j11 : : :X in+jnn . The identity is the empty term1T = X01 : : :X0n . �A mapping � from one monoidM1 to another monoidM2 is 
alled a homomor-phism, if �(1M1) = 1M2 and for all �; � inM1, �(� ÆM1 �) = �(�) ÆM2 �(�). In
ase � is surje
tive we 
all it an epimorphism, in 
ase � is inje
tive amonomor-phism and in 
ase it is both an isomorphism. The fa
t that two stru
tures S1,S2 are isomorphi
 will be denoted by S1 �= S2.A monoid is 
alled left-
an
ellative (respe
tively right-
an
ellative) if for all�; �; 
 inM, 
 Æ � = 
 Æ � (respe
tively � Æ 
 = � Æ 
) implies � = �. In 
asea monoid is both, left- and right-
an
ellative, it is 
alled 
an
ellative. In 
ase� Æ 
 = � we say that � is a left divisor of � and 
 is 
alled a right divisor ofb. If 
 Æ�ÆÆ = � then � is 
alled a divisor of �. A spe
ial 
lass of monoids ful�llthat for all �; � inM there exist 
; Æ inM su
h that �Æ
 = � and Æ Æ� = �, i.e.,right and left divisors always exist. These stru
tures are 
alled groups and they
an be spe
i�ed by extending the de�nition of monoids and we do so by addingone further axiom.De�nition 2.1.6A monoid M together with its binary operation Æ is said to form a group ifadditionally4. for every � 2 M there exists an element inv(�) 2 M (
alled inverse of �)su
h that � Æ inv(�) = inv(�) Æ � = 1. �Obviously, the integers form a group with respe
t to addition, but this is nolonger true for multipli
ation.A subset of a group G whi
h is again a group is 
alled a subgroup of M. Asubgroup H of a group G is 
alled normal if for ea
h � in G we have �H = H�where �H = f� Æ � j � 2 Hg and H� = f� Æ � j � 2 Hg.We end this se
tion by brie
y introdu
ing some more algebrai
 stru
tures thatwill be used throughout.De�nition 2.1.7A nonempty set R is 
alled an (asso
iative) ring (with unit element) if thereare two binary operations + (addition) and ? (multipli
ation) su
h that for all�; �; 
 in R1. R together with + is an Abelian group with zero element 0 and inverse ��,
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 De�nitions2. R is 
losed under ?, i.e., � ? � 2 R,3. ? is asso
iative, i.e., � ? (� ? 
) = (� ? �) ? 
,4. the distributive laws hold, i.e., � ? (�+ 
) = � ?�+� ? 
 and (�+ 
) ? � =� ? �+ 
 ? �,5. there is an element 1 2 R (
alled unit) su
h that 1 ? � = � ? 1 = �. �A ring is 
alled 
ommutative (Abelian) if � ? � = � ? � for all �; � in R. Theintegers together with addition and multipli
ation are a well-known example ofa ring. Other rings whi
h will be of interest later on are monoid rings.Example 2.1.8Let Zbe the ring of integers andM a monoid. Further let Z[M℄ denote the setof all mappings f :M �! Zwhere the sets supp(f) = f� 2 M j f(�) 6= 0g are�nite. We 
all Z[M℄ the monoid ring ofM over Z. The sum of two elementsf and g is denoted by f + g where (f + g)(�) = f(�) + g(�). The produ
t isdenoted by f ? g where (f ? g)(�) =P�Æ
=� f(�) ? g(
).Polynomial rings are a spe
ial 
ase of monoid rings namely over the set of termsas de�ned in Example 2.1.5.A ring R is said to 
ontain zero-divisors, if there exist not ne
essarily di�erentelements �; � in R su
h that � 6= 0 and � 6= 0, but � ? � = 0. Then � is 
alled aleft zero-divisor and � is 
alled a right zero-divisor.De�nition 2.1.9A 
ommutative ring is 
alled a �eld if its non-zero elements form a group undermultipli
ation. �Similar to our pro
eeding in group theory we will now look at subsets of a ringR. For a subset U � R to be a subring of R with the operations + and ? it isne
essary and suÆ
ient that1. U is a subgroup of (R;+), i.e., for a; b 2 U we have a� b 2 U , and2. for all �; � 2 U we have � ? � 2 U .We will now take a 
loser look at spe
ial subrings that play a role similar tonormal subgroups in group theory.De�nition 2.1.10A nonempty subset i of a ring R is 
alled a right (left) ideal of R, if1. for all �; � 2 i we have � � � 2 i, and



2.1 Algebra 152. for every � 2 i and � 2 R, the element � ? � (respe
tively � ? �) lies in i.A subset that is both, a right and a left ideal, is 
alled a (two-sided) ideal ofR. �For ea
h ring the sets f0g and R are trivial ideals. Similar to subgroups, ideals
an be des
ribed in terms of generating sets.Lemma 2.1.11Let F be a non-empty subset of R. Then1. idealR(F ) = fPni=1 �i ? �i ? �i j �i 2 F; �i; �i 2 R; n 2 Ng is an ideal of R,2. idealRr (F ) = fPni=1 �i ? �i j �i 2 F; �i 2 R; n 2 Ng is a right ideal of R, and3. idealRl (F ) = fPni=1 �i ? �i j �i 2 F; �i 2 R; n 2 Ng is a left ideal of R. �Noti
e that the empty sumP0i=1 �i is zero.We will simply write ideal(F ), idealr(F ) and ideall(F ) if the 
ontext is 
lear. Manyalgebrai
 problems for rings are related to ideals and we will 
lose this se
tion bystating two of them2.The Ideal Membership ProblemGiven: An element � 2 R and a set of elements F � R.Question: Is � in the ideal generated by F ?De�nition 2.1.12Two elements �; � 2 R are said to be 
ongruent modulo ideal(F ), denoted by� �ideal(F ) �, if � = � + � for some � 2 ideal(F ), i.e., �� � 2 ideal(F ). �The Congruen
e ProblemGiven: Two elements �; � 2 R and a set of elements F � R.Question: Are � and � 
ongruent modulo the ideal generated by F ?Note that both problems 
an similarly be spe
i�ed for left and right ideals.We have seen that a non-empty subset of R is an ideal if it is 
losed underaddition and 
losed under multipli
ation with arbitrary elements of R. Modulesnow 
an be viewed as a natural generalization of the 
on
ept of ideals to arbitrary
ommutative groups.2For more information on su
h problems in the spe
ial 
ase of 
ommutative polynomial ringssee e.g. [Bu
87℄.



16 Chapter 2 - Basi
 De�nitionsDe�nition 2.1.13Let R be a ring. A left R-moduleM is an additive 
ommutative group with anadditional operation � : R�M �!M , 
alled s
alar multipli
ation, su
h that forall �; � 2 R and a; b 2M , the following hold:1. � � (a+ b) = � � a+ � � b,2. (�+ �) � a = � � a+ � � a,3. (� ? �) � a = � � (� � a), and4. 1 � a = a. �We 
an de�ne right R-modules and (two-sided) R-modules (also 
alled R-bimodules) in a similar fashion.Noti
e that a (left, right) ideal i � R forms a (left, right) R-module with respe
tto the addition and multipli
ation in R. This obviously holds for the trivial (left,right) ideals f0g and R of R.Another example of (left, right) R-modules we will study are the �nite dire
tprodu
ts of the ring 
alled free (left, right) R-modules Rk, k 2 R.An additive subset of a (left, right) R-module is 
alled a (left, right) submoduleif it is 
losed under s
alar multipli
ation with elements of R. For a subset F �Mlet hF i denote the submodule generated by F in M .The Submodule Membership ProblemGiven: An element a 2M and a set of elements F �M .Question: a 2 hF i?Similar to the 
ongruen
e problem for ideals we 
an spe
ify the 
ongruen
e prob-lem for submodules as follws:De�nition 2.1.14Two elements a; b 2 R are said to be 
ongruent modulo the submodule hF i forsome F �M , denoted by a �hF i b, if a� b 2 hF i. �The Congruen
e Problem for submodulesGiven: Two elements a; b 2 R and a set of elements F �M .Question: a �hF i b?



2.2 The Notion of Redu
tion 172.2 The Notion of Redu
tionThis se
tion summarizes some important notations and de�nitions of redu
tionrelations and basi
 properties related to them, as 
an be found more expli
itlyfor example in the work of Huet or Book and Otto ([Hue80, Hue81, BO93℄).Let E be a set of elements and �! a binary relation on E 
alled redu
tion. Fora; b 2 E we will write a�! b in 
ase (a; b) 2 �!. A pair (E;�!) will be 
alleda redu
tion system. Then we 
an expand the binary relation as follows:0�! denotes the identity on E, � denotes the inverse relation for �!,n+1�! := n�!Æ �! where Æ denotes 
omposition of relations and n 2 N,�n�! :=S0�i�n i�! ,+�! :=Sn>0 n�! denotes the transitive 
losure of �!,��! := +�! [ 0�! denotes the re
exive transitive 
losure of �!, ! := � [ �! denotes the symmetri
 
losure of �!,+ ! denotes the symmetri
 transitive 
losure of �!,� ! denotes the re
exive symmetri
 transitive 
losure of �!.A well-known de
ision problem related to a redu
tion system is the word problem.De�nition 2.2.1The word problem for a redu
tion system (E;�!) is to de
ide for a; b in E,whether a � ! b holds. �Instan
es of this problem are well-known in the literature and unde
idable ingeneral. In the following we will outline suÆ
ient 
onditions su
h that a redu
tionsystem (E;�!) has solvable word problem.An element a 2 E is said to be redu
ible (with respe
t to �!) if there existsan element b 2 E su
h that a �! b. All elements b 2 E su
h that a ��! b are
alled su

essors of a and in 
ase a +�! b they are 
alled proper su

essors.An element whi
h has no proper su

essors is 
alled irredu
ible. In 
ase a ��! band b is irredu
ible, b is 
alled a normal form of a. Noti
e that for an elementa in E there 
an be no, one or many normal forms.De�nition 2.2.2A redu
tion system (E;�!) is said to be Noetherian (or terminating) in 
asethere are no in�nitely des
ending redu
tion 
hains a0 �! a1 �! : : : , with ai 2 E,i 2 N. �In 
ase a redu
tion system (E;�!) is Noetherian every element in E has at leastone normal form.
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 De�nitionsDe�nition 2.2.3A redu
tion system (E;�!) is 
alled 
on
uent, if for all a; a1; a2 2 E, a ��!a1and a ��! a2 implies the existen
e of a3 2 E su
h that a1 ��!a3 and a2 ��! a3,and a1, a2 are 
alled joinable. �In 
ase a redu
tion system (E;�!) is 
on
uent every element has at most onenormal form. We 
an 
ombine these two properties to give suÆ
ient 
onditionsfor the solvability of the word problem.De�nition 2.2.4A redu
tion system (E;�!) is said to be 
omplete (or 
onvergent) in 
ase itis both, Noetherian and 
on
uent. �Complete redu
tion systems with e�e
tive or 
omputable3 redu
tion relationshave solvable word problem, as every element has a unique normal form and twoelements are equal if and only if their normal forms are equal. Of 
ourse we
annot always expe
t (E;�!) to be 
omplete. Even worse, both properties {termination and 
on
uen
e { are unde
idable in general. Nevertheless, there areweaker 
onditions whi
h guarantee 
ompleteness.De�nition 2.2.5A redu
tion system (E;�!) is said to be lo
ally 
on
uent, if for all a; a1; a2 2E, a�! a1 and a�! a2 implies the existen
e of an element a3 2 E su
h thata1 ��! a3 and a2 ��! a3. �I.e. lo
al 
on
uen
e is a spe
ial instan
e of 
on
uen
e, namely a lo
alization of
on
uen
e to one-redu
tion-step su

essors of elements only. The next lemmagives an important 
onne
tion between lo
al 
on
uen
e and 
on
uen
e.Lemma 2.2.6 (Newman)Let (E;�!) be a Noetherian redu
tion system. Then (E;�!) is 
on
uent if andonly if (E;�!) is lo
ally 
on
uent.To prove Newman's lemma we need the 
on
ept of Noetherian indu
tion whi
his based on the following de�nition.De�nition 2.2.7Let (E;�!) be a redu
tion system. A predi
ate P on E is 
alled �!-
omplete,in 
ase for every a 2 E the following impli
ation holds: if P(b) is true for allproper su

essors of a, then P(a) is true. �3By e�e
tive or 
omputable we mean that given an element we 
an always 
onstru
t asu

essor in 
ase one exists.



2.2 The Notion of Redu
tion 19The Prin
iple of Noetherian Indu
tion:In 
ase (E;�!) is a Noetherian redu
tion system and P is a predi
ate that is�!-
omplete, then for all a 2 E, P(a) is true.Proof of Newman's lemma:Suppose, �rst, that the redu
tion system (E;�!) is 
on
uent. This immediatelyimplies the lo
al 
on
uen
e of (E;�!) as a spe
ial 
ase. To show the 
onverse,sin
e (E;�!) is Noetherian we 
an apply the prin
iple of Noetherian indu
tionto the following predi
ate: P(a)if and only iffor all a1; a2 2 E, a ��!a1 and a ��!a2 implies that a1 and a2 are joinable.All we have to do now is to show that P is �!-
omplete. Let a 2 E and letP(b) be true for all proper su

essors b of a. We have to prove that P(a) istrue. Suppose a ��!a1 and a ��!a2. In 
ase a = a1 or a = a2 there is nothingto show. Therefore, let us assume a 6= a1 and a 6= a2, i.e., a �! ~a1 ��!a1 anda �! ~a2 ��!a2. Then we 
an dedu
e the following �gurea	�� ��R~a1 ~a2	��� ���R 	��� ���Ra1 b0 a2���R 	��� 	�������b1 ���R bwhere b0 exists, as (E;�!) is lo
ally 
on
uent and b1 and b exist by our indu
tionhypothesis sin
e a1, b0 as well as a2, b1 are proper su

essors of a. Hen
e a1 anda2 must be joinable, i.e., the redu
tion system (E;�!) is 
on
uent. q.e.d.Therefore, if the redu
tion system is terminating, a 
he
k for 
on
uen
e 
an beredu
ed to a 
he
k for lo
al 
on
uen
e. The 
on
ept of 
ompletion then is basedon two steps:1. Che
k the system for lo
al 
on
uen
e.If it is lo
ally 
on
uent, then it is also 
omplete.2. Add new relations arising from situations where the system is not lo
ally
on
uent.
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 De�nitionsFor many redu
tion systems, e.g. string rewriting systems or term rewriting sys-tems, the 
he
k for lo
al 
on
uen
e again 
an be lo
alized, often to �nite test setsof so-
alled 
riti
al pairs. The relations arising from su
h 
riti
al situations areeither 
on
uent or give rise to new relations whi
h stay within the 
ongruen
edes
ribed by the redu
tion system. Hen
e adding them in order to in
rease thedes
riptive power of the redu
tion system is 
orre
t. This 
an be done until a
omplete set is rea
hed. If fair strategies are used in the test for lo
al 
on
uen
e,the limit system will be 
omplete.We 
lose this se
tion by providing suÆ
ient 
onditions to ensure a redu
tionsystem (E;�!) to be Noetherian.De�nition 2.2.8A binary relation � on a set M is said to be a partial ordering, if for all a; b; 
in M :1. � is re
exive, i.e., a � a,2. � is transitive, i.e., a � b and b � 
 imply a � 
, and3. � is anti-symmetri
al, i.e., a � b and b � a imply a = b. �A partial ordering is 
alled total, if for all a; b 2 M either a � b or b � a holds.Further a partial ordering � de�nes a transitive irre
exive ordering �, wherea � b if and only if a � b and a 6= b, whi
h is often 
alled a proper or stri
tordering. We 
all a partial ordering � well-founded, if the 
orresponding stri
tordering � allows no in�nite des
ending 
hains a0 � a1 � : : : , with ai 2 M ,i 2 N. Now we 
an give a suÆ
ient 
ondition for a redu
tion system to beterminating.Lemma 2.2.9Let (E;�!) be a redu
tion system and suppose there exists a partial ordering �on E whi
h is well-founded su
h that �! � �. Then (E;�!) is Noetherian.Proof :Suppose the redu
tion system (E;�!) is not Noetherian. Then there is an in�nitesequen
e a0 �! a1 �! : : : , ai 2 E, i 2 N. As �! � � this sequen
e gives us anin�nite sequen
e a0 � a1 � : : : , with ai 2 E, i 2 N 
ontradi
ting our assumptionthat � is well-founded on E. q.e.d.



2.3 Gr�obner Bases in Polynomial Rings 212.3 Gr�obner Bases in Polynomial RingsThe main interest in this se
tion is the study of ideals in polynomial rings over�elds. Let K[X1 ; : : : ;Xn℄ denote a polynomial ring over the (ordered) variablesX1; : : : ;Xn and the 
omputable �eld K. By T = fX i11 : : :X inn j i1; : : : in 2 Ngwe de�ne the set of terms in this stru
ture. A polynomial then is a formalsum Pni=1 �i � ti with non-zero 
oeÆ
ients �i 2 Knf0g and terms ti 2 T . Theprodu
ts � � t for � 2 K, t 2 T are 
alled monomials and will often be denotedas m = � � t. We re
all that a subset F of K[X1; : : : ;Xn℄ generates an idealideal(F ) = fPki=1 fi � gi j k 2 N; fi 2 F; gi 2 K[X1; : : : ;Xn℄g and F is 
alled abasis of this ideal. It was shown by Hilbert using non-
onstru
tive argumentsthat every ideal in K[X1 ; : : : ;Xn℄ in fa
t has a �nite basis, but su
h a generat-ing set need not allow algorithmi
 solutions for the membership or 
ongruen
eproblem related to the ideal as we have seen in the introdu
tion. It was Bu
h-berger who developed a spe
ial type of basis, namely the Gr�obner basis, whi
hallows algorithmi
 solutions for several algebrai
 problems 
on
erning ideals. Heintrodu
ed a redu
tion relation to K[X1 ; : : : ;Xn℄ by transforming polynomialsinto \rules" and gave a terminating pro
edure to \
omplete" an ideal basis inter-preted as a redu
tion system. This pro
edure is 
alled Bu
hberger's algorithm inthe literature. We will give a sket
h of his approa
h below.Let � be a total well-founded ordering on the set of terms T , whi
h is admissible,i.e., t � 1, and s � t implies s Æ u � t Æ u for all s; t; u in T . The latterproperty is 
alled 
ompatibility with the multipli
ation Æ. In this 
ontext Ædenotes the multipli
ation in T , i.e.,X i11 : : :X inn ÆXj11 : : :Xjnn = X i1+j11 : : :X in+jnn .With respe
t to this multipli
ation we say that a term s = X i11 : : :X inn divides aterm t = Xj11 : : :Xjnn , if for all 1 � l � n we have il � jl. The least 
ommonmultiple LCM(s; t) of the terms s and t is the term Xmaxfi1;j1g1 : : :Xmaxfin;jngn .Note that T 
an be interpreted as the free 
ommutative monoid generated byX1; : : : ;Xn with the same multipli
ation Æ as de�ned above and identity 1 =X01 : : :X0n (re
all Example 2.1.5). We pro
eed to give an example for a totalwell-founded admissible ordering on the set of terms T .Example 2.3.1A total degree ordering � on T is spe
i�ed as follows: X i11 : : :X inn �Xj11 : : :Xjnn if and only if Pns=1 is > Pns=1 js or Pns=1 is = Pns=1 js and thereexists k su
h that ik > jk and is = js; 1 � s < k. �Hen
eforth, let � denote a total admissible ordering on T whi
h is of 
oursewell-founded.De�nition 2.3.2Let p = Pki=1 �i � ti be a non-zero polynomial in K[X1 ; : : : ;Xn℄ su
h that �i 2K� = Knf0g, ti 2 T and t1 � : : : � tn. Then we let HM(p) = �1 � t1 denotethe head monomial, HT(p) = t1 the head term and HC(p) = �1 the head
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oeÆ
ient of p. RED(p) = p � HM(p) stands for the redu
tum of p. We 
allp moni
 in 
ase HC(p) = 1. These de�nitions 
an be extended to sets F ofpolynomials by setting HT(F ) = fHT(f) j f 2 Fg, HC(F ) = fHC(f) j f 2 Fg,respe
tively HM(F ) = fHM(f) j f 2 Fg. �Using the notions of this de�nition we 
an re
ursively extend � from T to apartial well-founded admissible ordering � on K[X1 ; : : : ;Xn℄.De�nition 2.3.3Let p; q be two polynomials in K[X1; : : : ;Xn℄. Then we say p is greater than qwith respe
t to a total well-founded admissible ordering � on T , i.e., p > q, if1. HT(p) � HT(q) or2. HM(p) = HM(q) and RED(p) > RED(q). �Now one �rst spe
ialization of right ideal bases in terms of the representationsthey allow 
an be given a

ording to standard representations as introdu
ed e.g. in[BW92℄ for polynomial rings over �elds.De�nition 2.3.4Let F be a set of polynomials in K[X1; : : : ;Xn℄ and g a non-zero polynomial inideal(F ) � K[X1; : : : ;Xn℄. A representations of the formg = nXi=1 fi ? mi; fi 2 F;mi = �i � ti; �i 2 K; ti 2 T ; n 2 N (2.1)where additionally HT(g) � HT(fi ? mi) holds for 1 � i � n is 
alled a stan-dard representation of g in terms of F . If every g 2 ideal(F )nf0g has su
h arepresentation in terms of F , then F is 
alled a standard basis of ideal(F ). �What distinguishes an arbitrary representation from a standard representation isthe fa
t that the former may 
ontain polynomial multiples with head terms largerthan the head term of the represented polynomial. For example let f1 = X1+X2,f2 = X1 +X3 and F = ff1; f2g in Q[X1;X2℄ with X1 � X2 � X3. Then for thepolynomial g = X2 �X3 we have the representation g = f1 + (�1) � f2 whi
h isno standard one as HT(g) = X2 � HT(f1) = HT(f2) = X1. Obviously the largerhead terms have to vanish in the sum. Therefore, in order to 
hange an arbitraryrepresentation into one ful�lling our additional 
ondition (2.1) we have to dealwith spe
ial sums of polynomials related to su
h situations.De�nition 2.3.5Let F be a set of polynomials in K[X1 ; : : : ;Xn℄ and t an element in T . Thenwe de�ne the set of 
riti
al situations C(t; F ) related to t and F to 
ontain alltuples of the form (t; f1; : : : ; fk;m1; : : : ;mk), k 2 N, f1; : : : ; fk 2 F 4, mi = �i � ti,su
h that4Noti
e that f1; : : : ; fk are not ne
essarily di�erent polynomials from F .



2.3 Gr�obner Bases in Polynomial Rings 231. HT(fi ? mi) = t, 1 � i � k, and2. Pki=1HM(fi ? mi) = 0.We set C(F ) = St2T C(t; F ). �In our example the tuple (X1; f1; f2; 1;�1) is an elements of the 
riti
al setC(X1; F ). We 
an 
hara
terize standard bases using these spe
ial sets.Theorem 2.3.6Let F be a set of polynomials in K[X1 ; : : : ;Xn℄nf0g. Then F is a standard basis ofideal(F ) if and only if for every tuple (t; f1; : : : ; fk;m1; : : : ;mk) in C(F ) as spe
i�edin De�nition 2.3.5 the polynomialPki=1 fi?mi has a standard representation withrespe
t to F .Proof :In 
ase F is a standard basis sin
e these polynomials are all elements of ideal(F )they must have standard representations with respe
t to F .To prove the 
onverse, it remains to show that every element in ideal(F ) has astandard representation with respe
t to F . Hen
e, let g = Pmj=1 fj ? mj be anarbitrary representation of a non-zero polynomial g 2 ideal(F ) su
h that fj 2 F ,and mj = �j � tj with �j 2 K, tj 2 T . Depending on this representation ofg and the well-founded total ordering � on T we de�ne t = max�fHT(fj ?tj) j 1 � j � mg and K as the number of polynomials fj ? tj with head termt. Then t � HT(g) and in 
ase HT(g) = t this immediately implies that thisrepresentation is already a standard representation. Else we pro
eed by indu
tionon the term t. Without loss of generality let f1; : : : ; fK be the polynomials in the
orresponding representation su
h that t = HT(fi ? ti), 1 � i � K. Then thetuple (t; f1; : : : ; fK;m1; : : : ;mK) is in C(F ) and let h =PKi=1 fi ?mi. We will now
hange our representation of g in su
h a way that for the new representation of gwe have a smaller maximal term. Let us assume h is not 05. By our assumption, hhas a standard representation with respe
t to F , sayPnj=1 hj ? nj, where hj 2 F ,and nj = �j � sj with �j 2 K, sj 2 T and all terms o

urring in the sum arebounded by t � HT(h) as PKi=1 HM(fi ? mi) = 0. This gives us:g = KXi=1 fi ? mi + mXi=K+1 fi ? mi= nXj=1 hj ? nj + mXi=K+1 fi ? mi5In 
ase h = 0, just substitute the empty sum for the representation of h in the equationsbelow.
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h is a representation of g where the maximal term is smaller than t. q.e.d.In fa
t for the 
ase of polynomial rings over �elds one 
an show that it is suÆ
ientto 
onsider 
riti
al sets for subsets of F of size 2 and we 
an restri
t the terms tothe least 
ommon multiples of the head terms of the respe
tive two polynomials.These sets then 
orrespond to the 
on
ept of s-polynomials used to 
hara
terizeGr�obner bases whi
h will be introdu
ed later on.Reviewing our example on page 22 we �nd that the set F = fX1+X2;X1+X3g isno standard basis as the polynomial g = X2�X3 has no standard representationalthough it is an elements of ideal(F ). However the set F [fgg then is a standardbasis of ideal(F ).In the literature standard representations in K[X1 ; : : : ;Xn℄ are 
losely related toredu
tion relations based on the divisibility of terms and standard bases are in fa
tGr�obner bases. Here we want to introdu
e Gr�obner bases in terms of rewriting.Hen
e we 
ontinue by introdu
ing the 
on
ept of redu
tion to K[X1 ; : : : ;Xn℄.We 
an split a non-zero polynomial p into a rule HM(p) �! �RED(p) and wehaveHM(p) > �RED(p). Therefore, a set of polynomials gives us a binary relation�! on K[X1 ; : : : ;Xn℄ whi
h indu
es a one-step redu
tion relation as follows.De�nition 2.3.7Let p; f be two polynomials in K[X1 ; : : : ;Xn℄. We say f redu
es p to q at amonomial m = � � t of p in one step, denoted by p�!bf q, if(a) HT(f) Æ u = t for some u 2 T , i.e., HT(f) divides t, and(b) q = p � � � HC(f)�1 � f � u.We write p�!bf if there is a polynomial q as de�ned above and p is then 
alledredu
ible by f . Further, we 
an de�ne ��!b ; +�!b , and n�!b as usual. Redu
tionby a set F � K[X1 ; : : : ;Xn℄ is denoted by p�!bF q and abbreviates p�!bf q forsome f 2 F , whi
h is also written as p�!bf2F q. �Note that if f redu
es p to q at a monomial m = � � t then t is no longer amongthe terms of q. We 
all a set of polynomials F � K[X1; : : : ;Xn℄ interredu
ed,if no f 2 F is redu
ible by a polynomial in Fnffg.In the 
lassi
al 
ase of polynomial rings over �elds the existen
e of a standardrepresentation for a polynomial immediately implies redu
ibility of the headmonomial of the polynomial by any redu
tion relation based on divisibility ofterms, hen
e by the redu
tion relation de�ned here. This is due to the fa
tthat if a polynomial g has a standard representation in terms of a set of poly-nomials F for at least one polynomial f in F and some term t in T we have



2.3 Gr�obner Bases in Polynomial Rings 25HT(g) = HT(f ? t) = HT(f) Æ t and hen
e g is redu
ible at the monomial HM(g)by f . Noti
e that this is no longer true for polynomial rings over the integers.Let F = f3 � X2 + X; 2 � X2 + Xg be a subset of Z[X℄. Then the polynomialg = (3 �X2 +X) � (2 �X2 +X) = X2 has a standard representation in terms ofF but neither 3 �X2 nor 2 �X2 are divisors of the monomial X2 as neither 3 nor2 devide 1 in Z.Noti
e that we have �! � > and indeed one 
an show that our redu
tionrelation on K[X1 ; : : : ;Xn℄ is Noetherian. Therefore, we 
an restri
t ourselves toensuring lo
al 
on
uen
e when des
ribing a 
ompletion pro
edure to 
omputeGr�obner bases later on. But �rst we have to provide a de�nition of Gr�obnerbases in the 
ontext of rewriting.De�nition 2.3.8A set G � K[X1; : : : ;Xn℄ is said to be a Gr�obner basis of the ideal it generates,if 1. � !bG = �ideal(G), and2. �!bG is 
on
uent. �The �rst statement expresses that the redu
tion relation des
ribes the ideal 
on-gruen
e. It holds for any basis of an ideal in K[X1; : : : ;Xn℄ and is hen
e normallyomitted in the de�nitions provided in the literature. However, when generalizingthe 
on
ept of Gr�obner bases to other stru
tures it is no longer guaranteed andhen
e we have in
luded it in our de�nition. The se
ond statement ensures theexisten
e of unique normal forms. If we additionally require a Gr�obner basis tobe interredu
ed, su
h a basis is unique in 
ase we assume that the polynomialsare moni
, i.e., their head 
oeÆ
ients are 1. The following lemma gives someproperties of the redu
tion relation, whi
h are essential in giving a 
onstru
tivedes
ription of a Gr�obner basis not only in the setting of 
ommutative polynomialrings over �elds.Lemma 2.3.9Let F be a set of polynomials and p; q; h some polynomials in K[X1; : : : ;Xn℄.Then the following statements hold:1. Let p � q�!bF h. Then there are polynomials p0; q0 2 K[X1 ; : : : ;Xn℄ su
hthat p ��!bF p0, q ��!bF q0 and h = p0 � q0.2. Let 0 be a normal form of p � q with respe
t to F . Then there exists apolynomial g 2 K[X1; : : : ;Xn℄ su
h that p ��!bF g and q ��!bF g.3. p � !bF q if and only if p� q 2 ideal(F ).4. p ��!bF 0 implies � � p � u ��!bF 0 for all � 2 K and u 2 T .
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 De�nitions5. � � p � u�!bp 0 for all � 2 K� and u 2 T .The se
ond statement of this lemma is often 
alled the Translation Lemma inthe literature. Statement 3 shows that Bu
hberger's redu
tion relation always
aptures the ideal 
ongruen
e. Statement 4 is 
onne
ted to the important fa
tthat redu
tion steps are preserved under multipli
ation with monomials.The set F = fX1 +X2;X1 +X3g of polynomials in Q[X1;X2;X3℄ from page 22is an example of an ideal basis whi
h is not 
omplete, i.e. the redu
tion relationis not 
omplete6. This follows as the polynomial X1 
an be redu
ed by �!bF to�X2 as well as to �X3 and the latter two polynomials 
annot be joined using�!bF .Of 
ourse we 
annot expe
t an arbitrary ideal basis to be 
omplete. But Bu
h-berger was able to show that in order to \
omplete" a given basis one only has toadd �nitely many spe
ial polynomials whi
h arise from 
riti
al situations as de-s
ribed in the 
ontext of redu
tion systems in the previous se
tion and De�nition2.3.5.The term X1 in our example des
ribes su
h a 
riti
al situation whi
h is in fa
tthe only one relevant for 
ompleting the set F .De�nition 2.3.10The s-polynomial for two non-zero polynomials p; q 2 K[X1; : : : ;Xn℄ is de�nedas spol(p; q) = HC(p)�1 � p � u� HC(q)�1 � q � v;where LCM(HT(p);HT(q)) = HT(p) Æ u = HT(q) Æ v for some u; v 2 T . �An s-polynomial will be 
alled non-trivial in 
ase it is not zero and noti
e that fornon-trivial s-polynomials we always have HT(spol(p; q)) � LCM(HT(p);HT(q)).The s-polynomial for p and q belongs to the set of 
riti
al situationsC(LCM(HT(p);HT(q)); fp; qg).In our example we �nd spol(X1+X2;X1+X3) = X1+X2�(X1+X3) = X2�X3.Why are s-polynomials related to testing for lo
al 
on
uen
e? To answer thisquestion we have to look at 
riti
al situations related to the redu
tion relationas de�ned in De�nition 2.3.7. Given two polynomials p; q 2 K[X1 ; : : : ;Xn℄ thesmallest situation where both of them 
an be applied as rules is the least 
ommonmultiple of their head terms. Let LCM(HT(p);HT(q)) = HT(p)Æu = HT(q)Æv = tfor some u; v 2 T . This gives us the following situation:LCM(HT(p);HT(q)) = t	�� q p ��Rt� HC(q)�1 � q � v t� HC(p)�1 � p � u= p0 = q06Note that we 
all a set of polynomials 
omplete (
on
uent, et
.) if the redu
tion relationindu
ed by these polynomials used as rules is 
omplete (
on
uent, et
.).



2.3 Gr�obner Bases in Polynomial Rings 27Then we get p0� q0 = t�HC(q)�1 � q � v� (t�HC(p)�1 � p �u) = HC(p)�1 � p �u�HC(q)�1 � q �v = spol(p; q), i.e., the s-polynomial is derived from the two one-stepsu

essors by subtra
tion. Now by Lemma 2.3.9 we know that spol(p; q) ��!bF 0implies the existen
e of a 
ommon normal form for the polynomials p0 and q0.Sin
e the redu
tion relation based on De�nition 2.3.7 is terminating, the 
on
u-en
e test 
an hen
e be redu
ed to 
he
king whether all s-polynomials redu
e tozero. The following theorem now gives a 
onstru
tive 
hara
terization of Gr�obnerbases based on these ideas.Theorem 2.3.11For a set of polynomials F in K[X1; : : : ;Xn℄, the following statements are equiv-alent:1. F is a Gr�obner basis.2. For all polynomials g 2 ideal(F ) we have g ��!bF 0.3. For all polynomials fk; fl 2 F we have spol(fk; fl) ��!bF 0.Proof :1 =) 2 : Let F be a Gr�obner basis and g 2 ideal(F ). Then g is 
ongruent to 0modulo the ideal generated by F , i.e., g � !bF 0. Thus, as 0 is irredu
ible and Gis 
on
uent, we get g ��!bF 0.2 =) 1 : By Lemma 2.3.9 3 we know � !bG = �ideal(G). Hen
e it remains toshow that redu
tion with respe
t to F is 
on
uent. Sin
e our redu
tion is ter-minating it is suÆ
ient to show lo
al 
on
uen
e. Thus, suppose there are threedi�erent polynomials g; h1; h2 su
h that g�!bF h1 and g�!bF h2. Then we knowh1 �ideal(F ) g �ideal(F ) h2 and hen
e h1 � h2 2 ideal(F ). Now by lemma 2.3.9(the translation lemma), h1 � h2 ��!bF 0 implies the existen
e of a polynomialh 2 K[X1; : : : ;Xn℄ su
h that h1 ��!bF h and h2 ��!bF h. Hen
e, h1 and h2 are join-able.2 =) 3 : By de�nition 2.3.10 the s-polynomial for two non-zero polynomialsfk; fl 2 K[X1 ; : : : ;Xn℄ is de�ned asspol(fk; fl) = HC(fk)�1 � fk � u� HC(fl)�1 � fl � v;where LCM(HT(p);HT(q)) = HT(p) Æ u = HT(q) Æ v and, hen
e, spol(fk; fl) 2ideal(F ). Therefore, spol(fk; fl) ��!bF 0 follows immediately.3 =) 2 : We have to show that every g 2 ideal(F )nf0g is �!bF -redu
ible tozero. Remember that for h 2 ideal(F ), h�!bF h0 implies h0 2 ideal(F ). As�!bF is Noetherian, thus it suÆ
es to show that every g 2 ideal(F )nf0g is�!bF -redu
ible. Let g = Pmj=1 �j � fj � wj be an arbitrary representationof g with �j 2 K�, fj 2 F , and wj 2 T . Depending on this represen-tation of g and a total well-founded admissible ordering � on T we de�ne
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 De�nitionst = maxfHT(fj) Æ wj j j 2 f1; : : : ;mgg and K is the number of polynomialsfj � wj 
ontaining t as a term. Then t � HT(g) and in 
ase HT(g) = t thisimmediately implies that g is �!bF -redu
ible. Thus we will prove that g has arepresentation where every o

urring term is less or equal to HT(g), i.e., thereexists a representation su
h that t = HT(g)7. This will be done by indu
tionon (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and K 0 < K)8.In 
ase t � HT(g) there are two polynomials fk; fl in the 
orresponding rep-resentation9 su
h that HT(fk) Æ wk = HT(fl) Æ wl = t. By de�nition 2.3.10we have an s-polynomial spol(fk; fl) = HC(fk)�1 � fk � zk � HC(fl)�1 � fl � zl su
hthat HT(fk) Æ zk = HT(fl) Æ zl = LCM(HT(fk);HT(fl)). Sin
e HT(fk) Æ wk =HT(fl) Æ wl there exists an element z 2 T su
h that wk = zk Æ z and wl = zl Æ z.We will now 
hange our representation of g by using the additional informa-tion on this s-polynomial in su
h a way that for the new representation of gwe either have a smaller maximal term or the o

urren
es of the term t arede
reased by at least 1. Let us assume that spol(fk; fl) is not trivial10. Thenthe redu
tion sequen
e spol(fk; fl) ��!bF 0 results in a representation of the formspol(fk; fl) =Pni=1 Æi � hi � vi, where Æi 2 K� ; hi 2 F; vi 2 T . As the hi are due tothe redu
tion of the s-polynomial, all terms o

urring in the sum are bounded bythe term HT(spol(fk; fl)). Moreover, sin
e � is admissible on T this implies thatall terms of the sumPni=1 Æi �hi�vi�z are bounded by HT(spol(fk; fl))Æz � t, i.e.,they are stri
tly bounded by t11. We 
an now do the following transformations:�k � fk � wk + �l � fl � wl= �k � fk � wk + �0l � �k � fk � wk � �0l � �k � fk � wk| {z }=0 +�0l � �l � fl � wl= (�k + �0l � �k) � fk � wk � �0l � (�k � fk � wk � �l � fl � wl)| {z }= spol(fk;fl)�z= (�k + �0l � �k) � fk � wk � �0l � ( nXi=1 Æi � hi � (vi Æ z)) (2.2)where, �k = HC(fk)�1, �l = HC(fl)�1, and �0l � �l = �l. By substituting (2.2) inour representation of g either t disappears or K is de
reased. q.e.d.7Su
h representations are often 
alled standard representations in the literature (
ompare[BW92℄).8Note that this ordering is well-founded sin
e � is well-founded on T and K 2 N.9Not ne
essarily fl 6= fk.10In 
ase spol(fk; fl) = 0, just substitute 0 for the sumPni=1 Æi �hi�vi in the equations below.11This 
an also be 
on
luded by statement four of lemma2.3.9 sin
e spol(fk; fl) ��!bF 0 impliesspol(fk; fl) � z ��!bF 0 and HT(spol(fk; fl) � z) � t.



2.3 Gr�obner Bases in Polynomial Rings 29The se
ond item of this theorem immediately implies the 
orre
tness of the alge-brai
 de�nition of Gr�obner bases, whi
h is equivalent to De�nition 2.3.8.De�nition 2.3.12A set G of polynomials in K[X1 ; : : : ;Xn℄nf0g is said to be a Gr�obner basis, ifHT(ideal(G)) = fHT(g) � t j g 2 G; t 2 T g. �Remark 2.3.13A 
loser inspe
tion of the proof of 3 =) 2 given above reveals a 
on
ept whi
his essential in the proofs of similar theorems for spe
i�
 fun
tion rings in thefollowing 
hapters. The heart of this proof 
onsists in transforming an arbitraryrepresentation of an element g belonging to the ideal generated by the set F insu
h a way that we 
an dedu
e a top redu
tion sequen
e for g to zero, i.e., aredu
tion sequen
e where the redu
tions only take pla
e at the respe
tive headterm. Su
h a representation of g then is a standard representation and Gr�obnerbases are standard bases. �As a 
onsequen
e of Theorem 2.3.11 it is de
idable whether a �nite set of poly-nomials is a Gr�obner basis. Moreover, this theorem gives rise to the following
ompletion pro
edure for sets of polynomials.Pro
edure: Bu
hberger's AlgorithmGiven: A �nite set of polynomials F � K[X1; : : : ;Xn℄.Find: Gb(F ), a Gr�obner basis of F .G := F ;B := f(q1; q2) j q1; q2 2 G; q1 6= q2g;while B 6= ; do(q1; q2) := remove(B);% Remove an element from the set Bh := normalform(spol(q1; q2); �!bG )% Compute a normal form of spol(q1; q2) with respe
t to �!bGif h 6= 0then B := B [ f(f; h) j f 2 Gg;G := G [ fhg;endifendwhileGb(F ) := GApplying this pro
edure to our example F = fX1 +X2;X1 +X3g from page 22gives us h = X2 �X3 and G = F [ fhg is a Gr�obner basis as all other 
riti
alsituations are resolvable.
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 De�nitionsTermination of the pro
edure 
an be shown by using a slightly di�erent 
hara
-terization of Gr�obner bases (see Se
tion 1.2): A subset G of idealK[X1;:::;Xn℄(F ) isa Gr�obner basis of idealK[X1;:::;Xn℄(F ) if and only if HT(idealK[X1;:::;Xn℄(F )nf0g) =idealT (HT(G)), i.e., the set of the head terms of the polynomials in the ideal gen-erated by F in K[X1 ; : : : ;Xn℄ 
oin
ides with the ideal (in T ) generated by thehead terms of the polynomials in G. Reviewing the pro
edure, we �nd that everypolynomial added in the while loop has the property that its head term 
annotbe divided by the head terms of the polynomials already in G. By Di
kson'sLemma or Hilbert's Basis Theorem, the head terms of the polynomials in G willat some step form a basis for the set of head terms of the polynomials of the idealgenerated by F whi
h itself is the ideal in T generated by the head terms of thepolynomials in G. From this time on for every new polynomial h 
omputed bythe algorithm the head term HT(h) must lie in this ideal. Therefore, its headterm must be divisible by at least one of the head terms of the polynomials in G,i.e., HT(h) and hen
e h 
annot be in normal form with respe
t to G unless it iszero.



Chapter 3Redu
tion RingsIn this 
hapter we pro
eed to distinguish suÆ
ient 
onditions, whi
h allow tode�ne a redu
tion relation for a ring in su
h a way that every �nitely generatedideal in the ring has a �nite Gr�obner basis with respe
t to that redu
tion rela-tion. Su
h rings will be 
alled redu
tion rings. Often additional 
onditions 
anbe given to ensure e�e
tivity for the ring operations, the redu
tion relation andthe 
omputation of the Gr�obner bases { the ring is then 
alled an e�e
tive redu
-tion ring. Naturally the question arises, when and how the property of being aredu
tion ring is preserved under various ring 
onstru
tions. This 
an be studiedfrom an existential as well as from a 
onstru
tive point of view. One main goal ofstudying abstra
t redu
tion rings is to provide universal methods for 
onstru
tingnew redu
tion rings without having to generalize the whole setting individuallyfor ea
h new stru
ture: e.g. knowing that the integers Zare a redu
tion ring andthat the property lifts to polynomials in one variable, we �nd that Z[X℄ is againa redu
tion ring and we 
an immediately 
on
lude that alsoZ[X1; : : : ;Xn℄ is a re-du
tion ring. Similarly, as sums of redu
tion rings are again redu
tion rings, we
an dire
tly 
on
lude that Zk[X1; : : : ;Xn℄ or even (Z[Y1; : : : ; Ym℄)k[X1; : : : ;Xn℄are redu
tion rings. Moreover, sin
e Z is an e�e
tive redu
tion ring it 
an beshown that these new redu
tion rings again are e�e
tive. Commutative e�e
-tive redu
tion rings have been studied by Bu
hberger, Madlener, and Stifter in[Bu
83, Mad86, Sti87℄.On the other hand, many rings of interest are non-
ommutative, e.g. rings ofmatri
es, the ring of quaternions, Bezout rings and various monoid rings, andsin
e in many 
ases they 
an be regarded as redu
tion rings, they are again
andidates for applying ring 
onstru
tions. More interesting examples of non-
ommutative redu
tion rings have been studied by Pes
h in [Pes97℄.A general framework for redu
tion rings and ring 
onstru
tions in
luding thenon-
ommutative 
ase was presented at the Linz 
onferen
e \33 years of Gr�obnerBases" in [MR98b℄. Here we extend this framework by giving more details andinsight. Additionally, we add a se
tion on modules over redu
tion rings, as this
on
ept arises naturally as a generalization of ideals in rings.
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tion RingsOf 
ourse there are also rings of interest, whi
h 
an be enri
hed by a redu
tionrelation, but will not allow �nite Gr�obner bases for all ideals. Monoid and grouprings provide su
h a setting. For su
h stru
tures still many of the propertiesstudied here are of interest and 
an be shown in weaker forms, e.g. provided amonoid ring with a redu
tion relation we 
an de�ne a redu
tion relation for thepolynomial ring with one variable over the monoid ring.The 
hapter is organized as follows: In Se
tion 3.1 we introdu
e axioms for spe
-ifying redu
tion relations in rings and give two 
on
epts involving spe
ial formsof ideal bases { weak redu
tion rings and redu
tion rings. In Se
tion 3.2 { 3.5 westudy quotients, sums, modules, and polynomial rings of these stru
tures.3.1 Redu
tion RingsLet R be a ring with unit 1 and a (not ne
essarily e�e
tive) redu
tion relation=)B� R� R asso
iated with subsets B � R satisfying the following axioms:(A1) =)B = S�2B =)�,=)B is terminating for all �nite subsets B � R.(A2) � =)� 
 implies �� 
 2 idealR(�).(A3) � =)� 0 for all � 2 Rnf0g.Part one of Axiom (A1) states how a redu
tion relation using sets is de�nedin terms of a redu
tion relation using elements of R and is hen
e appli
ableto arbitrary sets B � R. However, Axiom (A1) does not imply terminationof redu
tion with respe
t to arbitrary sets: Just assume for example the ringR = Q[fXi j i 2 Ng℄, i.e., the polynomial ring with in�nitely many indetermi-nates, and the redu
tion relation based on divisibility of head terms with respe
tto the length-lexi
ographi
al ordering indu
ed by X1 � X2 � : : :. Then al-though redu
tion when using a �nite set of polynomials is terminating, this isno longer true for in�nite sets. For example the in�nite set fXi �Xi+1 j i 2 Nggives rise to an in�nite redu
tion sequen
e X1=)X1�X2 X2=)X2�X3 X3 : : :. Thisphenomenon of 
ourse has many 
onsequen
es. Readers familiar with Gr�obnerbases in polynomial rings know that when proving that a set of polynomials is aGr�obner basis if and only if all ideal elements redu
e to zero using the set, thisis shown by proving that every ideal element is redu
ible by some element in theset (
ompare Theorem 2.3.11). Unfortunately, this only implies redu
ibility tozero in 
ase the redu
tion relation is terminating. Without this property othermethods have to be applied.In order to ensure termination for arbitrary subsets of R it is possible to give amore restri
ted form of Axiom (A1):



3.1 Redu
tion Rings 33(A1') =)B = S�2B =)�,=)B is terminating for all subsets B � R.Then of 
ourse redu
tion sequen
es are always terminating and many additionalrestri
tions, whi
h we have to add later, are no longer ne
essary. Still we preferthe more general formulation of the axiom sin
e it allows to state more 
learlywhy and where termination is needed and how it 
an be a
hieved.Axiom (A2) states how redu
tion steps are related to the ideal 
ongruen
e, namelythat one redu
tion step using an element � 2 R is 
aptured by the 
ongruen
egenerated by idealR(�). We will later on see that this extends to the re
exivetransitive symmetri
 
losure �()B of any redu
tion relation =)B for arbitrarysets B � R.Noti
e that in 
ase R is 
ommutative (A2) implies 
 = � � � � � for some �in R. In the non-
ommutative 
ase using a single element � for redu
tion � �
 2 idealR(�) only implies 
 = ��Pki=1 �i1 � � � �i2 for some �i1; �i2 2 R, 1 �i � k, hen
e possibly involving � more than on
e with di�erent multipliers.This provides a large range of possibilities for de�ning redu
tion steps, e.g. bysubtra
ting one or more appropriate multiples of � from �. Noti
e further thaton the 
onverse Axiom (A2) does not provide any information on how �, 
 2 Rwith � � 
 2 idealR(�) are related with respe
t to the redu
tion relation =)f�g.As a 
onsequen
e many properties of spe
ialized redu
tion relations as knownfrom the literature, e.g. the useful Translation Lemma, 
annot be shown to holdin this general setting.We 
an de�ne one-sided (right or left) redu
tion relations in rings by re�ningAxiom (A2) as follows:(A2r) � =)� 
 implies �� 
 2 idealRr (�), respe
tively(A2l) � =)� 
 implies �� 
 2 idealRl (�).In these spe
ial 
ases again we always get 
 = ��� � � respe
tively 
 = �� � ��for some � 2 R.Remember that Axiom (A2) while not spe
i�
 on the exa
t form of the redu
tionstep ensures that redu
tion steps \stay" within the ideal 
ongruen
e. Let us nowstudy the situation for a set B � R and let �i denote the 
ongruen
e generatedby the ideal i = ideal(B), i.e., � �i � if and only if � � � 2 i. Then (A1)1 and(A2) immediately imply �()B � �i. Hen
e, in 
ase the redu
tion relation ise�e
tive one method for de
iding the membership problem for a �nitely generatedideal i is to transform a �nite generating set B into a �nite set B0 su
h that B01We only need the �rst part of Axiom (A1), namely how =)B is de�ned, and hen
e we donot have to restri
t ourselves to �nite sets.
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tion Ringsstill generates i and =)B0 is 
on
uent on i. Noti
e that 0 has to be irredu
ible2for all =)�, � 2 R. Therefore, 0 has to be the normal form of the ideal elements.Hen
e the goal is to a
hieve � 2 i if and only if � �=)B0 0. In parti
ular i is oneequivalen
e 
lass of �()B0 . The di�erent de�nitions of redu
tion relations forrings existing in literature show that for de
iding the membership problem of anideal i it is not ne
essary to enfor
e �()B0 = �i. For example the D-redu
tionnotion given by Pan in [Pan85℄ does not have this property but is still suÆ
ientto de
ide �i-equivalen
e of two elements be
ause � �i � if and only if �� � 2 i.It may even happen that D-redu
tion is not only 
on
uent on i but 
on
uenteverywhere and still � �i � does not imply that the normal forms with respe
t toD-redu
tion are the same. This phenomenon is illustrated in the next example.Example 3.1.1Let us look at di�erent ways of introdu
ing redu
tion relations for the ring ofintegers Z. For �; �; 
 2Zwe de�ne:� �=)� 
 if and only if � = � � j�j+
 where 0 � 
 < j�j and � 2Z(divisionwith remainder),� �=)D� 0 if and only if � = � ��, i.e. � is a proper divisor of � (D-redu
tion).Then for example we have 5=)4 1 but 5 6=)D4 .It is easy to show that both redu
tion relations satisfy (A1) { (A3). Moreover, allelements in Zhave unique normal forms. An element belongs to ideal(4) if andonly if it is redu
ible to zero using 4. For =)-redu
tion the normal forms areunique representatives of the quotientZ=ideal(4). This is no longer true for =)D-redu
tion, sin
e e.g. 3 �ideal(4) 7 sin
e 7 = 3 + 4, but both are =)D-irredu
ible.On the other hand, as =)D� is only appli
able to multiples � �� and then redu
esthem to zero, =)D4 is 
on
uent everywhere on Z. �Sin
e 
on
uen
e of a redu
tion relation on the ideal is already suÆ
ient to solveits membership problem, bases with this property 
alled weak Gr�obner bases havebeen studied in the literature. We pro
eed here by de�ning su
h weak Gr�obnerbases in our 
ontext.De�nition 3.1.2A subset B of R is 
alled a weak Gr�obner basis of the ideal i = ideal(B) itgenerates, if =)B is terminating and � �=)B 0 for all � 2 i. �Noti
e that in Theorem 2.3.11 this property was one way of 
hara
terizingGr�obner bases in K[X1 ; : : : ;Xn℄. We will later on see why in polynomial ringsthe terms weak Gr�obner basis and Gr�obner basis 
oin
ide.20 
annot be redu
ible by itself sin
e this would 
ontradi
t the termination property in(A1). Similarly, 0 =)� 0 and 0 =)� 
, both � and 
 not equal 0, give rise to in�nite redu
tionsequen
es again 
ontradi
ting (A1).



3.1 Redu
tion Rings 35De�nition 3.1.3A ring (R;=)) satisfying (A1) { (A3) is 
alled a weak redu
tion ring if every�nitely generated ideal in R has a �nite weak Gr�obner basis. �As stated before su
h a weak Gr�obner basis is suÆ
ient to de
ide the ideal mem-bership problem in 
ase the redu
tion relation is e�e
tive. However, if we wantunique normal forms for all elements in R su
h that ea
h 
ongruen
e has oneunique representative we need a stronger kind of ideal basis.De�nition 3.1.4A subset B of R is 
alled a Gr�obner basis of the ideal i = ideal(B) it generates,if �()B = �i and =)B is 
omplete3. �Of 
ourse Gr�obner bases are also weak Gr�obner bases. This 
an be shown byindu
tion on k, where for � 2 ideal(B) we have � k()B 0. In 
ase k = 1 weimmediately get that �=)B 0 must hold as 0 is irredu
ible. In 
ase k > 1 we�nd �()B � k�1()B 0 and by our indu
tion hypothesis � �=)B 0 must hold. Noweither �=)B � and we are done or �=)B �. In the latter 
ase the 
ompletenessof our redu
tion relation 
ombined with the irredu
ibility of zero then must yield� �=)B 0 and we are done.The 
onverse is not true. To see this let us review the de�nition of =)D-redu
tionfor Zas presented in Example 3.1.1. Then the set f2g is a weak Gr�obner basis ofthe ideal 2 �Z= f2 � � j � 2Zg as for every � 2 (2 �Z)nf0g we have � =)Df2g 0.On the other hand elements in Zn(2 �Z) are irredu
ible and hen
e 3 and 5 are innormal form with respe
t to =)Df2g. Therefore, 3 6 �()Df2g 5 although 5 �2�Z3 as5 = 3 + 1 � 2.However, for many rings as e.g. polynomial rings over �elds, weak Gr�obner basesare also Gr�obner bases. This is due to the fa
t that many rings with redu
tionrelations studied in the literature ful�ll a 
ertain property for the redu
tion rela-tion 
alled the Translation Lemma (
ompare Lemma 2.3.9 (2)). Rephrased in our
ontext the Translation Lemma states that for a set F � R and for all �; � 2 R,�� � �=)F 0 implies the existen
e of 
 2 R su
h that � �=)F 
 and � �=)F 
. Asmentioned before, the validity of this lemma for a redu
tion relation in a ring has
onsequen
es on the relation between weak Gr�obner bases and Gr�obner bases.3Noti
e that in the literature de�nitions of Gr�obner bases normally only require that =)Bis \
on
uent". This is due to the fa
t that in these 
ases =)B is terminating. In our 
ontext,however for arbitrary sets B � R we have seen that =)B need not be Noetherian. Hen
e wehave to in
orporate this additional requirement into our de�nition, whi
h is done by demanding
ompleteness. Hen
e here we have a point where the weaker form (A1) demands more 
are inde�ning the term \Gr�obner basis". In rings where the redu
tion relation using an arbitraryset of elements is always Noetherian, the weaker demand for (lo
al) 
on
uen
e is of 
oursesuÆ
ient.
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tion RingsTheorem 3.1.5Let R be a ring with a redu
tion relation =) ful�lling (A1) { (A3). If additionallythe Translation Lemma holds for the redu
tion relation =) in R, then weakGr�obner bases are also Gr�obner bases.Proof :Let R be a ring where the Translation Lemma holds for the redu
tion relation=). Further let B be a weak Gr�obner basis of the ideal i = ideal(B). In orderto prove that B is in fa
t a Gr�obner basis we have to show two properties:1. �()B = �i:The in
lusion �()B � �i follows by (A1) and (A2). To see the 
onverselet � �i �. Then ��� 2 i, and ��� �=)B 0, as B is a weak Gr�obner basis.But then the Translation Lemma yields that � and � are joinable by =)Band hen
e � �()B �.2. =)B is 
omplete:Sin
e =)B is terminating it suÆ
es to show lo
al 
on
uen
e. Let�; �1; �2 2 R su
h that �=)B �1 and �=)B �2. Then again �1��2 2 i, and�1 � �2 �=)B 0, sin
e B is a weak Gr�obner basis. As before the TranslationLemma yields that �1 and �2 are joinable by =)B and we are done.q.e.d.On the other hand, looking at proofs of variations of the Translation Lemmain the literature we �nd that in order to show this property for a ring with aredu
tion relation we need more information on the redu
tion step as is providedby the very general form of Axiom (A2). Hen
e in this general setting weakGr�obner bases and Gr�obner bases have to be distinguished.Rings where �nitely generated ideals have �nite Gr�obner bases are of parti
ularinterest.De�nition 3.1.6A ring (R;=)) satisfying (A1) { (A3) is 
alled a redu
tion ring if every �nitelygenerated ideal in R has a �nite Gr�obner basis. �The 
onne
tion between weak redu
tion rings and redu
tion rings follows fromTheorem 3.1.5.Corollary 3.1.7Let (R;=)) be a weak redu
tion ring. If additionally the Translation Lemmaholds, then (R;=)) is a redu
tion ring.



3.1 Redu
tion Rings 37To simplify notations sometimes we will identify (R;=)) with R in 
ase =)is known or irrelevant. The notion of one-sided weak redu
tion rings andone-sided redu
tion rings is straightforward4.E�e
tive or 
omputable weak redu
tion rings and e�e
tive or 
om-putable redu
tion rings 
an be de�ned similar to Bu
hberger's 
ommutativeredu
tion rings (see [Bu
83, Sti87℄), in our 
ase by demanding that the ring op-erations are 
omputable, the redu
tion relation is e�e
tive, and, additionally,Gr�obner bases 
an be 
omputed. Pro
edures whi
h 
ompute Gr�obner bases arenormally 
ompletion pro
edures based on e�e
tive tests for lo
al 
on
uen
e tode
ide whether a �nite set is a Gr�obner basis and to enri
h that set if not. But of
ourse other pro
edures are also possible, e.g. when using division with remain-ders as redu
tion relation inZthe Eu
lidean algorithm 
an be used for 
omputingGr�obner bases of ideals.Noti
e that De�nition 3.1.6 does not imply that Noetherian rings satisfying theAxioms (A1), (A2) and (A3) are indeed redu
tion rings. This is due to the fa
tthat while of 
ourse all ideals then have �nite bases, the property of being aGr�obner basis strongly depends on the redu
tion ring whi
h is of 
ourse itselfstrongly dependent on the redu
tion relation 
hosen for the ring. Hen
e theexisten
e of �nite ideal bases does not imply the existen
e of �nite Gr�obner basesas the following example shows: Given an arbitrary Noetherian ring R we 
anasso
iate a (very simple) redu
tion relation to elements of R by de�ning for any� 2 Rnf0g, � =)� if and only if � = �. Additionally we de�ne � =)� 0.Then the Axioms (A1), (A2) and (A3) are ful�lled but although every ideal inthe Noetherian ring R has a �nite basis (in the sense of a generating set), in�niteideals will not have �nite Gr�obner bases, as for any ideal i � R in this setting theset inf0g is the only possible Gr�obner basis.Another interesting question 
on
erns whi
h 
hanges to ideal bases preserve theproperty of being a Gr�obner basis. Extensions of (weak) Gr�obner bases by idealelements are not 
riti
al5.Remark 3.1.8If B is a �nite (weak) Gr�obner basis of i and � 2 i, then B0 = B [ f�g is again a(weak) Gr�obner basis of i: First of all we �nd �()B � �()B0 � �i = �()B .Moreover, sin
e B0 is again a �nite set, =)B0 is terminating. Finally =)B0inherits its 
on
uen
e from =)B sin
e � =)� 
 implies � �i 
, and hen
e � and
 have the same normal form with respe
t to =)B. �4An example for a one-sided weak redu
tion ring whi
h is not a one-sided redu
tion ring 
anbe given using the two di�erent redu
tion relations =) and =)D for the integers provided inExample 3.1.1. Then the free monoid ring Z[fa; bg℄ with pre�x redu
tion indu
ed by =) is aone-sided redu
tion ring while for pre�x redu
tion indu
ed by =)D we get a one-sided weakredu
tion ring.5Extensions of (weak) Gr�obner bases by elements not belonging to the ideal make no sensein our 
ontext as then the redu
tion relation no longer is a proper means for des
ribing theoriginal ideal 
ongruen
e.
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tion RingsHen
e, if B is a �nite Gr�obner basis of an ideal i and � 2 B is redu
ible byBnf�g to �, then B [ f�g is again a Gr�obner basis of i. The same is true forweak Gr�obner bases.Removing elements from a set is 
riti
al as we might de
rease the set of elementswhi
h are redu
ible with respe
t to the set. Hen
e if the set is a Gr�obner basis,after removing elements the ideal elements might no longer redu
e to zero usingthe remaining set. Reviewing the example presented in Se
tion 1.3 we �nd thatwhile the set fX2; +X2;X21 +X3;X2 �X3g is a Gr�obner basis in Q[X1;X2;X3℄the subset fX2; + X2;X21 + X3g, although it generates the same ideal, is none.In order to remove � from a Gr�obner basis B without losing the Gr�obner basisproperty it is important for the redu
tion relation =) to satisfy an additionalaxiom:(A4) � =)� and � =)
 Æ imply � =)
 or � =)Æ.It is not easy to give a simple example for a ring with a redu
tion relation ful�lling(A1) { (A3) but not (A4) as the redu
tion rings we have introdu
ed so far allsatisfy (A4)6.Lemma 3.1.9Let (R;=)) be a redu
tion ring satisfying (A4). Further let B � R be a (�nite)Gr�obner basis of a �nitely generated ideal in R and B0 � B su
h that for all� 2 B, � �=)B0 0 holds. Then B0 is a Gr�obner basis of idealR(B). In parti
ular,for all � 2 R, � �=)B 0 implies � �=)B0 0.Proof :In this proof let �+B denote a normal form of � with respe
t to =)B and letIRR(=)B) denote the =)B-irredu
ible elements in R. Noti
e that by the Axioms(A1) and (A4) and our assumptions on B0, all elements redu
ible by B are alsoredu
ible by B0: We show a more general 
laim by indu
tion on n: If �; � 2 Rsu
h that � =)� and � n=)B0 0, then � =)B0. The base 
ase n = 1 is a dire
t
onsequen
e of (A4), as � =)� and �=)�02B0 0 immediately imply � =)�02B0.6An example using a right redu
tion relation in a monoid ring 
an be found in Example 3.6in [MR98d℄: Let � = fa; b; 
g and T = fa2 �! 1; b2 �! 1; 
2 �! 1g be a monoid presentationof M with a length-lexi
ographi
al ordering indu
ed by a � b � 
. For p; f 2 K[M℄ a (right)redu
tion relation is de�ned by p�!sf q at a monomial � � t, if(a) HT(f �w) = t for some w 2M, and(b) q = p � � � HC(f �w)�1 � f �w.Looking at p = ba + b; q = b
 + 1 and r = a
 + b 2 Q[G℄ we get p�!sq p � q � 
a = �
a + band q�!sr q � r � 
 = �a + 1 = q1, but p 6�!sfr;q1g . Trying to redu
e ba by r or q1 we getr �a = a
a+ ba; r � 
aba = ba+ b
aba and q1 �aba = �ba+aba; q1� ba = �aba+ ba all violating
ondition (a). Trying to redu
e b we get the same problem as r � 
ab = b+ b
ab; q1�ab = �b+aand q1 � b = �ab + b.



3.2 Quotients of Redu
tion Rings 39In the indu
tion step we �nd � =)�02B0 Æ n�1=)B0 0 and either � =)�02B0 or � =)Æand our indu
tion hypothesis yields � =)B0.Hen
e we 
an 
on
lude IRR(=)B0) � IRR(=)B). We want to show that B0 isa Gr�obner basis of idealR(B): Assuming � �=)B �+B but � �=)B0 �+B0 6= �+B, we�nd �+B02 idealR(B) and �+B02 IRR(=)B0) � IRR(=)B), 
ontradi
ting the
on
uen
e of =)B. Hen
e, �+B0= �+B, implying that =)B0 is also 
on
uent, as�+B is unique. Now it remains to show that �()B � �()B0 holds. This followsimmediately, as for � �()B � we have �+B0= �+B= �+B= �+B0 whi
h implies� �()B0 �. q.e.d.This result 
arries over for weak Gr�obner bases.Corollary 3.1.10Let (R;=)) be a weak redu
tion ring satisfying (A4). Further let B � R be a(�nite) weak Gr�obner basis of a �nitely generated ideal in R and B0 � B su
hthat for all � 2 B, � �=)B0 0 holds. Then B0 is a weak Gr�obner basis of idealR(B).In parti
ular, for all � 2 R, � �=)B 0 implies � �=)B0 0.Proof :As in the proof of Lemma 3.1.9 we 
an 
on
lude IRR(=)B0) � IRR(=)B). Hen
eassuming that � �=)B 0 while � �=)B0 �+B0 6= 0 would imply �+B02 IRR(=)B).As B0 � B this would give us a 
ontradi
tion sin
e then � 2 idealR(B) would havetwo di�erent normal forms at least one of them not equal to zero with respe
t toB 
ontradi
ting the fa
t that B is supposed to be a weak Gr�obner basis. q.e.d.Remark 3.1.8 and Lemma 3.1.9 are 
losely related to interredu
tion and redu
ed(weak) Gr�obner bases. We 
all a (weak) Gr�obner basis B � R redu
ed if noelement � 2 B is redu
ible by =)Bnf�g.The results of this se
tion 
arry over to rings with appropriate one-sided redu
tionrelations.In the remaining se
tions of this 
hapter we study the question whi
h ring 
on-stru
tions preserve the property of being a (weak) redu
tion ring.3.2 Quotients of Redu
tion RingsLet R be a ring with a redu
tion relation =) ful�lling (A1) { (A3) and i a �nitelygenerated ideal in R with a �nite Gr�obner basis B. Then every element � 2 Rhas a unique normal form �+B with respe
t to =)B. We 
hoose the set of =)B-irredu
ible elements of R as representatives for the elements in the quotient R=i.
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tion RingsAddition is de�ned by �+� := (�+�)+B and multipli
ation by � �� := (� ��)+B.Then a natural redu
tion relation 
an be de�ned on the quotient R=i as follows:De�nition 3.2.1Let �; �; 
 2 R=i. We say � redu
es � to 
 in one step, denoted by � �!� 
, ifthere exists 
0 2 R su
h that � =)� 
0 and (
0)+B= 
. �First we ensure that the Axioms (A1) { (A3) hold for the redu
tion relation inR=i based on De�nition 3.2.1: �!S = Ss2S �!s is terminating for all �niteS � R=i sin
e otherwise =)B[S would not be terminating in R although B [ Sis �nite. Hen
e (A1) is satis�ed. If � �!� 
 for some �; �; 
 2 R=i we know� =)� 
0 �=)B 
, i.e., � � 
 2 idealR(f�g [ B), and hen
e � � 
 2 idealR=i(�).Therefore, (A2) is also ful�lled. Finally Axiom (A3) holds sin
e � =)� 0 for all� 2 Rnf0g implies � �!� 0.Moreover, in 
ase (A4) holds in R this is also true for R=i: For �; �; 
; Æ 2 R=i wehave that � �!� and � �!
 Æ imply � =)� and � =)
 Æ0 �=)B Æ and sin
e � is=)B-irredu
ible7 this implies � =)f
;Æg and hen
e � �!f
;Æg.Theorem 3.2.2If (R;=)) is a redu
tion ring with (A4), then for every �nitely generated ideal ithe quotient (R=i;�!) again is a redu
tion ring with (A4).Proof :Sin
e redu
tion in R=i as de�ned above inherits (A1) { (A4) from R, it remainsto show that every �nitely generated ideal j � R=i has a �nite Gr�obner basis. LetjR = f� 2 R j �+B2 jg be an ideal8 in R 
orresponding to j. Then jR is �nitelygenerated as an ideal in R by its �nite basis in R=i viewed as elements of R andthe �nite basis of i. Hen
e jR has a �nite Gr�obner basis in R, say GR. ThenG = f�+Bj � 2 GRgnf0g is a �nite Gr�obner basis of j: If � 2 j we have � ��!G 0and idealR=i(G) = j, as every element whi
h is redu
ible with an element � 2 GRis also redu
ible with an element of G[B be
ause (A4) holds. Sin
e G[B is alsoa Gr�obner basis of jR and �!G � �=)G[B , when restri
ted to elements in R=iwe have IRR(�!G) = IRR(=)G[B) and �!G is 
on
uent. Furthermore, sin
e7Remember that in the proof of Lemma 3.1.9 we have shown that � =)� and � �=)B0 0imply � =)B0 . This 
arries over to our situation in the form that � =)� and � =)
 Æ0 �=)B Æimplies � =)f
;Æ0;Æg[B and using indu
tion to � =)f
;Æg[B .8jR is an ideal in R sin
e1. 0 2 jR as 0 2 j.2. �; � 2 jR implies �+B; �+B2 j, hen
e �+B +�+B= (�+ �)+B2 j and �+ � 2 jR.3. � 2 jR and 
 2 R implies �+B2 j and 
 � �+B= (
 � �)+B2 j, �+B �
 = (� � 
)+B2 j,hen
e 
 � �; � � 
 2 jR.



3.2 Quotients of Redu
tion Rings 41�j = �jR when restri
ted to R=i we get � !G = �j on R=i implying that R=i isa redu
tion ring. q.e.d.In Example 3.1.1 we have seen how to asso
iate the integers with a redu
tionrelation =) and in fa
t (Z;=)) is a redu
tion ring. Theorem 3.2.2 then statesthat for every m 2 Zthe quotient Z=ideal(m) again is a redu
tion ring with re-spe
t to the redu
tion relation de�ned analogue to De�nition 3.2.1. In parti
ularredu
tion rings with zero divisors 
an be 
onstru
ted in this way.Of 
ourse if we only assume that R is a weak redu
tion ring we no longer haveunique normal forms for the elements in the quotient. Still 
omparing elementsis possible as � = � in R=i if and only if �� � 2 i if and only if �� � �=)B 0 fora weak Gr�obner basis B of i. Hen
e the elements in the quotient are no longergiven by unique elements but by the respe
tive sets of all representatives withrespe
t to the weak Gr�obner basis 
hosen for the ideal9.Corollary 3.2.3If (R;=)) is a weak redu
tion ring with (A4), then for every �nitely generatedideal i the quotient (R=i;�!) again is a weak redu
tion ring with (A4).Proof :It remains to show that every �nitely generated ideal j � R=i has a �nite weakGr�obner basis. Let B be a �nite weak Gr�obner basis of i in R and Bj a �nitegenerating set for the ideal j in R=i.Let jR = S�2jf� 2 R j � ()�B �g, be an ideal in R 
orresponding to j. Then jRis �nitely generated by the set B [ ~Bj where for ea
h element � 2 Bj the set ~Bj
ontains some ~� 2 f� 2 R j � ()�B �g. Moreover, jR has a �nite weak Gr�obnerbasis, say GR. Then the set G = f�+Bj � 2 GRgnf0g 
ontaining for ea
h � 2 GRone not ne
essarily unique normal form �+B is a �nite weak Gr�obner basis of j: If� 2 j we have � ��!G 0 and idealR=i(G) = j, as every element in j (i.e. in parti
ularirredu
ible with respe
t to B) whi
h is redu
ible with an element � 2 GR is alsoredu
ible with an element of G be
ause (A4) holds10. q.e.d.Now if (R;=)) is an e�e
tive redu
tion ring, then B 
an be 
omputed andaddition and multipli
ation in R=i as well as the redu
tion relation based onDe�nition 3.2.1 are 
omputable operations. Moreover, Theorem 3.2.2 
an begeneralized:9Su
h an element � in the quotient 
an be represented by any element whi
h is equivalent toit. When doing 
omputations then of 
ourse to de
ide whether � = � in R=i one has to 
he
kif �� � �=)B 0 for a weak Gr�obner basis B of i.10Sin
e � 2 j is irredu
ible by B, we have � =)� Æ0 �=)GR Æ and � 62 B. Then looking at thesituation � =)� and � �=)GR �+B , (A4) yields � =)�+B .
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tion RingsCorollary 3.2.4If (R;=)) is an e�e
tive redu
tion ring with (A4), then for every �nitely generatedideal i the quotient (R=i;�!) again is an e�e
tive redu
tion ring with (A4).Proof :Given R, B and a �nite generating set F for an ideal j in R=i we 
an 
omputea �nite Gr�obner basis for j using the method for 
omputing Gr�obner bases in R:Compute a Gr�obner basis GR of the ideal generated by B [F in R. Then the setG = f�+Bj � 2 GRg, where �+B is the normal form of g with respe
t to =)B inR and hen
e an element of R=i, is a Gr�obner basis of j in R=i. q.e.d.The same is true for e�e
tive weak redu
tion rings.Finally the results 
arry over to the 
ase of one-sided redu
tion rings with (A4)provided that the two-sided ideal has a �nite right respe
tively left Gr�obner basis.3.3 Sums of Redu
tion RingsLet R1;R2 be rings with redu
tion relations =)1 respe
tively =)2 ful�lling (A1){ (A3). Then R = R1 � R2 = f(�1; �2) j �1 2 R1; �2 2 R2g is 
alled the dire
tsum of R1 and R2. Addition and multipli
ation are de�ned 
omponent wise, theunit is (11; 12) where 1i is the respe
tive unit in Ri. A natural redu
tion relation
an be de�ned on R as follows:De�nition 3.3.1Let � = (�1; �2), � = (�1; �2), 
 = (
1; 
2) 2 R. We say that � redu
es � to 
in one step, denoted by � �!� 
, if either (�1=)1�1 
1 and �2 = 
2) or (�1 = 
1and �2=)2�2 
2) or (�1=)1�1 
1 and �2=)2�2 
2). �Again we have to prove that the Axioms (A1) { (A3) hold for the redu
tionrelation in R: �!B= S�2B �!� is terminating for �nite sets B � R sin
e thisproperty is inherited from the termination of the respe
tive redu
tion relations inRi. Hen
e (A1) holds. (A2) is satis�ed sin
e � �!� 
 implies �� 
 2 idealR(�).(A3) is true as � �!� (01; 02) holds for all � 2 Rnf(01; 02)g. Moreover, it is easyto see that if 
ondition (A4) holds for =)1 and =)2 then this is inherited by�!.Theorem 3.3.2If (R1; =)1 ), (R2; =)2 ) are redu
tion rings, then (R = R1 � R2;�!) is again aredu
tion ring.



3.3 Sums of Redu
tion Rings 43Proof :Sin
e the redu
tion relation in R as de�ned above inherits (A1) { (A3) respe
-tively (A4) from the redu
tion relations in the Ri, it remains to show thatevery �nitely generated ideal i � R has a �nite Gr�obner basis. To see thisnoti
e that the restri
tions i1 = f�1 j (�1; �2) 2 i for some �2 2 R2g andi2 = f�2 j (�1; �2) 2 i for some �1 2 R1g are �nitely generated ideals in R1respe
tively R2 and hen
e have �nite Gr�obner bases B1 respe
tively B2. We
laim that B = f(�1; 02); (01; �2) j �1 2 B1; �2 2 B2g is a �nite Gr�obner basis of i.Noti
e that i = i1� i2. Then ideal(B) = i and � 2 i implies � ��!B (01; 02) due tothe fa
t that for � = (�1; �2) we have �1 2 i1 and �2 2 i2 implying�1 �=)1B1 01 and�2 �=)2B2 02. Similarly �!B is 
on
uent be
ause =)1B1 and =)2B2 are 
on
u-ent. Finally � !B = �i sin
e (�1; �2) �i (�1; �2) implies �1 �i1 �1 respe
tively�2 �i2 �2 and hen
e �1 �()1B1 �1 respe
tively �2 �()2B2 �2. q.e.d.Spe
ial regular rings as introdu
ed by Weispfenning in [Wei87b℄ provide examplesof su
h sums of redu
tion rings, e.g. any dire
t sum of �elds.Corollary 3.3.3If (R1; =)1 ), (R2; =)2 ) are weak redu
tion rings, then (R = R1 � R2;�!) isagain a weak redu
tion ring.Proof :Reviewing the proof of Theorem 3.3.2 it remains to show that every �nitelygenerated ideal i � R has a �nite weak Gr�obner basis. Again we look at therestri
tions i1 = f�1 j (�1; �2) 2 i for some �2 2 R2g and i2 = f�2 j (�1; �2) 2i for some �1 2 R1g whi
h are �nitely generated ideals in R1 respe
tively R2and hen
e have �nite weak Gr�obner bases B1 respe
tively B2. We 
laim thatB = f(�1; 02); (01; �2) j �1 2 B1; �2 2 B2g is a �nite weak Gr�obner basis of i. Asbefore i = i1 � i2 and ideal(B) = i. Then � 2 i implies � ��!B (01; 02) due to thefa
t that for � = (�1; �2) we have �1 2 i1 and �2 2 i2 implying �1 �=)1B1 01 and�2 �=)2B2 02 as B1 and B2 are respe
tive weak Gr�obner bases, and we are done.q.e.d.Now if (R1; =)1 ), (R2; =)2 ) are e�e
tive redu
tion rings, then addition andmultipli
ation in R as well as the redu
tion relation based on De�nition 3.3.1 are
omputable operations. Moreover, Theorem 3.3.2 
an be generalized:Corollary 3.3.4If (R1; =)1 ), (R2; =)2 ) are e�e
tive redu
tion rings, then (R = R1 �R2;�!) isagain an e�e
tive redu
tion ring.



44 Chapter 3 - Redu
tion RingsProof :Given a �nite generating set F = f(�i; �i) j 1 � i � k; �i 2 R1; �i 2 R2g aGr�obner basis of the ideal generated by F 
an be 
omputed using the respe
tivemethods for Gr�obner basis 
omputation in R1 and R2: Compute B1 a Gr�obnerbasis of the ideal generated by f�1; : : : ; �kg in R1 and B2 a Gr�obner basis of theideal generated by f�1; : : : ; �kg in R2. Then B = f(
1; 02); (01; 
2) j 
1 2 B1; 
2 2B2g is a �nite Gr�obner basis of the ideal generated by F in R. q.e.d.A similar result holds for e�e
tive weak redu
tion rings.Due to the \simple" multipli
ation used when de�ning dire
t sums, Theorem3.3.2 and Corollary 3.3.4 extend dire
tly to one-sided redu
tion rings. More
ompli
ated multipli
ations are possible and have to be treated individually.3.4 Modules over Redu
tion RingsAnother stru
ture whi
h 
an be studied by redu
tion te
hniques are modulesand their submodules. Given a ring R with unit 1 and a natural number k, letRk = fa = (�1; : : : ; �k) j �i 2 Rg be the set of all ve
tors of length k with
oordinates in R. Obviously Rk is an additive 
ommutative group with respe
tto ordinary ve
tor addition and we denote the zero by 0. Moreover, Rk is an R-module for s
alar multipli
ation de�ned as � � (�1; : : : ; �k) = (� ��1; : : : ; � ��k)and (�1; : : : ; �k) � � = (�1 � �; : : : ; �k � �). Additionally Rk is 
alled free as ithas a basis11. One su
h basis is the set of unit ve
tors e1 = (1; 0; : : : ; 0); e2 =(0; 1; 0; : : : ; 0); : : : ; ek = (0; : : : ; 0; 1). Using this basis the elements of Rk 
an bewritten uniquely as a =Pki=1 �i � ei where a = (�1; : : : ; �k).De�nition 3.4.1A subset of Rk whi
h is again an R-module is 
alled a submodule of Rk. �For example any ideal of R is an R-module and even a submodule of the R-moduleR1. Provided a set of ve
tors S = fa1; : : : ;ang the set fPni=1Pmij=1 �ij � ai � �ij0 j�ij; �ij 0 2 Rg is a submodule of Rk. This set is denoted as hSi and S is 
alled itsgenerating set.Now similar to the 
ase of modules over 
ommutative polynomial rings, beingNoetherian is inherited by Rk from R.Theorem 3.4.2Let R be a Noetherian ring. Then every submodule in Rk is also �nitely generated.11Here the term basis is used in the meaning of being a linearly independent set of generatingve
tors.



3.4 Modules over Redu
tion Rings 45Proof :Let S be a submodule of Rk. We show our 
laim by indu
tion on k. For k = 1 we�nd that S is in fa
t an ideal in R and hen
e by our hypothesis must be �nitelygenerated. For k > 1 let us look at the set i = f�1 j (�1; : : : ; �k) 2 Sg whi
h isagain an ideal in R and hen
e �nitely generated by some set f
1; : : : ; 
s j 
i 2 Rg.Choose12 H = f
1; : : : ; 
sg � S su
h that the �rst 
oordinate of 
i is 
i. Similarlythe set M = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2 Sg is a submodule in Rk�1 andtherefore �nitely generated by our indu
tion hypothesis. Let f(Æi2; : : : ; Æik) j 1 �i � wg be su
h a �nite generating set. Then di = (0; Æi2; : : : ; Æik) 2 S, 1 � i � wand the set G = f
1; : : : ; 
sg [ fdi j 1 � i � wg is a �nite generating set for S.To see this assume t = (�1; : : : ; �k) 2 S. Then �1 = Psi=1Pnij=1 �ij � 
i � �ij 0 forsome �ij ; �ij 0 2 R and t0 = t�Psi=1Pnij=1 �ij � 
i � �ij 0 2 S with �rst 
oordinate 0.Hen
e t0 =Pwi=1Pmij=1 �ij � di � �ij 0 for some �ij; �ij 0 2 R giving rise tot = t0 + sXi=1 niXj=1 �ij � 
i � �ij 0 = wXi=1 miXj=1 �ij � di � �ij 0 + sXi=1 niXj=1 �ij � 
i � �ij 0:q.e.d.We will now study submodules of modules using redu
tion relations. Let =) bea redu
tion relation on R ful�lling (A1) { (A3). A natural redu
tion relation onRk 
an be de�ned using the representations as polynomials with respe
t to thebasis of unit ve
tors as follows:De�nition 3.4.3Let a = Pki=1 �i � ei, b = Pki=1 �i � ei 2 Rk. We say that b redu
es a to 
 at�s � es in one step, denoted by a �!b 
, if(a) �j = 0 for 1 � j < s,(b) �s =)�s 
s with �s = 
s +Pni=1 Æi � �s � Æi0, Æi; Æi0 2 R, and(
) 
 = a�Pni=1 Æi�b�Æi0 = (�1; : : : ; �s�1; 
s; �s+1�Pni=1 Æi ��s+1 �Æi0; : : : ; �k�Pni=1 Æi � �k � Æi0). �The Axioms (A1) { (A3) hold for this redu
tion relation on Rk: �!B=Sb2B �!b is terminating for �nite B � Rk sin
e this property is inherited fromthe termination of the respe
tive redu
tion relation =) in R. Hen
e (A1) holds.(A2) is satis�ed now of 
ourse in the 
ontext of submodules sin
e a �!b 
 impliesa � 
 2 hfbgi. (A3) is true as a �!a 0 holds for all a 2 Rknf0g. Moreover, itis easy to see that if 
ondition (A4) holds for =) then this is inherited by �!as de�ned in De�nition 3.4.3 for Rk. First we show how the existen
e of weakGr�obner bases 
arries over for Noetherian R.12In this step we need the Axiom of Choi
e and hen
e the 
onstru
tion is not 
onstru
tive.
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tion RingsDe�nition 3.4.4A subset B of Rk is 
alled a weak Gr�obner basis of the submodule S = hBi, if�!B is terminating and a ��!B 0 for all a 2 S. �Theorem 3.4.5Let R be a Noetherian ring with redu
tion relation =) ful�lling (A1) { (A3).If in R every ideal has a �nite weak Gr�obner basis, then the same holds forsubmodules in (Rk;�!).Proof :Let S be a submodule of Rk. We show our 
laim by indu
tion on k. For k = 1we �nd that S is in fa
t an ideal13 in R and hen
e by our hypothesis musthave a �nite weak Gr�obner basis. For k > 1 let us look at the set i = f�1 j(�1; : : : ; �k) 2 Sg whi
h is again an ideal14. Hen
e i must have a �nite weakGr�obner basis f
1; : : : ; 
s j 
i 2 Rg. Choose H = f
1; : : : ; 
sg � S su
h that the�rst 
oordinate of 
i is 
i. Similarly the setM = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2Sg is a submodule15 in Rk�1 whi
h by our indu
tion hypothesis must have a �niteweak Gr�obner basis f(Æi2; : : : ; Æik) j 1 � i � wg. Then the set G = f
1; : : : ; 
sg [fdi = (0; Æi2; : : : ; Æik) j 1 � i � wg is a weak Gr�obner basis for S.That G is a generating set for S follows as in the proof of Theorem 3.4.2. Itremains to show that G is in fa
t a weak Gr�obner basis, i.e., for every t =(�1; : : : ; �k) 2 S we have t ��!G 0. Sin
e �1 �=)f
1;:::;
sg 0 with �1 =Psi=1Pnij=1 �ij �
i � �ij 0, by the de�nition of G we get t ��!f
1;:::;
sg t�Psi=1Pnij=1 �ij � 
i � �ij 0 = t0where t0 = (0; �20; : : : ; �k0) 2 M. Hen
e, as (�20; : : : ; �k 0) ��!f(Æi2;:::;Æik)j1�i�wg 0, weget t ��!G 0 and are done. q.e.d.Now we turn our attention to Gr�obner bases of submodules in Rk.De�nition 3.4.6A subset B of Rk is 
alled a Gr�obner basis of the submodule S = hBi, if� !B = �S and �!B is 
omplete. �13At this point we 
ould also pro
eed with a mu
h weaker hypothesis, namely instead ofrequiring R to be Noetherian assuming that S is �nitely generated. Then still the fa
t that R issupposed to be a weak redu
tion ring would imply the existen
e of a �nite weak Gr�obner basisfor S.14Here it still would be suÆ
ient to require that S is �nitely generated as the �rst 
oordinatesof a �nite generating set for S then would generate i hen
e implying that the ideal is �nitelygenerated as well.15Now we really need that Rk�1 is Noetherian. Assuming that S is �nitely generated wouldnot help to dedu
e that M is �nitely generated.



3.4 Modules over Redu
tion Rings 47Theorem 3.4.7Let R be a Noetherian ring with redu
tion relation =) ful�lling (A1) { (A3). Ifin R every ideal has a �nite Gr�obner basis, then the same holds for submodulesin (Rk;�!).Proof :The 
andidate for the Gr�obner basis 
an be built similar to the set G in the proofof Theorem 3.4.5 now of 
ourse using Gr�obner bases in the 
onstru
tion insteadof weak Gr�obner bases: Let S be a submodule of Rk. We show our 
laim byindu
tion on k. For k = 1 we �nd that S is in fa
t an ideal in R and hen
eby our hypothesis must have a �nite Gr�obner basis. For k > 1 let us look atthe set i = f�1 j (�1; : : : ; �k) 2 Sg whi
h is again an ideal in R. Hen
e i musthave a �nite Gr�obner basis f
1; : : : ; 
s j 
i 2 Rg by our assumption. ChooseH = f
1; : : : ; 
sg � S su
h that the �rst 
oordinate of 
i is 
i. Similarly the setM = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2 Sg is a submodule in Rk�1 �nitely generatedas Rk�1 is Noetherian. Hen
e by our indu
tion hypothesisM then must have a�nite Gr�obner basis f(Æi2; : : : ; Æik) j 1 � i � wg. Let G = f
1; : : : ; 
sg [ fdi =(0; Æi2; : : : ; Æik) j 1 � i � wg. Sin
e G generates S (see the proof of Theorem 3.4.5)it remains to show that it is a Gr�obner basis.By the de�nition of the redu
tion relation in Rk we immediately �nd � !G ��S . To see the 
onverse let r = (�1; : : : ; �k) �S s = (�1; : : : ; �k). Then as�1 �f�1jb=(�1;:::;�k)2Sg �1 by the de�nition of G we get �1 �()f
1;:::;
sg �1. But thisgives us r � !H r +Psi=1Pmij=1 �ij � 
i � �ij0 = r0 = (�1; �20; : : : ; �k0) and we get(�1; �20; : : : ; �k 0) �S (�1; : : : ; �k). Hen
e (�1; �20; : : : ; �k0)� (�1; : : : ; �k) = (0; �20��2; : : : ; �k0 � �k) 2 S, implying (�20 � �2; : : : ; �k0 � �k) 2 M. Now we have to bemore 
areful sin
e we 
annot 
on
lude that (�20; : : : ; �k 0); (�2; : : : ; �k) 2 M. Butwe know (�1; �20; : : : ; �k0) = (�1; : : : ; �k)+(0; �20��2; : : : ; �k 0��k) = (�1; : : : ; �k)+Pwi=1Pnij=1 �ij�di��ij 0 where (0; �20��2; : : : ; �k0��k) =Pwi=1Pnij=1 �ij�di��ij 0 for�ij; �ij 0 2 R, i.e., (�1; �20; : : : ; �k0) �hd1;:::;dwi (�1; : : : ; �k). Hen
e, as f(Æi2; : : : ; Æik) j1 � i � wg is a Gr�obner basis ofM both ve
tors (�1; �20; : : : ; �k0) and (�1; : : : ; �k)must have a 
ommon normal form using fdi = (0; Æi2; : : : ; Æik) j 1 � i � wg forredu
tion16 and we are done.The same argument applies to show lo
al 
on
uen
e. Let us assume there are r,s1, s2 2 Rk su
h that r �!G s1 and r �!G s2. Then by the de�nition of G, the�rst 
oordinates �11 and �21 of s1 respe
tively s2 are joinable by f
1; : : : ; 
sg tosome element, say �, giving rise to the elements r1 = s1+Psi=1Pnij=1 �ij �
i ��ij0and r2 = s2 +Psi=1Pmij=1  ij � 
i �  ij 0 with �rst 
oordinate �. Again we know(�; �12; : : : ; �1k) = (�; �22; : : : ; �2k)+(0; �12��22; : : : ; �1k��2k) with (�12��22; : : : ; �1k��2k) 2M. Hen
e (�; �12; : : : ; �1k) = (�; �22; : : : ; �2k)+Pwi=1Pnij=1 �ij�di��ij 0 for �ij; �ij 0 2 R,i.e., (�1; �20; : : : ; �k0) �hd1;:::;dwi (�1; : : : ; �k). As again f(Æi2; : : : ; Æik) j 1 � i � wg is16The elements in this set 
annot in
uen
e the �rst 
oordinate whi
h is �1 for both ve
tors.
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tion Ringsa Gr�obner basis ofM both ve
tors must have a 
ommon normal with respe
t toredu
tion using fdi = (0; Æi2; : : : ; Æik) j 1 � i � wg. q.e.d.Let us 
lose this se
tion with a remark on why the additional property of beingNoetherian is so important. In the proofs of Theorem 3.4.5 and 3.4.7 in theindu
tion step the \proje
tion" of S on Rk�1 plays an essential role. If thisproje
tion is de�ned as M = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2 Sg we have toshow that this module is again �nitely generated. In assuming Noetherian forR this then follows as M is a submodule of Rk�1 whi
h is again Noetherian.Assuming that S is �nitely generated by some set fa1; : : : ;ang does not improvethe situation as in general we 
annot extra
t a �nite generating set forM fromthis set17. The situation improves if we look at one-sided redu
tion rings R anddemand that in R all (left respe
tively right) syzygy modules have �nite bases.Rk is a right R-module with s
alar multipli
ation (�1; : : : ; �k)�� = (�1 ��; : : : ; �k ��). Provided a �nite subset f�1; : : : ; �ng � R the set of solutions of the equation�1 �X1 + : : :+ �n �Xn = 0 is a submodule of the right R-module Rn. It is 
alledthe (�rst) module of syzygies of f�1; : : : ; �ng in the literature. We will see thatthese spe
ial modules 
an be used to 
hara
terize Gr�obner bases of submodulesin Rk.A redu
tion relation 
an be de�ned similarly to De�nition 3.4.3.De�nition 3.4.8Let a =Pki=1 ei � �i, b =Pki=1 ei � �i 2 Rk. We say that b right redu
es a to
 at the monomial es � �s in one step, denoted by a�!rb 
, if(a) �j = 0 for 1 � j < s,(b) �s =)�s 
s with �s = 
s + �s � Æ, Æ 2 R, and(
) 
 = a� b � Æ = (�1; : : : ; �s�1; 
s; �s+1 � �s+1 � Æ; : : : ; �k � �k � Æ). �Theorem 3.4.9Let R be a ring with a right redu
tion relation =) ful�lling (A1) { (A3). Ad-ditionally let every right module of syzygies in R have a �nite basis. If every17Another idea might be to look at an other proje
tion of S: M0 = f(�2; : : : ; �k) jthere exists �1 2 R su
h that (�1; �2; : : : ; �k) 2 Sg. M0 then is again a module now �nitelygenerated by (�12; : : : ; �1k); : : : ; (�n2 ; : : : ; �nk). Unfortunately in this 
ase having a Gr�obner basisfor this module is of no use as we 
an no longer lift this spe
ial basis to Rk. The tri
k withadding 0 as the �rst 
oordinate will no longer work as for some (
2; : : : ; 
k) 2M0 we only knowthat there exists some 
 2 R su
h that (
; 
2; : : : ; 
k) 2 S and we 
annot enfor
e that 
 = 0.However, if we lift the set by adding appropriate elements 
 2 R as �rst 
oordinates, then theresulting set does not lift the Gr�obner basis properties for the redu
tion relation. Espe
ially inthe indu
tion step the �rst 
oordinate of the ve
tor being modi�ed 
an no longer be expe
tedto be left un
hanged whi
h is the 
ase when using ve
tors with �rst 
oordinate 0 for redu
tion.



3.4 Modules over Redu
tion Rings 49�nitely generated right ideal in R has a �nite Gr�obner basis, then the same holdsfor every �nitely generated right submodule in (Rk;�!).Proof :Again the 
andidate for the right Gr�obner basis 
an be built similar to the setG in the proofs of Theorem 3.4.5 and 3.4.7: Let S be a right submodule of Rkwhi
h is �nitely generated by a set fa1; : : : ;ang. We show our 
laim by indu
tionon k. For k = 1 we �nd that S is in fa
t a �nitely generated right ideal inR and hen
e by our hypothesis must have a �nite right Gr�obner basis. Fork > 1 let us look at the set i = f�1 j (�1; : : : ; �k) 2 Sg whi
h is again a rightideal in R �nitely generated by f�11; : : : ; �n1g where ai = (�i1; : : : ; �ik). Hen
e imust have a �nite right Gr�obner basis f
1; : : : ; 
s j 
i 2 Rg by our assumption.Choose H = f
1; : : : ; 
sg � S su
h that the �rst 
oordinate of 
i is 
i. Onthe other hand the right syzygy module f( 1; : : : ;  n) j Pni=1 �i1 �  i = 0;  i 2Rg has a �nite basis B = f(�j1; : : : ; �jn) j 1 � j � mg � Rn. Then the setfPni=1 ai � �ji j 1 � j � mg [ fai j �i1 = 0; 1 � i � ng is a �nite generatingset for the submodule M = f(�2; : : : ; �k) j (0; �2; : : : ; �k) 2 Sg of Rk�1. To seethis let (0; �2; : : : ; �k) 2 S. Then (0; �2; : : : ; �k) = Pni=1 ai � �i, �i 2 R impliesPni=1 �i1 � �i = 0 and hen
e (�1; : : : ; �n) lies in the right syzygy module and we aredone. Hen
e by our indu
tion hypothesisM then must have a �nite right Gr�obnerbasis f(Æi2; : : : ; Æik) j 1 � i � wg. Let G = f
1; : : : ; 
sg [ fdi = (0; Æi2; : : : ; Æik) j1 � i � wg. Sin
e G generates S it remains to show that it is a right Gr�obnerbasis. By the de�nition of the redu
tion relation in Rk we immediately �nd� !G � �S . To see the 
onverse let r = (�1; : : : ; �k) �S s = (�1; : : : ; �k). Thenas �1 �f�1ja=(�1;:::;�k)2Sg �1 by the de�nition of G we get �1 � !f
1;:::;
sg �1. Butthis gives us r �()H r +Psi=1 
i � �i = r0 = (�1; �20; : : : ; �k0), �i 2 R, and we get(�1; �20; : : : ; �k 0) �S (�1; : : : ; �k). Hen
e (�1; �20; : : : ; �k0)� (�1; : : : ; �k) = (0; �20��2; : : : ; �k0 � �k) 2 S implying (�20 � �2; : : : ; �k0 � �k) 2 M. Now we have to bemore 
areful sin
e we 
annot 
on
lude that (�20; : : : ; �k 0); (�2; : : : ; �k) 2 M. Butwe know (�1; �20; : : : ; �k0) = (�1; : : : ; �k)+(0; �20��2; : : : ; �k 0��k) = (�1; : : : ; �k)+Pwi=1 di � �i where (0; �20 � �2; : : : ; �k0 � �k) = Pwi=1 di � �i for �i 2 R, i.e.,(�1; �20; : : : ; �k 0) �hd1;:::;dwi (�1; : : : ; �k). Hen
e, as f(Æi2; : : : ; Æik) j 1 � i � wg is aright Gr�obner basis ofM both ve
tors (�1; �20; : : : ; �k 0) and (�1; : : : ; �k) must havea 
ommon normal form using fdi = (0; Æi2; : : : ; Æik) j 1 � i � wg for redu
tion18and we are done.The same argument applies to show lo
al 
on
uen
e. Let us assume there are r,s1, s2 2 Rk su
h that r �!G s1 and r �!G s2. Then by the de�nition of G the�rst 
oordinates �11 and �21 of s1 respe
tively s2 are joinable by f
1; : : : ; 
sg to someelement say � giving rise to elements r1 = s1+Psi=1 
i��i and r2 = s2+Psi=1 
i�18The elements in this set 
annot in
uen
e the �rst 
oordinate whi
h is �1 for both ve
tors.



50 Chapter 3 - Redu
tion Rings i with �rst 
oordinate �. Again we know (�; �12; : : : ; �1k) = (�; �22; : : : ; �2k) +(0; �12 � �22; : : : ; �1k � �2k) with (�12 � �22; : : : ; �1k � �2k) 2 M. Hen
e (�; �12; : : : ; �1k) =(�; �22; : : : ; �2k)+Pwi=1 di��i for �i 2 R, i.e., (�1; �20; : : : ; �k0) �hd1;:::;dwi (�1; : : : ; �k).As again f(Æi2; : : : ; Æik) j 1 � i � wg is a right Gr�obner basis of M both ve
torsmust have a 
ommon normal with respe
t to redu
tion using fdi = (0; Æi2; : : : ; Æik) j1 � i � wg. q.e.d.The task of des
ribing two-sided syzygy modules is mu
h more 
ompli
ated. Wefollow the ideas given by Apel in his habilitation [Ape98℄.Let R be the free Abelian group with basis elements � 
 � where �; � 2 R. Wede�ne a new ve
tor spa
e S with formal sums as elements Pni=1 
i � �i 
 �i � Æiwhere 
i; Æi 2 R and �i 
 �i 2 R. Let U be the subspa
e of S generated by theve
tors �
 (�1 + �2)� � 
 �1 � �
 �2(�1 + �2)
 � � �1 
 � � �2 
 ��
 (
 � �)� 
 � (�
 �)(
 � �)
 � � 
 � (�
 �)�
 (� � 
)� (�
 �) � 
(� � 
)
 � � (�
 �) � 
where �;�i; �; �i; 
 2 R. Then the quotient S=U is 
alled the tensor produ
tdenoted by R 
 R.The sets we are interested in 
an be de�ned as follows: Let R be some subset of R.Syzygies of R are solutions of the equationsPni=1Pnij=1 �i;j ��i ��i;j = 0; �i;j; �i;j 2R; �i 2 R. The set 
ontaining all su
h solutions is 
alled the syzygy module of R.We 
an now des
ribe these sets using obje
ts of the \polynomial" stru
ture S[R℄whi
h 
ontains formal sums of the formPni=1Pnij=1(�i;j 
 �i;j) � 
i, �i; �i; 
i 2 R.We 
an asso
iate a mapping � : S[R℄ �! R by Pni=1Pnij=1(�i;j 
 �i;j) � 
i 7!Pni=1Pnij=1 �i;j � 
i � �i;j. Then for the set R we are interested in, the set of\solutions" is S�1;:::;�k2R;k2NS�1;:::;�k with ordered lists of not ne
essarily di�erentelements from R su
h that S�1;:::;�k = f(Pn1j=1 �1;j 
 �1;j; : : : ;Pnkj=1 �k;j 
 �k;j) j�(Pki=1Pnij=1(�i;j 
 �i;j) � �i) = 0; �i;j; �i;j 2 Rg. Then these sets S�1;:::;�k are infa
t modules1. S�1;:::;�k is 
losed under s
alar multipli
ation, i.e., (Pn1j=1 �1;j 
�1;j; : : : ;Pnkj=1 �k;j 
 �k;j) 2 S�1;:::;�k and 
 2 R implies 
 � (Pn1j=1 �1;j 
�1;j; : : : ;Pnkj=1 �k;j
�k;j) = (
 �(Pn1j=1 �1;j
�1;j); : : : ; 
 �(Pnkj=1 �k;j
�k;j)) 2S�1;:::;�k :�(Pki=1Pnij=1(�i;j
�i;j)��i) = 0 implies �(
�(Pki=1Pnij=1(�i;j
�i;j)��i)) = 0as 
�(�i;j
�i;j) = (
��i;j)
�i;j and hen
e �(
�(Pki=1Pnij=1(�i;j
�i;j)��i)) =



3.5 Polynomial Rings over Redu
tion Rings 51Pki=1Pnij=1 
 ��i;j ��i ��i;j = 0. Multipli
ation from the right 
an be treatedsimilarly.2. S�1;:::;�k is 
losed under addition, i.e., (Pn1j=1 �1;j
�1;j; : : : ;Pnkj=1 �k;j
�k;j),(P ~n1j=1 ~�1;j
 ~�1;j; : : : ;P ~nkj=1 ~�k;j 
 ~�k;j) 2 S�1;:::;�k implies (Pn1j=1 �1;j
�1;j+P ~n1j=1 ~�1;j 
 ~�1;j; : : : ;Pnkj=1 �k;j 
 �k;j +P ~nkj=1 ~�k;j 
 ~�k;j) 2 S�1;:::;�k :The question arises when su
h modules have useful bases for 
hara
terizing syzygymodules in non-
ommutative redu
tion rings. This would mean the existen
eof sets B�1;:::;�k = fBi 2 (R 
 R)k j i 2 Ig su
h that for ea
h (Pn1j=1 �1;j 
�1;j; : : : ;Pnkj=1 �k;j 
 �k;j) 2 S�1;:::;�k there exist 
ij ; Æij 2 R with (Pn1j=1 �1;j 
�1;j; : : : ;Pnkj=1 �k;j 
 �k;j) =Pi2IPnij=1 
ij �Bi � Æij. But even if this is possible itstill remains the problem that we have to handle in�nitely many sets of solutionsasso
iated to ordered subsets of a set admitting elements to o

ur more than on
e.This problem arises from the fa
t that in 
ontrary to one-sided syzygy modules orsyzygy modules in 
ommutative stru
tures the summands in the representations
annot be \
olle
ted" and \
ombined" in su
h a way that for a set R the sums
an be written as a P�2R�� � � � ��.Let us 
lose this se
tion by illustrating the situation with two examples.Example 3.4.10Let � = fa; bg and �� the free monoid on the alphabet �. Further let R = Q[��℄the monoid ring over �� and Q. Let us look at the syzygy module of the setfa; bg � R, i.e. the set of solutions of the equationsPn1j=1 �1;j �a ��1;j+Pn2j=1 �2;j �b � �2;j = 0; �i;j; �i;j 2 R. Then we �nd f(�1 
 b; a 
 1); (�b 
 1; 1 
 a)g � Sa;band this set is a �nite basis for Sa;b. �Example 3.4.11Let M be the monoid presented by (fa; b; 
g; fab = a; a
 = a; b
 = bg) andR = Q[M℄ the monoid ring overM and Q. Let us look at the syzygy module ofthe set fa; bg � R. Then we �nd f(1 
 1;�a
 
ibj) j i; j 2 Ng � Sa;b and hen
eSa;b has no �nite basis. �Hen
e the task of two-sided syzygies is mu
hmore 
ompli
ated than the one-sided
ase. This was also observed by Apel for graded stru
tures where we have morestru
tural information [Ape98℄.3.5 Polynomial Rings over Redu
tion RingsFor a ring R with a redu
tion relation =) ful�lling (A1) { (A3) we adopt the usualnotations in R[X℄ the polynomial ring in one variable X where multipli
ationis denoted by ?. Noti
e that for s
alar multipli
ation with � 2 R we assume
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tion Rings� �X = X � � (see [Pes97℄ for other possibilities). We spe
ify an ordering on theset of terms in one variable by de�ning that if X i divides Xj , i.e. 0 � i � j, thenX i � Xj . Using this ordering, the head term HT(p), the head monomial HM(p)and the head 
oeÆ
ient HC(p) of a polynomial p 2 R[X℄ are de�ned as usual,and RED(p) = p � HM(p). We extend the fun
tion HT to sets of polynomialsF � R[X℄ by HT(F ) = fHT(f) j f 2 Fg.Let i � R[X℄ be a �nitely generated ideal in R[X℄. It is easy to see that given aterm t the set C(t; i) = fHC(f) j f 2 i;HT(f) = tg[f0g is an ideal in R. In orderto guarantee that these ideals are also �nitely generated we will assume that Ris a Noetherian ring19. Note that for any two terms t and s su
h that t dividess we have C(t; i) � C(s; i). This follows, as for s = t ? u, u 2 fX i j i 2 Ng, we�nd that HC(f) 2 C(t; i) implies HC(f ? u) = HC(f) 2 C(s; i) sin
e f 2 i impliesf ? u 2 i.We additionally de�ne a partial ordering on R by setting for �; � 2 R, � >R �if and only if there exists a �nite set B � R su
h that � +=)B �. Then we 
ande�ne an ordering on R[X℄ as follows: For f; g 2 R[X℄, f > g if and only if eitherHT(f) � HT(g) or (HT(f) = HT(g) and HC(f) >R HC(g)) or (HM(f) = HM(g)and RED(f) > RED(g)). Noti
e that this ordering in general is neither total norNoetherian on R[X℄.De�nition 3.5.1Let p; f be two non-zero polynomials in R[X℄. We say f redu
es p to q at amonomial � �X i in one step, denoted by p�!f q, if(a) HT(f) divides X i, i.e. HT(f) ? Xj = X i for some term Xj,(b) � =)HC(f) �, with � = � +Pki=1 
i � HC(f) � Æi for some �; 
i; Æi 2 R,1 � i � k, and(
) q = p �Pki=1(
i � f � Æi) ? Xj . �Noti
e that if f redu
es p to q at a monomial � � t the term t 
an still o

urin the resulting polynomial q. Hen
e termination of this redu
tion 
annot beshown by arguments involving terms only as in the 
ase of polynomial rings over�elds. But when using a �nite set of polynomials for redu
tion we know by (A1)that redu
ing � in R with respe
t to the �nite set of head 
oeÆ
ients of theappli
able polynomials must terminate and then either the monomial 
ontainingthe term t disappears or is irredu
ible. Hen
e the redu
tion relation as de�ned inDe�nition 3.5.1 is Noetherian when using �nite sets of polynomials. Therefore itful�lls Axiom (A1). It is easy to see that (A2) and (A3) are also true and if theredu
tion relation =) satis�es (A4) this is inherited by the redu
tion relation�! in R[X℄.19We run into similar problems as in the module 
ase in Se
tion 3.4 as we 
annot 
on
ludethat the ideal C(t; i) is �nitely generated from the fa
t that i is.
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tion Rings 53Theorem 3.5.2If (R;=)) is a Noetherian redu
tion ring, then (R[X℄;�!) is a Noetherian re-du
tion ring.Proof :By Hilbert's basis theorem R[X℄ is Noetherian as R is Noetherian. We only haveto prove that every ideal i 6= f0g in R[X℄ has a �nite Gr�obner basis.A �nite basis G of i will be de�ned in stages a

ording to the degree of termso

urring as head terms among the polynomials in i and then we will show thatG is in fa
t a Gr�obner basis.Let G0 be a �nite Gr�obner basis of the ideal C(X0; i) in R, whi
h must exist sin
eR is supposed to be Noetherian and a redu
tion ring. Further, at stage i > 0,if for ea
h Xj with j < i we have C(Xj; i) $ C(X i; i), in
lude for ea
h � inGb(C(X i; i)) (a �nite Gr�obner basis of C(X i; i)) a polynomial p� from i in Gisu
h that HM(p) = � �X i. Noti
e that in this 
onstru
tion we use the axiom of
hoi
e, when 
hoosing the p� from the in�nite set i, and hen
e the 
onstru
tionis non-
onstru
tive. At ea
h stage only a �nite number of polynomials 
an beadded sin
e the respe
tive Gr�obner bases Gb(C(X i; i)) are always �nite, and atmost one polynomial from i is in
luded for ea
h element in Gb(C(X i; i)).If a polynomial with head term X i is in
luded, then C(Xj; i) $ C(X i; i) forevery j < i. So if X i 2 HT (i) is not in
luded as a head term of a poly-nomial in Gi, then there is a term Xj o

urring as a head term in some setGj , j < i, C(X i; i) = C(Xj ; i) and C(Xj ; Gj) is a Gr�obner basis for the idealC(Xj; i) = C(X i; i) in R.We 
laim that the set G = Si�0Gi is a �nite Gr�obner basis of i.To show that G is �nite it suÆ
es to prove that the set HT(G) is �nite, sin
e inevery stage only �nitely many polynomials all having new head terms are added.Assuming that HT(G) is in�nite, there is a sequen
e Xni , i 2 N of di�erent termssu
h that ni < ni+1. But then by 
onstru
tion there is an as
ending sequen
e ofideals in R, namely C(Xn0; i) $ C(Xn1 ; i) $ : : : whi
h 
ontradi
ts the fa
t thatR is supposed to be Noetherian.So after some step m no more polynomials p from i 
an be found su
h that forHT(p) = X i the set C(X i; i) is di�erent from all C(Xj; i), j < i.Noti
e that for all p 2 i we have p ��!G 0 and G generates i. This follows imme-diately from the 
onstru
tion of G. Hen
e G is at least a wesk Gr�obner basis.To see that �!G is 
on
uent, let p be a polynomial whi
h has two distin
t nor-mal forms with respe
t to G, say p1 and p2. Let t be the largest term on whi
hp1 and p2 di�er and let �1 and �2 be the respe
tive 
oeÆ
ients of t in p1 andp2. Sin
e p1 � p2 2 i this polynomial redu
es to 0 using G and without loss ofgenerality we 
an assume that these redu
tions always take pla
e at the respe
-tive head terms of the polynomials in the redu
tion sequen
e. Let s 2 HT(G) be
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tion Ringsthe head term of the polynomial in G whi
h redu
es HT(p1 � p2), i.e., s dividest, �1 � �2 2 C(s; i), and hen
e �1 �i �2. Therefore, not both �1 and �2 
anbe in normal form with respe
t to any Gr�obner basis of C(s; i) and hen
e withrespe
t to the set of head 
oeÆ
ients of polynomials in G with head term s. Soboth, �1 � t and �2 � t 
annot be in normal form with respe
t to G, whi
h is a
ontradi
tion to the fa
t that p1 and p2 are supposed to be in normal form withrespe
t to G.Finally we have to prove �i = � !G . Let p �i q both be in normal form withrespe
t to G. Then as before p � q ��!G 0 implies p = q. Hen
e we have shownthat G is in fa
t a �nite Gr�obner basis of i. q.e.d.This theorem of 
ourse 
an be applied to R[X℄ and a new variable X2 and byiteration we immediately get the following:Corollary 3.5.3If (R;=)) is a Noetherian redu
tion ring, then R[X1; : : : ;Xn℄ is a Noetherianredu
tion ring with the respe
tive extended redu
tion relation.Noti
e that other de�nitions of redu
tion relations in R[X1; : : : ;Xn℄ are knownin the literature. These are usually based on divisibility of terms and admissibleterm orderings on the set of terms to distinguish the head terms. The proof ofTheorem 3.5.2 
an be generalized for these 
ases.Moreover, these results also hold for weak redu
tion rings.Corollary 3.5.4If (R;=)) is a Noetherian weak redu
tion ring, then R[X1; : : : ;Xn℄ is a Noetherianweak redu
tion ring with the respe
tive extended redu
tion relation.Proof :This follows immediately by using weak Gr�obner bases Gi for the de�nition ofG in the proof of Theorem 3.5.2. As before the property that for all p 2 i wehave p ��!G 0 and G generates i follows immediately from the 
onstru
tion of G.Hen
e the result holds for R[X1℄ and 
an be extended to R[X1; : : : ;Xn℄. q.e.d.Now if (R;=)) is an e�e
tive redu
tion ring, then addition and multipli
ation inR[X℄ as well as redu
tion as de�ned in De�nition 3.5.1 are 
omputable operations.However, the proof of Theorem 3.5.2 does not spe
ify how Gr�obner bases for�nitely generated ideals in R[X℄ 
an be 
onstru
ted using Gr�obner basis methodsfor R. So we 
annot 
on
lude that for e�e
tive redu
tion rings the polynomialring again will be e�e
tive. A more suitable 
hara
terization of Gr�obner basesrequiring R to ful�ll additional 
onditions is needed.
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tion Rings 55In order to provide 
ompletion pro
edures to 
ompute Gr�obner bases, various
hara
terizations of Gr�obner bases by �nite test sets of spe
ial polynomials in
ertain 
ommutative redu
tion rings (e.g. the integers and Eu
lidean domains)
an be found in the literature (see e.g. [KN85, KRK84, Mor89℄). A generalapproa
h to 
hara
terize 
ommutative redu
tion rings allowing the 
omputationof Gr�obner bases using Bu
hberger's approa
h was presented by Stifter in [Sti87℄.Let us 
lose this se
tion by providing similar 
hara
terizations for polynomialrings over non-
ommutative redu
tion rings and outlining the arising problems.For simpli
ity we restri
t ourselves to the 
ase of R[X℄ but this is no generalrestri
tion. Given a generating set F � R[X℄ the key idea is to distinguish spe
ialelements of ideal(F ) whi
h have representations Pni=1 gi ? fi ? hi, gi; hi 2 R[X℄,fi 2 F su
h that the head terms HT(gi ? fi ? hi) are all the same within therepresentation. Then on one hand the respe
tive 
oeÆ
ients HC(gi ? fi ? hi) 
anadd up to zero whi
h in the 
ommutative 
ase means that the sum of the head
oeÆ
ients is in an appropriate module generated by the 
oeÆ
ients HC(fi) |m(odule)-polynomials are related to these situations. If the result is not zero thesum of the 
oeÆ
ients HC(gi?fi ?hi) as in the 
ommutative 
ase 
an be des
ribedin terms of a Gr�obner basis of the 
oeÆ
ients HC(fi) | g(r�obner)-polynomialsare related to these situations. Zero divisors in the redu
tion ring o

ur as aspe
ial instan
e of m-polynomials where F = ffg and � ? f ? �, �; � 2 R are
onsidered.In 
ase R is a 
ommutative or one-sided redu
tion ring the �rst problem is relatedto solving linear homogeneous equations in R and to the existen
e of �nite basesof the respe
tive modules.Let us be
ome more pre
ise and look into the de�nitions of m- and g-polynomialsfor the spe
ial 
ase of rings with right redu
tion relations.De�nition 3.5.5Let P = fp1; : : : ; pkg be a �nite set of polynomials in R[X℄, u1; : : : ; uk terms infXj j j 2 Ng su
h that for the term t = maxfHT(pi) j 1 � i � kg we havet = HT(pi) ? ui and 
i = HC(pi) for 1 � i � k.Let G be a right Gr�obner basis of the right ideal generated by f
i j 1 � i � kgin R and � = kXi=1 
i � ��ifor � 2 G, ��i 2 R. Then we de�ne the g-polynomials (Gr�obner polynomi-als) 
orresponding to P and t by settingg� = kXi=1 pi ? ui � ��iwhere HT(pi) ? ui = t. Noti
e that HM(g�) = � � t.For the right moduleM = f(Æ1; : : : ; Æk) jPki=1 
i�Æi = 0g, let the set fBj j j 2 IMg
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tion Ringsbe a basis with Bj = (�j;1; : : : ; �j;k) for �j;l 2 R and 1 � l � k. We de�ne them-polynomials (module polynomials) 
orresponding to P and t by settinghj = kXi=1 pi ? ui � �j;i for ea
h j 2 IMwhere HT(pi) ? ui = t. Noti
e that HT(hj) � t for ea
h j 2 IM . �Given a set of polynomials F the 
orresponding m- and g-polynomials are thoseresulting for every subset P � F a

ording to this de�nition.In 
ase we want e�e
tiveness, we have to require that the bases in this de�ni-tion are 
omputable. Of 
ourse for 
ommutative redu
tion rings the de�nitionextends to 
hara
terize two-sided ideals. However, the whole situation be
omesmore 
ompli
ated for non-
ommutative two-sided redu
tion rings, as the equa-tions are no longer linear and we have to distinguish right and left multiplierssimultaneously. Moreover the set of m-polynomials is a mu
h more 
ompli
atedstru
ture. In some 
ases the problem for two-sided ideals 
an be translated intothe one-sided 
ase and hen
e solved via one-sided redu
tion te
hniques [KRW90℄.But the general 
ase is mu
h more involved, see De�nition 3.5.6 below.The g-polynomials 
orresponding to right Gr�obner bases of right ideals in R 
ansu

essfully be treated whenever �nite right Gr�obner bases exist. Here, if we wante�e
tiveness, we have to require that a right Gr�obner basis as well as representa-tions for its elements in terms of the generating set are 
omputable.Using m- and g-polynomials, right Gr�obner bases 
an be 
hara
terized similarto the 
hara
terizations in terms of syzygies (a dire
t generalization of the ap-proa
hes by Kapur and Narendran in [KN85℄ respe
tively M�oller in [Mor89℄): In
ase for the respe
tive subsets P � F the respe
tive terms t = maxfHT(p) jp 2 Pg only give rise to �nitely many m- and g-polynomials, these situations
an be lo
alized to �nitely many terms. One 
an provide a 
ompletion pro
edurebased on this 
hara
terization whi
h will indeed 
ompute a �nite right Gr�obnerbasis if R is Noetherian. In prin
ipal ideal rings, where the fun
tion g
d (greatest
ommon divisor) is de�ned it is suÆ
ient to 
onsider subsets P � F of size 2(
ompare [KN85℄).Now let us look at two-sided ideals and two-sided redu
tion relations.De�nition 3.5.6Let P = fp1; : : : ; pkg be a �nite set of polynomials in R[X℄, u1; : : : ; uk terms infXj j j 2 Ng su
h that for the term t = maxfHT(pi) j 1 � i � kg we havet = HT(pi) ? ui and 
i = HC(pi) for 1 � i � k.Let G be a Gr�obner basis of the ideal generated by f
i j 1 � i � kg in R and� = kXi=1 niXj=1 ��i;j � 
i � Æ�i;j
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tion Rings 57for � 2 G, ��i;j; Æ�i;j 2 R, 1 � i � k,1 � j � ni. Then we de�ne the g-polynomials(Gr�obner polynomials) 
orresponding to P and t by settingg� = kXi=1 niXj=1 ��i;j � pi ? ui � Æ�i;jwhere HT(pi) ? ui = t. Noti
e that HM(g�) = � � t.We de�ne them-polynomials (module polynomials) 
orresponding to P andt as h = kXi=1 niXj=1 �i;j � pi ? ui � Æi;jwhere Pki=1Pnij=1 �i;j � 
i � Æi;j = 0. Noti
e that HT(h) � t. �Given a set of polynomials F , the set of 
orresponding g- and m-polynomials
ontains those whi
h are spe
i�ed by De�nition 3.5.6 for ea
h subset P � Fful�lling the respe
tive 
onditions. For a set 
onsisting of one polynomial the
orresponding m-polynomials also re
e
t the multipli
ation of the polynomialwith zero-divisors of the head 
oeÆ
ient, i.e., by a basis of the annihilator of thehead 
oeÆ
ient. Noti
e that given a �nite set of polynomials the 
orrespondingsets of g- and m-polynomials in general 
an be in�nite.We 
an use g- and m-polynomials to 
hara
terize �nite weak Gr�obner bases.Noti
e that this 
hara
terization does not require R to be Noetherian. In orderto 
hara
terize Gr�obner bases in this fashion the Translation Lemma must holdfor the redu
tion ring.Theorem 3.5.7Let F be a �nite set of polynomials in R[X℄nf0g. Then F is a weak Gr�obner basisof the ideal it generates if and only if all g-polynomials and all m-polynomials
orresponding to F as spe
i�ed in De�nition 3.5.6 redu
e to zero.Proof :First let F be a weak Gr�obner basis. By De�nition 3.5.6 the g- and m-polynomialsare elements of the ideal generated by F and hen
e redu
e to zero using F .It remains to show that every g 2 ideal(F )nf0g redu
es to zero by F . Rememberthat for g 2 ideal(F ), g�!F g0 implies g0 2 ideal(F ). As �!F is Noetherian20,thus it suÆ
es to show that every g 2 ideal(F )nf0g is �!F -redu
ible. Letg = Pmi=1 �i � fi ? ui � �i be an arbitrary representation of g with �i; �i 2 R,ui 2 fXj j j 2 Ng, and fi 2 F (not ne
essarily di�erent polynomials). Dependingon this representation of g and the degree ordering � on fXj j j 2 Ng we de�nethe maximal o

urring term of this representation of g to be t = maxfHT(fi?ui) j20To a
hieve this we have demanded that F is �nite.
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tion Rings1 � i � mg and K is the number of polynomials fi ? ui 
ontaining t as a term.Then t � HT(g). We will show that G is redu
ible by indu
tion on (t;K), where(t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and K 0 < K)21. Without lossof generality let the �rst K multiples o

urring in our representation of g bethose with head term t, i.e., for PKi=1 �i � fi ? ui � �i we have HT(fi ? ui) = t for1 � i � K, and HT(�i � fi ? ui � �i) � t for K < i � m. In 
ase t � HT(g) there isan m-polynomial 
orresponding to the set of polynomials P = ff1; : : : ; fKg andby our assumption this polynomial is redu
ible to zero using F hen
e yielding theexisten
e of a representationPni=1 
i �fi ?vi � Æi with t � ~t = maxfHT(fi ?vi) j i 2f1; : : : ngg. We 
an then 
hange the original representation of g by substitutingthis sum forPKi=1 �i �fi?ui ��i yielding a new representation with smaller maximalterm than t.On the other hand, if t = HT(g) then again we 
an assume that the �rst Kmultiples have head term t. In this 
ase there exists a g-polynomial 
orrespondingto the set of polynomials P = ff1; : : : ; fKg and by our assumption this polynomialis redu
ible to zero using F . Now as the head monomial of the g-polynomial andthe head monomial of g are equal, then g must be redu
ible by F as well. q.e.d.In order to 
hara
terize in�nite sets F as weak Gr�obner bases we have to be more
areful sin
e we 
an no longer assume that �!F is terminating22. But inspe
tingthe proof of the previous theorem 
losely we see that this is not ne
essary. Underthe stronger assumption that the g-polynomial redu
es to zero using redu
tionat head monomials only, i.e., we have a terminating redu
tion sequen
e using�nitely many polynomials in F only, we 
an 
on
lude that the polynomials usedto extinguish the term t in the g-polynomial 
an equally be applied to extinguishthe head monomial of g. Sin
e there 
annot be an in�nite sequen
e of de
reasingterms t one 
an show that g redu
es to zero by iterating arguments involving g-and m-polynomials.Corollary 3.5.8Let F be a set of polynomials in R[X℄nf0g. Then F is a weak Gr�obner basisof the ideal it generates if and only if all g-polynomials and all m-polynomials
orresponding to F as spe
i�ed in De�nition 3.5.6 redu
e to zero using redu
tionat head monomials only.Corollary 3.5.9Let F be a set of polynomials in R[X℄nf0g. Additionally let the TranslationLemma hold in R. Then F is a Gr�obner basis of the ideal it generates if and21Note that this ordering is well-founded sin
e � is well-founded on fXj j j 2 Ng and K 2 N.22This 
an of 
ourse be a
hieved by requiring the stronger axiom (A1') to hold for theredu
tion relation.



3.5 Polynomial Rings over Redu
tion Rings 59only if all g-polynomials and all m-polynomials 
orresponding to F as spe
i�edin De�nition 3.5.6 redu
e to zero using redu
tion at head monomials only.Still the problem remains that the set of m-polynomials does not have a ni
e
hara
terization as an algebrai
 stru
ture. Remember that in the one-sided 
aseor the 
ase of 
ommutative redu
tion rings the m-polynomials for a �nite set ofpolynomials P 
orrespond to submodules of RjP j, as they 
orrespond to solutionsof linear equations. When attempting to des
ribe the setting for two-sided idealsin non-
ommutative redu
tion rings one runs into the same problems as in theprevious se
tion on modules.
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Chapter 4Fun
tion RingsIn the literature Gr�obner bases and redu
tion relations have been introdu
ed tovarious algebrai
 stru
tures su
h as the 
lassi
al 
ommutative polynomial ringsover �elds, non-
ommutative polynomial rings over �elds, 
ommutative polyno-mial rings over redu
tion rings, skew polynomial rings, Lie algebras, monoid andgroup rings and many more. This 
hapter is intended to give a generalized settingsubsuming these approa
hes and outlining a framework for introdu
ing redu
tionrelations and Gr�obner bases to other stru
tures �tting the appropriate require-ments. An additional aim was to work out what 
onditions are ne
essary atwhat point in order to give more insight into the ideas behind algebrai
 
hara
-terizations su
h as spe
ialized standard representations for ideal elements as wellas into the idea of using rewriting te
hniques for a
hieving 
on
uent redu
tionrelations des
ribing the ideal 
ongruen
e.This 
hapter is organized as follows: Se
tion 4.1 introdu
es the general stru
turewe are looking into 
alled fun
tion rings. Se
tion 4.2 gives the algebrai
 
hara
-terization for the 
ase of right ideals in form of right standard representations.To work out the diÆ
ulties involved by our notion of terms and 
oeÆ
ients sep-arately, Se
tion 4.2.1 �rst treats the easier 
ase of fun
tion rings over �elds whileSe
tion 4.2.2 then goes into the details when taking a redu
tion ring as intro-du
ed in Chapter 3 as 
oeÆ
ient domain. Sin
e for fun
tion rings over generalredu
tion rings only a feasible 
hara
terization of weak Gr�obner bases is possible,we show that this situation 
an be improved when looking at the spe
ial 
aseof fun
tion rings over the integers in Se
tion 4.2.3. Se
tion 4.3 is dedi
ated tothe study of a generalization of the 
on
ept of right ideals { right modules. Theremaining Se
tions 4.4 { 4.5 then treat the same 
on
epts and problems now inthe more 
omplex setting of two-sided ideals.
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tion Rings4.1 The General SettingLet T be a set and let R = (R;+; �; 0; 1) be an asso
iative ring with 1. ByFTR we will denote the set of all fun
tions f : T �! R with �nite supportsupp(f) = ft j t 2 T ; f(t) 6= 0g. We will simply write F if the 
ontext is 
lear.By o we will denote the fun
tion with empty support, i.e., supp(o) = ;. Thisfun
tion will be 
alled the zero fun
tion. Two elements of F are equal if theyare equal as fun
tions, i.e., they have the same support and 
oin
ide in theirrespe
tive values. We require the set T to be independent in the sense that afun
tion f has unique support.F 
an be viewed as a group with respe
t to a binary operation� : F �F �! F
alled addition by asso
iating to f; g in F the fun
tion in F , denoted by f � g,whi
h has support supp(f � g) � supp(f) [ supp(g) and values (f � g)(t) =f(t)+g(t) for t 2 supp(f)[supp(g). The zero fun
tion o ful�lls o�f = f�o = f ,hen
e is neutral with respe
t to �. For an element f 2 F we de�ne the element�f with supp(�f) = supp(f) and for all t 2 supp(f) the value of (�f)(t) is theinverse of the element f(t) with respe
t to + in R denoted by �f(t). Noti
e thatsin
e in R every element has su
h an inverse the inverse of an element in Fnfog isalways de�ned. Then �f is the (left and right) inverse of f , sin
e f�(�f) as wellas (�f)� f equals o, i.e., has empty support. This follows as for all t 2 supp(f)we have (f � (�f))(t) = f(t) + (�f)(t) = f(t) � f(t) = 0 = �f(t) + f(t) =(�f)(t) + f(t) = ((�f)� f)(t). We will write f � g to abbreviate f � (�g) forf; g in F . If the 
ontext is 
lear we will also write f + g instead of f � g. Noti
ethat (F ;�; o) is an Abelian group sin
e (R;+; 0) is Abelian. Sums of fun
tionsf1; : : : ; fm will be abbreviated by f1 � : : :� fm =Pmi=1 fi as usual. Now if R is a
omputable ring1, then (F ;�) is a 
omputable group.In the next lemma we provide a synta
ti
al representation for elements of thefun
tion ring.Lemma 4.1.1Every f 2 Fnfog has a �nite representation of the formf = Xt2supp(f)mtwhere mt 2 F su
h that supp(mt) = ftg and f(t) = mt(t). The representation ofo is the empty sum.Proof :This 
an be shown by indu
tion on n = jsupp(f)j. For n = 0 we have the empty1A ring R is 
alled 
omputable, if the ring operations + and � are 
omputable, i.e. for �; � 2 Rwe 
an 
ompute �+ � and � � �.
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h is the zero fun
tion o and are done. Hen
e let supp(f) = ft1; : : : ; tngand n > 0. Furthermore let f(t1) = � 2 R and m 2 F be the unique fun
tionwith supp(m) = ft1g and m(t1) = �. Then there exists an inverse fun
tion �mand a fun
tion (�m)� f 2 F su
h thatf = (m� (�m))� f = m� ((�m)� f)and supp((�m) � f) = ft2; : : : tng. Hen
e by our indu
tion hypothesissupp((�m)� f) has a representation Pt2ft2;:::tngmt yieldingf = m� ((�m)� f) = m� Xt2ft2;:::tngmt = Xt2supp(f)mtwith mt1 = m. q.e.d.This presentation is unique up to permutations. We will 
all su
h a representationof an element as a formal sum of spe
ial fun
tions a polynomial representationor a polynomial to stress the similarity with the obje
ts known as polynomialsin other �elds of mathemati
s. Polynomial representations in terms of these fun
-tions are unique up to permutations of the respe
tive elements of their support.Sin
e these spe
ial fun
tions are of interest we de�ne the following subsets of F :M(F) = ff 2 F j jsupp(f)j = 1gwill be 
alled the set of monomial fun
tions or monomials in F . Monomialswill often be denoted by mt where the suÆx t is the element of the support, i.e.,supp(mt) = ftg. A subset of this set, namelyT(F) = fmt 2 M(F) j mt(t) = 1gwhere 1 denotes the unit in R will be 
alled the set of term fun
tions or termsof F . Noti
e that this set 
an be viewed as an embedding of T in F via themapping t 7�! f with supp(f) = ftg and f(t) = 1.Further we assume the existen
e of a se
ond binary operation 
alled multipli-
ation ? : F �F �! Fsu
h that (F ;�; ?; o) is a ring. In parti
ular we have o ? f = f ? o = o for all fin F . This ring is 
alled a fun
tion ring2. In 
ase ? is a 
omputable operation,F is a 
omputable fun
tion ring.2Noti
e that in the literature the term fun
tion ring is usually restri
ted to those ringswhere the multipli
ation is de�ned pointwise as in Example 4.1.3. Here we want to allow moreinterpretations for ?.



64 Chapter 4 - Fun
tion RingsDe�nition 4.1.2An element 1rF 2 F is 
alled a right unit of F if for all f 2 F we have f ?1rF = f .Similarly 1F̀ 2 F is 
alled a left unit of F if for all f 2 F we have 1F̀ ? f = f .An element 1F 2 F is 
alled a unit if for all f 2 F we have 1F ? f = f ?1F = f .�In general F need not have a left or right unit. If F does not have a unit this
an be a
hieved by enlarging the set T by a new element, say �, and asso
iatingto � a fun
tion f� with support f�g and f�(�) = 1. The de�nition of ? must beextended su
h that for all f 2 F we have f ? f� = f� ? f = f . Similarly we 
ouldadd a left or right unit by requiring f ? f r� = f respe
tively f�̀ ? f = f . Whenadding a new element f� as a unit to F we have f� 2 T(F) � M(F).We will not spe
ify our ring multipli
ation ? further at the moment ex
ept forgiving some examples.Our �rst example outlines the situation for multiplying two elements by multiply-ing the respe
tive values of the support. This is the de�nition of multipli
ationnormally asso
iated to fun
tion rings in the mathemati
al literature.Example 4.1.3Let us spe
ify our multipli
ation ? by asso
iating to f; g in F the fun
tion in F ,denoted by f ? g, whi
h has support supp(f ? g) � supp(f) \ supp(g) and values(f ? g)(t) := f(t) � g(t) for t 2 supp(f) \ supp(g). Noti
e that in this 
ase F
an only 
ontain a (right, left) unit if T is �nite, sin
e otherwise a unit fun
tionwould have in�nite support and hen
e be no element of F . But the set of spe
ialfun
tions uS = Pt2S ut where S � T �nite, supp(ut) = ftg and ut(t) = 1 is anapproximation of a unit, sin
e for every fun
tion f in F and all fun
tions uS withsupp(f) � S we have f ?uS = uS ?f = f . However, if we want a real unit, addinga new symbol � to T and f� with f�(�) = 1 to F together with an extension ofthe de�nition of ? by f� ? f = f ? f� = f for all f 2 F will do the tri
k. �Remember that by Lemma 4.1.1 polynomials have representations of the formf =Pt2supp(f)mt and g =Ps2supp(g) ns yieldingf ? g = ( Xt2supp(f)mt) ? ( Xs2supp(g)ns) = Xt2supp(f);s2supp(g)mt ? nssin
e the multipli
ation ? must satisfy the distributivity law of the ring axioms.Hen
e knowing the behaviour of the multipli
ation for monomials, i.e. ? : M(F)�M(F) �! F , is enough to 
hara
terize the multipli
ation ?.For all examples from the literature mentioned in this work, we 
an even statethat the multipli
ation 
an be de�ned by spe
ifying ? : T � T �! F , and thenlifting it to M(F) and F . This is done by de�ning mt ?ns = (mt(t) �ns(s)) � (t ? s)and extending this to the formal sums of monomials3.3Noti
e that this lifting requires that when writing a monomial mt as mt(t) � t we havemt(t) � t = t �mt(t).



4.1 The General Setting 65A well-known example for the spe
ial instan
e ? : T �T �! T are the polynomialrings from Se
tion 2.3.Example 4.1.4For a set of variables X1; : : : ;Xn let us de�ne the set of 
ommutative termsT = fX i11 : : :X inn j i1; : : : in 2 Ng and let FTQ be the set of all fun
tions f :T �! Q with �nite support, where Q are the rational numbers. Multipli
ation? : T �T �! T is spe
i�ed as X i11 : : :X inn ?Xj11 : : :Xjnn = X i1+j11 : : :X in+jnn . Hen
ehere we have an example where the set T is a monoid with unit elementX01 : : :X0n.Then F 
an be interpreted as the ordinary polynomial ring Q[X1; : : : ;Xn℄ withthe usual multipli
ation (� � t)? (� � s) = (� ��) � (t ? s) where �; � 2 Q; s; t 2 T . �Noti
e that in this example the unit element is an element of the set T embeddedin F . This does not have to be the 
ase as the next example shows.Example 4.1.5Let us �x a �nite set T = fe11; e12; e21; e22g and let FTQ be the set of all fun
tionsf : T �! Q, where Q are the rational numbers. We spe
ify the multipli
ation ?on FTQ by the a
tion on T as follows: eij?ekl = o in 
ase j 6= k and eij?ejl = eil fori; j; l; k 2 f1; 2g. Then multipli
ation is not Abelian sin
e e11 ? e12 = e12 wherease12?e11 = o. (FTQ;�; ?; o) is a ring, in fa
t isomorphi
 to the ring of 2�2 rationalmatri
es4 It 
ontains a unit element, namely e11 + e22. �Noti
e that in this example the unit element is not an element of the set Tembedded in F . Moreover, the multipli
ation here arises from the situation? : T � T �! T [ fog. The next example even allows multipli
ations of termsto result in polynomials, i.e., ? : T � T �! F .Example 4.1.6For a set of variables X1;X2;X3 let us de�ne the set of 
ommutative terms T =fX i11 X i22 X i33 j i1; i2; i3 2 Ng and letFTQ be the set of all fun
tions f : T �! Q with�nite support, where Q are the rational numbers. Multipli
ation ? : T �T �! Fis lifted from the following multipli
ation of the variables: X2 ? X1 = X2 + X3,X3 ? X1 = X1X3, X3 ? X2 = X2X3 and Xi ? Xj = XiXj for i < j. Then F
an be interpreted as a skew-polynomial ring Q[X1;X2;X3℄ with unit elementX01X02X03 2 FTQ. �Finally, many examples for fun
tion rings will be taken from monoid rings andhen
e we 
lose this subse
tion by giving an example of a monoid ring.4This interpretation 
an be extended to arbitrary rings of n � n matri
es over a �eld K bysetting T = feij j 1 � i; j � ng, eij ? ekl = o in 
ase j 6= k and eij ? ejl = eil else. The unitelement then is e11 + : : :+ enn.



66 Chapter 4 - Fun
tion RingsExample 4.1.7Let T = fai; bi; 1 j i 2 N+g, where 1 is the empty word in fa; bg�, and let themultipli
ation ? be de�ned by the following multipli
ation table:1 aj bj1 1 aj bjai ai ai+j ai monus jbj monus ibi bi aj monus ibi monus j bi+jwhere i; j 2 N+ and i monus j = i� j if i � j and 0 else. In fa
t T is the free groupon one generator whi
h 
an be presented as a monoid by (fa; bg; fab = ba = 1g).Let FTQ be the set of all fun
tions f : T �! Q with �nite support. Then FTQ isa ring and is known as a spe
ial 
ase of the free group ring. Its unit element is1 2 FTQ. �For the spe
ial 
ase that we have ? : T � T �! T , and some subring R0 � Rwe get that the fun
tion ring FTR0 is a subring of FTR . This follows dire
tly asthen for f; g 2 FTR0 we have f + (�g); f ? g 2 FTR0. This is no longer true if? : T � T �! FTR . Let R = Q, R0 = Zand T = fX i1Xj2 j i; j 2 Ng with ?indu
ed by X2 ? X1 = 12 �X1X2, X1 ? X2 = X1X2. Then for X2;X1 2 FTZwe getX2 ? X1 = 12 �X1X2 2 FTQ.Similarly, if we have T 0 � T and ? : T 0 � T 0 �! FT 0R , then FT 0R is a subring ofFTR . Again this follows as for f; g 2 FT 0R we have f + (�g); f ? g 2 FT 0R . Letus review Example 4.1.6: There we have T = fX i11 X i22 X i33 j i1; i2; i3 2 Ng andthe multipli
ation ? : T � T �! FTQ is lifted from the following multipli
ationof the variables: X2 ? X1 = X2 + X3, X3 ? X1 = X1X3, X3 ? X2 = X2X3 andXi ? Xj = XiXj for i < j. Then for T 0 = fX i22 X i33 j i2; i3 2 Ng we have? : T 0 � T 0 �! FT 0Q and hen
e FT 0Q is a subring of FTQ.4.2 Right Ideals and Right Standard Represen-tationsSin
e F is a ring, we 
an de�ne right, left or two-sided ideals. In this se
tion in a�rst step we will restri
t our attention to one-sided ideals, in parti
ular to rightideals sin
e left ideals in general 
an be treated in a symmetri
al manner.A subset i � F is 
alled a right ideal, if1. o 2 i,



4.2 Right Ideals and Right Standard Representations 672. for f; g 2 i we have f � g 2 i, and3. for f 2 i, g 2 F we have f ? g 2 i.Right ideals 
an also be spe
i�ed in terms of generating sets. For F � Fnfog letidealr(F ) = fPni=1 fi ? gi j fi 2 F; gi 2 F ; n 2 Ng = fPni=1 fi ? mi j fi 2 F;mi 2M(F); n 2 Ng. These generated sets are subsets of F sin
e for f; g 2 F f ? g aswell as f � g are again elements of F , and it is easily 
he
ked that they are infa
t right ideals:1. o 2 idealr(F ) sin
e o 
an be written as the empty sum.2. For two elements Pni=1 fi ? gi and Pmj=1 fj ? hj in idealr(F ), the resultingsumPni=1 fi ? gi �Pmj=1 fj ? hj is again an element in idealr(F ).3. For an elementPni=1 fi?gi in idealr(F ) and a polynomial h in F , the produ
t(Pni=1 fi ? gi) ? h =Pni=1 fi ? (gi ? h) is again an element in idealr(F ).Given a right ideal i � F we 
all a set F � Fnfog a basis or a generatingset of i if i = idealr(F ). Then every element g 2 idealr(F )nfog has di�erentrepresentations of the formg = nXi=1 fi ? hi; fi 2 F; hi 2 F ; n 2 N:Of 
ourse the distributivity law in F then allows to 
onvert any su
h representa-tion into one of the formg = mXj=1 fi ? mi; fi 2 F;mi 2 M(F);m 2 N:As we have seen in Se
tion 1.3, it is not obvious whether some polynomial belongsto an ideal. Let again f1 = X21 +X2 and f2 = X21 +X3 be two polynomials in thepolynomial ring Q[X1;X2;X3℄ and i = ff1 � g1 + f2 � g2 j g1; g2 2 Q[X1;X2;X3℄gthe (right) ideal generated by them. It is not hard to see that the polynomialX2 � X3 belongs to i sin
e X2 � X3 = f1 � f2 is a representation of X2 � X3in terms of f1 and f2. The same is true for the polynomial X22 � X2X3 wherenow we have to use multiples of f1 and f2, namely X22 � X2X3 = f1 ? X2 �f2 ? X2. However, when looking at the polynomial X33 +X1 +X3 we �nd thatthere is no obvious algorithm to �nd su
h appropriate multiples. The problemis that for an arbitrary generating set for an ideal we have to look at arbitrarypolynomial multiples with no boundary. One �rst improvement for the situation
an be a
hieved if we 
an represent ideal elements by spe
ial representations interms of the given generating set. In polynomial rings su
h representations arestudied as variations of the term standard representations in the literature(see also Se
tion 2.3). They will also be introdu
ed in this setting. Sin
e standard



68 Chapter 4 - Fun
tion Ringsrepresentations are in general distinguished by 
onditions involving an orderingon the set of polynomials, we will start by introdu
ing the notion of an orderingto F .Let � be a total well-founded ordering on the set T . This enables us to makeour polynomial representations of fun
tions unique by using the ordering � toarrange the elements of the support:f = kXi=1 mti; where supp(f) = ft1; : : : ; tkg; t1 � : : : � tk:Using the ordering � on T we are now able to give some notions for polynomialswhi
h are essential in introdu
ing standard representations, standard bases andGr�obner bases in the 
lassi
al approa
h. We 
all the monomial with the largestterm a

ording to � the head monomial of f denoted by HM(f), 
onsistingof the head term denoted by HT(f) and the head 
oeÆ
ient denoted byHC(f) = f(HT(f)). f �HM(f) is 
alled the redu
tum of f denoted by RED(f).Note that HM(f) 2 M(F), HT(f) 2 T and HC(f) 2 R. These notions 
an beextended to sets of fun
tions F � Fnfog by setting HM(F ) = fHM(f) j f 2 Fg,HT(F ) = fHT(f) j f 2 Fg and HC(F ) = fHC(f) j f 2 Fg.Noti
e that for some polynomial f = Pki=1mti 2 F , and some term t 2 T we
annot 
on
lude that for the terms o

urring in the multiple f ? t =Pki=1mti ? twe have t1 ? t � : : : � tk ? t (in 
ase the multipli
ation of terms again results interms) or HT(t1 ? t) � : : : � HT(tk ? t) as the ordering need not be 
ompatiblewith multipli
ation in F .Example 4.2.1Let T = fx; 1g and ? indu
ed by the following multipli
ation on T : x ? x =1 ? 1 = 1, x ? 1 = 1 ? x = x. Then assuming x � 1, after multiplying both sides ofthe equation with x, we get x ? x = 1 � 1 ? x = x. On the other hand, assumingthe pre
eden
e 1 � x similarly we get x = 1 ? x � 1 = x ? x. Hen
e the orderingis not 
ompatible with multipli
ation using elements in T . �We will later on see that this la
k of 
ompatibility leads to additional requirementswhen de�ning standard representations, standard bases and Gr�obner bases. Sin
ethe elements of T 
an be identi�ed with the terms in T(F), the ordering � 
an beextended as a total well-founded5 ordering on T(F). Additionally we 
an provideorderings on M(F) and F as follows.De�nition 4.2.2Let � be a total well-founded ordering on T . Let >R be a (not ne
essarily total)5An ordering � on a set M will be 
alled well-founded if its stri
t part � is well-founded,i.e., does not allow in�nite des
ending 
hains of the form m1 � m2 � : : :.



4.2 Right Ideals and Right Standard Representations 69well-founded ordering on R. We de�ne an ordering on M(F) by mt1 � mt2 ift1 � t2 or (t1 = t2 and mt1(t1) >R mt2(t2)).For two elements f; g in F we de�ne f � g i� HM(f) � HM(g) or (HM(f) =HM(g) and RED(f) � RED(g)). We further de�ne f � o for all f 2 Fnfog. �Noti
e that the total well-founded ordering on T(F) extends to a well-foundedordering on M(F).For a �eld K we have the trivial ordering >K where � >K 0 for all � 2 Knf0g andno other elements are 
omparable. Then the resulting ordering on the respe
tivefun
tion ring 
orresponds to the one given in De�nition 2.3.3 for polynomial ringsover �elds.Lemma 4.2.3The ordering � on F is well-founded.Proof :The proof of this lemma will use a method known as Cantor's se
ond diagonalargument (
ompare e.g. [BW92℄ Chapter 4). Let us assume that � is not well-founded on F . We will show that this gives us a 
ontradi
tion to the fa
t thatthe ordering � on M(F) indu
ing � is well-founded. Hen
e, let us supposef0 � f1 � : : : � fk � : : : , k 2 N is a stri
tly des
ending 
hain in F . Then we 
an
onstru
t a sequen
e of sets of pairs ff(mtk; gkn) j n 2 Ng j k 2 Ng re
ursivelyas follows: For k = 0 let mt0 = min�fHM(fi) j i 2 Ng whi
h is well-de�nedsin
e � is well-founded on M(F). Now let j 2 N be the least index su
h thatwe have mt0 = HM(fj). Then mt0 = HM(fj+n) holds for all n 2 N and we 
anset g0n = fj+n � HM(fj+n), i.e., mt0 � HM(g0n) for all n 2 N. For k + 1 we letmtk+1 = min�fHM(gki) j i 2 Ng and again let j 2 N be the least index su
h thatmtk+1 = HM(gkj) holds, i.e., mtk+1 = HM(gk(j+n)) for all n 2 N. Again we setg(k+1)n = gk(j+n) � HM(gk(j+n)).Then the following statements hold for every k 2 N:1. For all monomials m o

uring in the polynomials gkn, n 2 N, we havemtk � m.2. gk0 � gk1 � : : : is a stri
tly des
ending 
hain in F .Hen
e we get that mt0 � mt1 � : : : is a stri
tly des
ending 
hain in M(F)
ontradi
ting the fa
t that � is supposed to be well-founded on this set. q.e.d.Chara
terizations of ideal bases in terms of spe
ial standard representations theyallow are mainly provided for polynomial rings over �elds in the literature (
om-pare [BW92℄ and Se
tion 2.3). Hen
e we will �rst take a 
loser look at possiblegeneralizations of these 
on
epts to fun
tion rings over �elds.



70 Chapter 4 - Fun
tion Rings4.2.1 The Spe
ial Case of Fun
tion Rings over FieldsLet FK be a fun
tion ring over a �eld K. Remember that for a set F of polynomialsin FK every polynomial g 2 idealr(F ) has a representation of the form g =Pni=1 fi ? hi; fi 2 F; hi 2 FK; n 2 N: However, su
h an arbitrary representation
an 
ontain monomials larger than HM(g) whi
h are 
an
elled in the sum. A �rstidea of standard representations in the literature now is to represent g as a sumof polynomial multiples fi ?hi su
h that no 
an
ellation of monomials larger thanHM(g) takes pla
e, i.e. HM(g) � HM(fi ? hi). Hen
e in a �rst step we look at thefollowing analogon of a de�nition of standard representations (
ompare [BW92℄,page 218):De�nition 4.2.4Let F be a set of polynomials in FK and g a non-zero polynomial in idealr(F ). Arepresentation of the formg = nXi=1 fi ? hi; fi 2 F; hi 2 FK; n 2 N (4.1)where additionally HT(g) � HT(fi ? hi) holds for 1 � i � n is 
alled a (general)right standard representation of g in terms of F . If every g 2 idealr(F )nfoghas su
h a representation in terms of F , then F is 
alled a (general) rightstandard basis of idealr(F ). �What distinguishes an arbitrary representation from a (general) right standardrepresentation is the fa
t that the former may 
ontain polynomial multiples fi ?hi with head terms HT(fi ? hi) larger than the head term of the representedpolynomial g. Therefore, in order to 
hange an arbitrary representation intoone ful�lling our additional 
ondition (4.1) we have to deal with spe
ial sums ofpolynomials.De�nition 4.2.5Let F be a set of polynomials in FK and t an element in T . Then we de�ne the
riti
al set Cgr(t; F ) to 
ontain all tuples of the form (t; f1; : : : ; fk; h1; : : : ; hk),k 2 N, f1; : : : ; fk 2 F 6, h1; : : : ; hk 2 FK su
h that1. HT(fi ? hi) = t, 1 � i � k, and2. Pki=1HM(fi ? hi) = o.We set Cgr(F ) = St2T Cgr(t; F ). �6As in the 
ase of 
ommutative polynomials, f1; : : : ; fk are not ne
essarily di�erent polyno-mials from F .



4.2 Right Ideals and Right Standard Representations 71Noti
e that for the sums of polynomial multiples in this de�nition we getHT(Pki=1 fi ? hi) � t. This de�nition is motivated by the de�nition of syzygies ofpolynomials in 
ommutative polynomial rings over rings. However, it di�ers fromthe original de�nition insofar as we need not have HT(f?h) = HT(HT(f)?HT(h)),i.e., we 
annot lo
alize the de�nition to the head monomials of the polynomialsin F . Still we 
an 
hara
terize (general) right standard bases using this 
on
ept.Theorem 4.2.6Let F be a set of polynomials in FKnfog. Then F is a (general) right standardbasis of idealr(F ) if and only if for every tuple (t; f1; : : : ; fk; h1; : : : ; hk) in Cgr(F )the polynomial Pki=1 fi ? hi (i.e., the element in FK 
orresponding to this sum)has a (general) right standard representation with respe
t to F .Proof :In 
ase F is a (general) right standard basis, sin
e these polynomials are allelements of idealr(F ), they must have (general) right standard representationswith respe
t to F .To prove the 
onverse, it remains to show that every element in idealr(F ) hasa (general) right standard representation with respe
t to F . Hen
e, let g =Pmj=1 fj ?hj be an arbitrary representation of a non-zero polynomial g 2 idealr(F )su
h that fj 2 F , hj 2 FK, m 2 N. Depending on this representation of g and thewell-founded total ordering � on T we de�ne t = max�fHT(fj ?hj) j 1 � j � mgand K as the number of polynomials fj ? hj with head term t. Then t � HT(g)and in 
ase HT(g) = t this immediately implies that this representation is alreadya (general) right standard one. Else we pro
eed by indu
tion on t. Without loss ofgenerality let f1; : : : ; fK be the polynomials in the 
orresponding representationsu
h that t = HT(fi ? hi), 1 � i � K. Then the tuple (t; f1; : : : ; fK; h1; : : : ; hK)is in Cgr(F ) and let h = PKi=1 fi ? hi. We will now 
hange our representation ofg in su
h a way that for the new representation of g we have a smaller maximalterm. Let us assume h is not o7. By our assumption, h has a (general) rightstandard representation with respe
t to F , say Pnj=1 pj ? qj, where pj 2 F , qj 2FK, n 2 N and all terms o

urring in the sum are bounded by t � HT(h) asPKi=1HM(fi ? hi) = o. This gives us:g = KXi=1 fi ? hi + mXi=K+1 fi ? hi= nXj=1 pj ? qj + mXi=K+1 fi ? hi7In 
ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.



72 Chapter 4 - Fun
tion Ringswhi
h is a representation of g where the maximal term of the involved polynomialmultiples is smaller than t. q.e.d.Remember that by the distributivity law in FK any representation of a polynomialg of the form g =Pni=1 fi ? hi; fi 2 F; hi 2 FK; n 2 N 
an be 
onverted into oneof the form g = Pmj=1 fj ? mj; fj 2 F;mj 2 M(FK);m 2 N: Now for polynomialrings the 
onversion of a (general right) standard representation from a sum ofpolynomial multiples into a sum of monomial multiples again results in a standardrepresentation. This is due to the fa
t that the orderings used for the polynomialrings are 
ompatible with multipli
ation. Now let us look at a se
ond analogonto this kind of standard representations in our setting.De�nition 4.2.7Let F be a set of polynomials in FK and g a non-zero polynomial in idealr(F ). Arepresentation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(FK); n 2 N (4.2)where additionally HT(g) � HT(fi ? mi) holds for 1 � i � n is 
alled a rightstandard representation of g in terms of F . If every g 2 idealr(F )nfog hassu
h a representation in terms of F , then F is 
alled a right standard basis ofidealr(F ). �If our ordering � on FK is 
ompatible with ? we 
an 
on
lude that the 
onversionof a general right standard representation into a sum involving only monomialmultiples again results in a right standard representation as de�ned in De�nition4.2.7. But sin
e in general the ordering and the multipli
ation are not 
ompatible(review Example 4.2.1) a polynomial multiple f?h 
an 
ontain monomialsm;m0 2M(f ? mj) where h = Pnj=1mj su
h that m and m0 are larger than HM(f ? h)and m = m0. Hen
e just applying the distributivity to a sum of polynomialmultiples no longer 
hanges a standard representation as de�ned in De�nition4.2.4 into one as de�ned in De�nition 4.2.7. Remember that this was true forpolynomial rings over �elds where both de�nitions are equivalent. Let us look atthe monoid ring Q[M℄ whereM is the monoid presented by (fa; b; 
g; ab = a).Moreover, let � be the length-lexi
ographi
al ordering indu
ed by the pre
eden
e
 � b � a. Then for the polynomials f = 
a + 1, h = b2 � b 2 Q[M℄ we getHT(f ? b2) = HT(
a+ b2) = 
a and HT(f ? b) = HT(
a+ b) = 
a. On the otherhand HT(f ?h) = HT(
a+b2�
a�b) = HT(b2�b) = b2. Hen
e for the polynomialg = b2�b the polynomial multiple f ?h is a general right standard representationas de�ned in De�nition 4.2.4 while the sum of monomial multiples f ? b2 � f ? bis no right standard representation as de�ned in De�nition 4.2.7. We 
an evenstate that g has no right standard representation in terms of the polynomial f .



4.2 Right Ideals and Right Standard Representations 73Now as our aim is to link standard representations of polynomials to redu
tionrelations, a 
loser inspe
tion of the 
on
ept of general right standard representa-tions shows that a redu
tion relation related to them has to involve polynomialmultiples for de�ning the redu
tion steps. Right standard representations 
analso be linked to spe
ial instan
es of su
h redu
tion relations but are traditionallylinked to redu
tion relations involving monomial multiples. There is no exampleknown from the literature where redu
tion relations involving polynomial multi-ples gain real advantages over redu
tion relations involving monomial multiplesonly8. Therefore we will restri
t our attention to right standard representationsas presented in De�nition 4.2.7.Again, in order to 
hange an arbitrary representation into one ful�lling our ad-ditional 
ondition (4.2) of De�nition 4.2.7 we have to deal with spe
ial sums ofpolynomials.De�nition 4.2.8Let F be a set of polynomials in FK and t an element in T . Then we de�ne the
riti
al set Cr(t; F ) to 
ontain all tuples of the form (t; f1; : : : ; fk;m1; : : : ;mk),k 2 N, f1; : : : ; fk 2 F 9, m1; : : : ;mk 2 M(F) su
h that1. HT(fi ? mi) = t, 1 � i � k, and2. Pki=1HM(fi ? mi) = o.We set Cr(F ) = St2T Cr(t; F ). �As before, we 
an 
hara
terize right standard bases using this 
on
ept.Theorem 4.2.9Let F be a set of polynomials in FKnfog. Then F is a right standard basisof idealr(F ) if and only if for every tuple (t; f1; : : : ; fk;m1; : : : ;mk) in Cr(F ) thepolynomialPki=1 fi ?mi (i.e., the element in F 
orresponding to this sum) has aright standard representation with respe
t to F .Proof :In 
ase F is a right standard basis, sin
e these polynomials are all elements ofidealr(F ), they must have right standard representations with respe
t to F .To prove the 
onverse, it remains to show that every element in idealr(F ) has aright standard representation with respe
t to F . Hen
e, let g = Pmj=1 fj ? mjbe an arbitrary representation of a non-zero polynomial g 2 idealr(F ) su
h that8Examples where redu
tion relations involving polynomial multiples are studied for theoriginal 
ase of Gr�obner bases in 
ommutative polynomial rings 
an be found in [Tri78, Za
78℄.9As in the 
ase of 
ommutative polynomials, f1; : : : ; fk are not ne
essarily di�erent polyno-mials from F .
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tion Ringsfj 2 F , mj 2 M(FK), m 2 N. Depending on this representation of g and the well-founded total ordering � on T we de�ne t = max�fHT(fj ?mj) j 1 � j � mg andK as the number of polynomials fj ? mj with head term t. Then t � HT(g) andin 
ase HT(g) = t this immediately implies that this representation is already aright standard one. Else we pro
eed by indu
tion on t. Without loss of generalitylet f1; : : : ; fK be the polynomials in the 
orresponding representation su
h thatt = HT(fi?mi), 1 � i � K. Then the tuple (t; f1; : : : ; fK;m1; : : : ;mK) is in Cr(F )and let h = PKi=1 fi ? mi. We will now 
hange our representation of g in su
h away that for the new representation of g we have a smaller maximal term. Letus assume h is not o10. By our assumption, h has a right standard representationwith respe
t to F , say Pnj=1 hj ? lj, where hj 2 F , lj 2 M(FK), n 2 N and allterms o

urring in the sum are bounded by t � HT(h) as PKi=1HM(fi ? mi) = o.This gives us: g = KXi=1 fi ? mi + mXi=K+1 fi ? mi= nXj=1 hj ? lj + mXi=K+1 fi ? miwhi
h is a representation of g where the maximal term of the involved monomialmultiples is smaller than t. q.e.d.For 
ommutative polynomial rings over �elds standard bases are in fa
t Gr�obnerbases. Remember that in algebrai
 terms a set F is a Gr�obner basis of the idealideal(F ) it generates if and only if HT(ideal(F )) = ft ? w j t 2 HT(F ); w a termg(
ompare De�nition 2.3.12). The lo
alization to the set of head terms only ispossible as the ordering and multipli
ation are 
ompatible, i.e. HT(f ? w) =HT(f) ? w for any f 2 F and any term w. Then of 
ourse if every g 2 ideal(F )has a standard representation in terms of F we immediately get that HT(g) =HT(f ? w) = HT(f) ? w for some f 2 F and some term w. Moreover, forany redu
tion relation based on divisibility of terms we get that g is redu
ibleat its head monomial by this polynomial f . This of 
ourse 
orresponds to these
ond de�nition of Gr�obner bases in rewriting terms { a set F is a Gr�obner basisof the ideal it generates if and only if the redu
tion relation �!bF asso
iatedto the polynomials in F is 
on
uent11 (
ompare De�nition 2.3.8). Central inboth de�nitions of Gr�obner bases is the idea of \dividing" terms. Importantin this 
ontext is the fa
t that divisors are smaller than the terms they dividewith respe
t to term orderings and moreover the ordering on the terms is stable10In 
ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.11The additional properties of 
apturing the ideal 
ongruen
e and being terminating requiredby De�nition 3.1.4 trivially hold for polynomial rings over �elds.
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ation with monomials. The algebrai
 de�nition states that everyhead term of a polynomial in ideal(G) has a head term of a polynomial in Gas a divisor12. Similarly the redu
tion relation is based on divisibility of terms(
ompare De�nition 2.3.7). The stability of the ordering under multipli
ation isimportant for the 
orre
tness of these 
hara
terizations of Gr�obner bases sin
eit allows �nite lo
alizations for the test sets to s-polynomials (Lemma 2.3.9 is
entral in this 
ontext).In our 
ontext now the ordering � and the multipli
ation ? on FK in general arenot 
ompatible. Hen
e, a possible algebrai
 de�nition of Gr�obner bases and ade�nition of a redu
tion relation related to right standard representations mustinvolve the whole polynomials and not only their head terms.De�nition 4.2.10A subset F of FKnfog is 
alled a weak right Gr�obner basis of idealr(F ) ifHT(idealr(F )nfog) = HT(ff ? m j f 2 F;m 2 M(FK)gnfog). �Instead of 
onsidering multiples of head terms of the generating set F we look athead terms of monomial multiples of polynomials in F .In the setting of fun
tion rings over �elds, in order to lo
alize the de�nitions ofstandard representations and weak Gr�obner bases to head terms instead of headmonomials and show their equivalen
e we have to view F as a ve
tor spa
e withs
alars from K. We de�ne a natural left s
alar multipli
ation � : K �F �! Fby asso
iating to � 2 K and f 2 F the fun
tion in F , denoted by � � f , whi
hhas support supp(� � f) � supp(f) and values (� � f)(t) = � � f(t) for t 2 supp(f).Noti
e that if � 6= 0 we have supp(� � f) = supp(f). Similarly, we 
an de�ne anatural right s
alar multipli
ation � : F � K �! F by asso
iating to � 2 K andf 2 F the fun
tion in F , denoted by f ��, whi
h has support supp(f ��) � supp(f)and values (f � �)(t) = f(t) � � for t 2 supp(f). Sin
e K is asso
iative we have((� � f) � �)(t) = (� � f)(t) � �= (� � f(t)) � �= � � (f(t) � �)= � � ((f � �)(t))= (� � (f � �))(t)and we will write � � f � �. Monomials 
an be represented as m = � � t wheresupp(m) = ftg and m(t) = �.12When generalizing this de�nition to our setting of fun
tion rings we have to be very 
arefulas in reality this implies that every polynomial in the ideal is redu
ible to zero whi
h is thede�nition of a weak Gr�obner basis (
ompare De�nition 3.1.2). Gr�obner bases and weak Gr�obnerbases 
oin
ide in polynomial rings over �elds due to the Translation Lemma (
ompare Lemma2.3.9 (2)).
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tion RingsAdditionally we have to state how s
alar multipli
ation and ring multipli
ationare 
ompatible. Remember that we have introdu
ed the elements of our fun
tionrings as formal sums of monomials. We want to treat these obje
ts similar tothose o

urring in the examples known from the literature. In parti
ular we wantto a
hieve that multipli
ation in FK 
an be spe
i�ed by de�ning a multipli
ationon the terms and lifting it to the monomials. Hen
e we require the followingequations (��f)?g = ��(f ?g) and f ?(g ��) = (f ?g)�� to hold13. These equationsare valid in the examples from the literature studied here. The 
ondition of 
oursethen implies that multipli
ation in FK 
an be spe
i�ed by knowing ? : T �T �!FK. This follows as for �; � 2 K and t; s 2 T we have(� � t) ? (� � s) = � � (t ? (� � s))= � � (t ? (s � �))= � � (t ? s) � �= (� � �) � (t ? s):If F 
ontains a unit element 1 the �eld 
an be embedded into F by � 7�! � � 1.Then for � 2 K and f 2 FK the equations � � f = (� �1) ? f and f �� = f ? (� �1)hold. Moreover, as K is Abelian � � f � � = � � � � f for any �; � 2 K, f 2 FK.In the next lemma we show that in fa
t both 
hara
terizations of spe
ial bases,right standard bases and weak Gr�obner bases, 
oin
ide as in the 
ase of polyno-mial rings over �elds.Lemma 4.2.11Let F be a subset of FKnfog. Then F is a right standard basis if and only if itis a weak right Gr�obner basis.Proof :Let us �rst assume that F is a right standard basis, i.e., every polynomial g inidealr(F ) has a right standard representation with respe
t to F . In 
ase g 6= o thisimplies the existen
e of a polynomial f 2 F and a monomialm 2 M(FK) su
h thatHT(g) = HT(f ? m). Hen
e HT(g) 2 HT(ff ? m j m 2 M(FK); f 2 Fgnfog). Asthe 
onverse, namely HT(ff ?m j m 2 M(FK); f 2 Fgnfog) � HT(idealr(F )nfog)trivially holds, F then is a weak right Gr�obner basis.Now suppose that F is a weak right Gr�obner basis and again let g 2 idealr(F ).We have to show that g has a right standard representation with respe
t to F .This will be done by indu
tion on HT(g). In 
ase g = o the empty sum isour required right standard representation. Hen
e let us assume g 6= o. Sin
ethen HT(g) 2 HT(idealr(F )nfog) by the de�nition of weak right Gr�obner baseswe know there exists a polynomial f 2 F and a monomial m 2 M(FK) su
h13Then of 
ourse sin
e K is Abelian we have (� � f) ? g = � � (f ? g) = f ? (� � g) = f ? (g ��) =(f ? g) � �.



4.2 Right Ideals and Right Standard Representations 77that HT(g) = HT(f ? m). Then there exists a monomial ~m 2 M(FK) su
h thatHM(g) = HM(f ? ~m), namely14 ~m = (HC(g) �HC(f ?m)�1) �m). Let g1 = g�f ? ~m.Then HT(g) � HT(g1) implies the existen
e of a right standard representation forg1 whi
h 
an be added to the multiple f ? ~m to give the desired right standardrepresentation of g. q.e.d.Inspe
ting this proof 
loser we get the following 
orollary.Corollary 4.2.12Let a subset F of FKnfog be a weak right Gr�obner basis. Then every g 2idealr(F ) has a right standard representation in terms of F of the form g =Pni=1 fi ? mi; fi 2 F;mi 2 M(FK); n 2 N su
h that HM(g) = HM(f1 ? m1) andHT(f1 ? m1) � HT(f2 ? m2) � : : : � HT(fn ? mn).Noti
e that we hen
e get stronger representations as spe
i�ed in De�nition 4.2.7for the 
ase that the set F is a weak right Gr�obner basis or a right standard basis.In the literature Gr�obner bases are linked to redu
tion relations. These redu
tionrelations in general then 
orrespond to the respe
tive standard representations asfollows: if g ��!F o, then the monomial multiples involved in the respe
tive redu
-tion steps add up to a standard representation of g in terms of F . One possibleredu
tion relation related to right standard representations as de�ned in De�-nition 4.2.7 is 
alled strong redu
tion15 where a monomial m1 is redu
ible bysome polynomial f , if there exists some monomialm2 su
h that m1 = HM(f ?m2).Noti
e that su
h a redu
tion step eliminates the o

uren
e of the term HT(m1)in the resulting redu
tum m1 � f ? m2. When generalizing this redu
tion rela-tion to fun
tion rings we 
an no longer lo
alize the redu
tion step to 
he
kingwhether HM(f) divides m1, as now the whole polynomial is involved in the re-du
tion step. We 
an no longer 
on
lude that HM(f) divides m1 but only thatm1 = HM(f ? m2).Our de�nition of weak right Gr�obner bases using the 
ondition HT(idealr(F )nfog)= HT(ff ? m j f 2 F;m 2 M(FK)gnfog) in De�nition 4.2.10 
orresponds tothis problem that in many 
ases orderings on T are not 
ompatible with themultipli
ation ?. Let us review Example 4.2.1 where the ordering � indu
edby x � 1 on terms respe
tively monomials is well-founded but in general not
ompatible with multipli
ation, due to the algebrai
 stru
ture of T . There forthe polynomial f = x+1 and the term x we get HM(f?x) = x whileHM(f)?x = 1.14Noti
e that this step requires that we 
an view FKas a ve
tor spa
e. In order to get a similarresult without introdu
ing ve
tor spa
es we would have to use a di�erent de�nition of weak rightGr�obner bases. E.g. requiring that HM(idealr(F )nfog) = HM(ff?m j f 2 F;m 2 M(FK)gnfogg)would be a possibility. However, then no lo
alization of 
riti
al situations to head terms ispossible, whi
h is the advantage of having a �eld as 
oeÆ
ient domain.15Strong redu
tion has been studied extensively for monoid rings in [Rei95℄.



78 Chapter 4 - Fun
tion RingsBehind this phenomenon lies the fa
t that the de�nition of \divisors" arising fromthe algebrai
 
hara
terization of weak Gr�obner bases in the 
ontext of fun
tionrings does not have the same properties as divisors in polynomial rings. One su
himportant property is that divisors are smaller with respe
t to the ordering onterms and that this ordering is transitive. Hen
e if t1 is a divisor of t2 and t2is a divisor of t3 then t1 is also a divisor of t3. This is the basis of lo
alizationswhen 
he
king for the Gr�obner basis property in polynomial rings over �elds(
ompare Lemma 2.3.9). Unfortunately this is no longer true for fun
tion rings ingeneral. Now m1 2 HM(idealr(G)) implies the existen
e of m2 2 M(FK) su
h thatHM(f ? m2) = m1. Reviewing the previous example we see that for f = x + 1,m2 = x and m1 = HM(f) = x we get HM(f ? m2) = HM((x + 1) ? x) = x,i.e. HM(f ? m2) divides m1. On the other hand m1 = x divides 1 as x ? x = 1.But HM(HM(f ? m2) ? x) = 1 while HM(f ? m2 ? x) = x, i.e. the head monomialof the multiple involving the polynomial f ? m2 does not divide 1.Noti
e that even if we restri
t the 
on
ept of right divisors to monomials only wedo not get transitivity. We are interested when for some monomialsm1;m2;m3 2M(FK) the fa
ts that m1 dividesm2 and m2 dividesm3 imply that m1 dividesm3.Let m;m0 2 M(FK) su
h that HM(m1 ? m) = m2 and HM(m2 ? m0) = m3. Thenm3 = HM(m2?m0) = HM(HM(m1?m)?m0). When does this equal HM(m1?m?m0)or evenHM(m1?HM(m?m0))? Obviously if we have ? : M(FK)�M(FK) 7! M(FK),whi
h is true for the Examples 4.1.3, 4.1.4 and 4.1.5, this is true. However ifmultipli
ation of monomials results in polynomials we are in trouble. Let us lookat the skew-polynomial ring Q[X1;X2;X3℄, X1 � X2 � X3, de�ned in Example4.1.6, i.e.X2?X1 = X2+X3,X3?X1 = X1X3,X3?X2 = X2X3 and Xi?Xj = XiXjfor i < j. Then from the fa
t that X2 divides X2 we get HM(X2 ? X1) = X2 andsin
e again X2 divides X2, HM(HM(X2 ? X1) ? X1) = HM(X2 ? X1) = X2. ButHM(X2 ?X1 ?X1) = HM(X1X3+X2+X3) = X1X3. Next we will show how usinga restri
ted set of divisors only will enable some sort of transitivity.To establish a 
ertain kind of 
ompatibility for the ordering � and the multipli-
ation ?, additional requirements 
an be added. One way to do this is by givingan additional ordering on T whi
h is in some sense weaker than � but adds moreinformation on 
ompatibility with right multipli
ation. Examples from the lit-erature, where this te
hnique is su

essfully applied, in
lude spe
ial monoid andgroup rings (see e.g. [Rei95, MR98a, MR98d℄). There restri
tions of the respe
-tive orderings on the monoid or group elements are of synta
ti
al nature involvingthe presentation of the monoid or group (e.g. pre�x orderings of various kinds for
ommutative monoids and groups, free groups and poly
y
li
 groups).De�nition 4.2.13We will 
all an ordering � on T a right redu
tive restri
tion of the ordering� or simply right redu
tive, if the following hold:1. t � s implies t � s for t; s 2 T .



4.2 Right Ideals and Right Standard Representations 792. � is a partial ordering on T whi
h is 
ompatible with multipli
ation ? fromthe right in the following sense: if for t; t1; t2; w 2 T , t2 � t1, t1 � t andt2 = HT(t1 ? w) hold, then t2 � t ? w. �Noti
e that if � is a partial well-founded ordering on T so is �.We 
an now distinguish spe
ial \divisors" of monomials: For m1;m2 2 M(FK) we
all m1 a stable left divisor of m2 if and only if HT(m2) � HT(m1) and thereexists m 2 M(FK) su
h that m2 = HM(m1 ?m). Then m is 
alled a stable rightmultiplier of m1.If T 
ontains a unit element16 1 and 1 � t for all terms t 2 T this immediately17implies 1 � t and hen
e 1 is a stable divisor of any monomial m. It remains toshow that stable division is also transitive. For three monomials m1;m2;m3 2M(F) let m1 be a stable divisor of m2 and m2 a stable divisor of m3. Then thereexist monomials m;m0 2 M(F) su
h that m2 = HM(m1 ? m) with HT(m2) �HT(m1) andm3 = HM(m2?m0) with HT(m3) � HT(m2). Let us have a look at themonomialHM(HM(m1?m)?m0). Remember how on page 78 we have seen that the
asem1?m 2 M(F) is not 
riti
al as then we immediately have that this monomialequals HM(m1?m?m0) = HM(m1?HM(m?m0)). Hen
e let us assume thatm1?m 62M(F). Then for all terms s 2 T(m1 ?m)nHT(m1?m) we know s � HT(m1?m) =HT(m2). Moreover HT(m3) � HT(m2) and HT(m3) = HT(HT(m2) ? HT(m0))then implies HT(m3) � HT(s ? HT(m0)) and hen
e HM(HM(m1 ? m) ? m0) =HM(m1 ? m ? m0). In both 
ases now HT(m3) � HT(m1). However, we 
annot
on
lude that HM(m1 ? m ? m0) = HM(m1 ? HM(m ? m0)). Still m1 is a stableright divisor of m3 as in 
ase m?m0 is a polynomial there exists some monomial~m in this polynomial su
h that HM(m1 ? m ? m0) = HM(m1 ? ~m).The intention of restri
ting the ordering is that now, if HT(m2) � HT(m1) andm2 = m1 ? m, then for all terms t with HT(m1) � t we then 
an 
on
ludeHT(m2) � HT(t ? m), whi
h will be used to lo
alize the multiple HT(m1 ? m)to HT(m1) a
hieving an equivalent to the properties of \divisors" in the 
aseof 
ommutative polynomial rings. Under 
ertain 
onditions redu
tion relationsbased on this divisibility property for terms will have the stability properties wedesire. On the other hand, restri
ting the 
hoi
e of divisors in this way will leadto redu
tion relations whi
h in general no longer 
apture the respe
tive right ideal
ongruen
es18.Example 4.2.14In Example 4.1.4 of a 
ommutative polynomial ring we 
an state a redu
tiverestri
tion of any term ordering by t � s for two terms t and s if and only if16I.e. 1 ? t = t ? 1 = t for all t 2 T .17As there are no terms smaller than 1 the se
ond 
ondition of De�nition 4.2.13 triviallyholds.18Pre�x redu
tion for monoid rings is an example where the right ideal 
ongruen
e is lost.See e.g. [MR98d℄ for more on this topi
.



80 Chapter 4 - Fun
tion Ringss divides t as a term, i.e. for t = X i11 : : :X inn , s = Xj11 : : :Xjnn we have jl � il,1 � l � n. The same is true for skew-polynomial rings as de�ned by Kredelin his PhD thesis [Kre93℄. The situation 
hanges if for the de�ning equationsof skew-polynomial rings, Xj ? Xi = 
ij � XiXj + pij where i < j, pij � XiXj ,we allow 
ij = 0. Then other restri
tions of the ordinary term orderings haveto be 
onsidered due to the possible vanishing of head terms. Let X2 ? X1 =X1;X3 ? X1 = X1X3;X3 ? X2 = X2X3 and � a term ordering with pre
eden
eX3 � X2 � X1. Then, although X2 � X1, as X2 ? (X1X2) = X1X2 and X1 ?(X1X2) = X21X2 � X1X2, we get X2 ? (X1X2) � X1 ? (X1X2). Hen
e, sin
e X2is a divisor of X1X2 as a term, the 
lassi
al restri
tion for polynomial rings nolonger holds as X2 is no stable divisor of X1X2. For these 
ases the restri
tionto u < v if and only if u is a pre�x of v as a word will work. Then we know thatfor the respe
tive term w with u ? w = v multipli
ation is just 
on
atenation ofu and w as words and hen
e for all t � u the result of t ? w is again smaller thanu ? w. �Let us 
ontinue with algebrai
 
onsequen
es related to the right redu
tive restri
-tion of our ordering by distinguishing spe
ial standard representations. Noti
ethat for standard representations in 
ommutative polynomial rings we alreadyhave that HT(g) = HT(fi ? mi) implies HT(g) = HT(fi) ? HT(mi) and for allt � HT(fi) we have t ? w � HT(fi) ? w for any term w. In the setting offun
tion rings an analogon to the latter property now 
an be a
hieved by re-stri
ting the monomial multiples in the representation to stable ones. Hereforewe have di�erent possibilities to in
orporate these restri
tions into the 
onditionHT(g) � HT(fi ? mi) of De�nition 2.3.4 and De�nition 4.2.7. The most gen-eral one is to require HT(g) = HT(f1 ? m1) = HT(HT(f1) ? m1) � HT(f1) andHT(g) � HT(fi ? mi) for all 2 � i � n. Then a representation of g 
an 
ontainfurther monomial multiples fj ? mj, 2 � j � n with HT(g) = HT(fj ? mj) notfull�lling the restri
tion on the �rst multiple of f1. Hen
e when de�ning 
riti
alsituations we have to look at the same set as in De�nition 4.2.8. Another gener-alization is to demand HT(g) = HT(f1 ? m1) = HT(HT(f1) ? m1) � HT(f1) andHT(g) � HT(fi ?mi) = HT(HT(fi)?mi) � HT(fi) for all 2 � i � n. Then 
riti
alsituations 
an be lo
alized to stable multiplers. But we 
an also give a weakeranalogon as follows:De�nition 4.2.15Let F be a set of polynomials in FK and g a non-zero polynomial in idealr(F ). Arepresentation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(FK); n 2 Nsu
h that HT(g) = HT(fi ? mi) = HT(HT(fi) ? mi) � HT(fi) for 1 � i � k, forsome k � 1, and HT(g) � HT(fi ? mi) for k < i � n is 
alled a right redu
tivestandard representation in terms of F . �



4.2 Right Ideals and Right Standard Representations 81Noti
e that we restri
t the possible multipliers to stable ones if the monomialmultiple has the same head term as g, i.e. 
ontributes to the head term of g.For de�nitions sake we will let the empty sum be the right redu
tive standardrepresentation of o. The idea behind right redu
tive standard representations isthat for an appropriate de�nition of a redu
tion relation based now on stabledivisors su
h representations will again allow a redu
tion step to take pla
e atthe head monomial.In 
ase we have ? : T � T �! T we 
an rephrase the 
ondition in De�nition4.2.15 to HT(g) = HT(fi ? mi) = HT(fi) ? HT(mi) � HT(fi), 1 � i � k.De�nition 4.2.16A set F � FKnfog is 
alled a right redu
tive standard basis (with respe
tto the redu
tive ordering �) of idealr(F ) if every polynomial f 2 idealr(F ) has aright redu
tive standard representation in terms of F . �Again, in order to 
hange an arbitrary representation into one ful�lling our ad-ditional 
ondition of De�nition 4.2.15 we have to deal with spe
ial sums of poly-nomials.De�nition 4.2.17Let F be a set of polynomials in FK and t an element in T . Then we de�ne the
riti
al set Crr(t; F ) to 
ontain all tuples of the form (t; f1; : : : ; fk;m1; : : : ;mk),k 2 N, f1; : : : ; fk 2 F 19, m1; : : : ;mk 2 M(F) su
h that1. HT(fi ? mi) = HT(HT(fi) ? mi) = t, 1 � i � k,2. HT(fi ? mi) � HT(fi), 1 � i � k, and3. Pki=1HM(fi ? mi) = o.We set Crr(F ) = St2T Crr(t; F ). �Unfortunately, in 
ontrary to the 
hara
terization of right standard bases in The-orem 4.2.9 these 
riti
al situations will not be suÆ
ient to 
hara
terize rightredu
tive standard bases. To see this let us 
onsider the following example:Example 4.2.18Let us re
all the des
ription of the free group ring in Example 4.1.7 with T =fai; bi; 1 j i 2 N+g and let� be the ordering indu
ed by the length-lexi
ographi
alodering on T resulting from the pre
eden
e a � b.Then the set 
onsisting of the polynomial a + 1 does not give rise to non-trivial
riti
al situations, but still is no right redu
tive standard basis as the polynomialb+1 2 idealr(fa+1g) has no right redu
tive standard representation with respe
tto a+ 1. �19As in the 
ase of 
ommutative polynomials, f1; : : : ; fk are not ne
essarily di�erent polyno-mials from F .



82 Chapter 4 - Fun
tion RingsHowever, the failing situation b + 1 = (a + 1) ? b des
ribed in Example 4.2.18des
ribes the only kind of additional 
riti
al situations whi
h have to be resolvedin order to 
hara
terize right redu
tive standard bases.Theorem 4.2.19Let F be a set of polynomials in FKnfog. Then F is a right redu
tive standardbasis of idealr(F ) if and only if1. for every f 2 F and every m 2 M(FK) the multiple f ? m has a rightredu
tive standard representation in terms of F ,2. for every tuple (t; f1; : : : ; fk;m1; : : : ;mk) in Crr(F ) the polynomialPki=1 fi?mi (i.e., the element in F 
orresponding to this sum) has a right redu
tivestandard representation with respe
t to F .Proof :In 
ase F is a right redu
tive standard basis, sin
e these polynomials are allelements of idealr(F ), they must have right redu
tive standard representationswith respe
t to F .To prove the 
onverse, it remains to show that every element in idealr(F ) hasa right redu
tive standard representation with respe
t to F . Hen
e, let g =Pmj=1 fj?mj be an arbitrary representation of a non-zero polynomial g 2 idealr(F )su
h that fj 2 F , and mj 2 M(FK). By our �rst statement every su
h monomialmultiple fj ? mj has a right redu
tive standard representation in terms of Fand we 
an assume that all multiples are repla
ed by them. Depending on thisrepresentation of g and the well-founded total ordering � on T we de�ne t =max�fHT(fj ? mj) j 1 � j � mg and K as the number of polynomials fj ? mjwith head term t. Then for ea
h multiple fj ? mj with HT(fj ? mj) = t we knowthat HT(fj ? mj) = HT(HT(fj) ? mj) � HT(fj) holds. Then t � HT(g) andin 
ase HT(g) = t this immediately implies that this representation is already aright redu
tive standard one. Else we pro
eed by indu
tion on t. Without loss ofgenerality let f1; : : : ; fK be the polynomials in the 
orresponding representationsu
h that t = HT(fi ?mi), 1 � i � K. Then the tuple (t; f1; : : : ; fK;m1; : : : ;mK)is in Crr(F ) and let h =PKi=1 fi ? mi. We will now 
hange our representation ofg in su
h a way that for the new representation of g we have a smaller maximalterm. Let us assume h is not o20. By our assumption, h has a right redu
tivestandard representation with respe
t to F , say Pnj=1 hj ? lj, where hj 2 F , andlj 2 M(FK) and all terms o

urring in the sum are bounded by t � HT(h) as20In 
ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.



4.2 Right Ideals and Right Standard Representations 83PKi=1HM(fi ? mi) = o. This gives us:g = KXi=1 fi ? mi + mXi=K+1 fi ? mi= nXj=1 hj ? lj + mXi=K+1 fi ? miwhi
h is a representation of g where the maximal term is smaller than t. q.e.d.We 
an similarly re�ne De�nition 4.2.10 with respe
t to a redu
tive restri
tion �of the ordering �.De�nition 4.2.20A set F � FKnfog is 
alled a weak right redu
tive Gr�obner basis (withrespe
t to the redu
tive ordering �) of idealr(F ) if HT(idealr(F )nfog) = HT(ff ?m j f 2 F;m 2 M(FK);HT(f ? m) = HT(HT(f) ? m) � HT(f)gnfog). �This de�nition now lo
alizes the 
hara
terization of the Gr�obner basis to the headterms of the generating set of polynomials.The next lemma states that in fa
t both 
hara
terizations of spe
ial bases, rightredu
tive standard bases and weak right redu
tive Gr�obner bases, 
oin
ide as inthe 
ase of polynomial rings over �elds.Lemma 4.2.21Let F be a subset of FKnfog. Then F is a right redu
tive standard basis if andonly if it is a weak right redu
tive Gr�obner basis.Proof :Let us �rst assume that F is a right redu
tive standard basis, i.e., every poly-nomial g in idealr(F ) has a right redu
tive standard representation with respe
tto F . In 
ase g 6= o this implies the existen
e of a polynomial f 2 F and amonomialm 2 M(FK) su
h that HT(g) = HT(f ?m) = HT(HT(f)?m) � HT(f).Hen
e HT(g) 2 HT(ff ? m j m 2 M(FK); f 2 F;HT(f ? m) = HT(HT(f) ? m) �HT(f)gnfog). As the 
onverse, namely HT(ff ? m j m 2 M(FK); f 2 F;HT(f ?m) = HT(HT(f) ? m) � HT(f)gnfog) � HT(idealr(F )nfog) trivially holds, F isthen a weak right redu
tive Gr�obner basis.Now suppose that F is a weak right redu
tive Gr�obner basis and again letg 2 idealr(F ). We have to show that g has a right redu
tive standard representa-tion with respe
t to F . This will be done by indu
tion on HT(g). In 
ase g = othe empty sum is our required right redu
tive standard representation. Hen
e letus assume g 6= o. Sin
e then HT(g) 2 HT(idealr(F )nfog) by the de�nition of weak



84 Chapter 4 - Fun
tion Ringsright redu
tive Gr�obner bases we know there exists a polynomial f 2 F and amonomialm 2 M(FK) su
h that HT(g) = HT(f ?m) = HT(HT(f)?m) � HT(f).Then there exists a monomial ~m 2 M(F) su
h that HM(g) = HM(f ? ~m), namely21~m = (HC(g) � HC(f ? m)�1) � m). Let g1 = g � f ? ~m. Then HT(g) � HT(g1)implies the existen
e of a right redu
tive standard representation for g1 whi
h
an be added to the multiple f ? ~m to give the desired right redu
tive standardrepresentation of g. q.e.d.An inspe
tion of the proof shows that in fa
t we 
an require a stronger 
onditionfor the head terms of the monomial multiples involved in right redu
tive standardrepresentations in terms of right redu
tive Gr�obner bases.Corollary 4.2.22Let a subset F of FKnfog be a weak right redu
tive Gr�obner basis. Then everyg 2 idealr(F ) has a right redu
tive standard representation in terms of F of theform g =Pni=1 fi?mi; fi 2 F;mi 2 M(F); n 2 N su
h that HT(g) = HT(f1?m1) �HT(f2 ? m2) � : : : � HT(fn ? mn), and HT(fi ? mi) = HT(HT(fi) ? mi) � HT(fi)for all 1 � i � n.The importan
e of Gr�obner bases in 
ommutative polynomial rings stems fromthe fa
t that they 
an be 
hara
terized by spe
ial polynomials, the so-
alled s-polynomials, and that only �nitely many su
h polynomials have to be 
he
kedin order to de
ide whether a set is a Gr�obner basis. This test 
an be 
ombinedwith adding ideal elements to the generating set leading to an algorithm whi
h
omputes �nite Gr�obner bases by means of 
ompletion. These �nite sets then
an be used to solve many problems related to the ideals they generate.Given a �eld as 
oeÆ
ient domain the 
riti
al situations for fun
tion rings nowlead to s-polynomials as in the original 
ase and 
an be identi�ed by studyingterm multiples of polynomials. Let p and q be two non-zero polynomials in FK.We are interested in terms t; u1; u2 su
h that HT(p ? u1) = HT(HT(p) ? u1) =t = HT(q ? u2) = HT(HT(q) ? u2) and HT(p) � t, HT(q) � t. Let Cs(p; q)(this is a spe
ialization of De�nition 4.2.17) be the 
riti
al set 
ontaining all su
htuples (t; u1; u2) (as a short hand for (t; p; q; u1; u2)). We 
all the polynomialHC(p?u1)�1 �p?u1�HC(q ?u2)�1 � q ?u2 = spolr(p; q; t; u1; u2) the s-polynomialof p and q related to the tuple (t; u1; u2).Theorem 4.2.23Let F be a set of polynomials in FKnfog. Then F is a weak right redu
tiveGr�obner basis of idealr(F ) if and only if1. for all f in F and for m 2 M(FK) the multiple f ? m has a right redu
tivestandard representation in terms of F , and21Noti
e that this step again requires that we 
an view F as a ve
tor spa
e.



4.2 Right Ideals and Right Standard Representations 852. for all p and q in F and every tuple (t; u1; u2) in Cs(p; q) the respe
tive s-polynomial spolr(p; q; t; u1; u2) has a right redu
tive standard representationin terms of F .Proof :In 
ase F is a weak right redu
tive Gr�obner basis it is also a right redu
tivestandard basis, and sin
e all multiples f ?m and s-polynomials spolr(p; q; t; u1; u2)stated above are elements of idealr(F ), they must have right redu
tive standardrepresentations in terms of F .The 
onverse will be proven by showing that every element in idealr(F ) has aright redu
tive standard representation in terms of F . Now, let g =Pmj=1 fj ?mjbe an arbitrary representation of a non-zero polynomial g 2 idealr(F ) su
h thatfj 2 F , mj 2 M(F), m 2 N. By our �rst assumption every multiple fj ? mj inthis sum has a right redu
tive representation. Hen
e without loss of generaltitywe 
an assume that HT(HT(fj) ? mj) = HT(fj ? mj) � HT(fj) holds.Depending on this representation of g and the well-founded total ordering � onT we de�ne t = max�fHT(fj ? mj) j 1 � j � mg and K as the number ofpolynomials fj ? mj with head term t. Without loss of generality we 
an assumethat the multiples with head term t are just f1 ? m1; : : : ; fK ? mK. We pro
eedby indu
tion on (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or (t0 = t andK 0 < K)22.Obviously, t � HT(g) holds. If K = 1 this gives us t = HT(g) and by ourassumptions our representation is already of the required form. Hen
e let usassume K > 1, then there are two not ne
essarily di�erent polynomials f1; f2and 
orresponding monomials m1 = �1 � w1, m2 = �2 � w2 with �1; �2 2 K,w1; w2 2 T in the 
orresponding representation su
h that t = HT(HT(f1) ? w1) =HT(f1 ?w1) = HT(f2 ?w2) = HT(HT(f2)?w2) and t � HT(f1), t � HT(f2). Thenthe tuple (t; w1; w2) is in Cs(f1; f2) and we have an s-polynomial h = HC(f1 ?w1)�1 � f1 ? w1 � HC(f2 ? w2)�1 � f2 ? w2 
orresponding to this tuple. We willnow 
hange our representation of g by using the additional information on thiss-polynomial in su
h a way that for the new representation of g we either have asmaller maximal term or the o

urren
es of the term t are de
reased by at least1. Let us assume the s-polynomial is not o23. By our assumption, h has a rightredu
tive standard representation in terms of F , say Pni=1 hi ? li, where hi 2 F ,and li 2 M(FK) and all terms o

urring in the sum are bounded by t � HT(h).This gives us:f1 ? m1 + f2 ? m222Note that this ordering is well-founded sin
e � is well-founded on T and K 2 N.23In 
ase h = o, just substitute the empty sum for the right redu
tive representation of h inthe equations below.



86 Chapter 4 - Fun
tion Rings= �1 � f1 ? w1 + �2 � f2 ? w2= �1 � f1 ? w1 + �02 � �1 � f1 ? w1 � �02 � �1 � f1 ? w1| {z }=0 +�02 � �2| {z }=�2 �f2 ? w2= (�1 + �02 � �1) � f1 ? w1 � �02 � (�1 � f1 ? w1 � �2 � f2 ? w2)| {z }=h= (�1 + �02 � �1) � f1 ? w1 � �02 � ( nXi=1 hi ? li) (4.3)where �1 = HC(f1 ? w1)�1, �2 = HC(f2 ? w2)�1 and �02 � �2 = �2. By substituting(4.3) in our representation of g it be
omes smaller. q.e.d.Noti
e that both test sets in this 
hara
terization in general are not �nite.Remember that in 
ommutative polynomial rings over �elds we 
an restri
t these
riti
al situations to one s-polynomial arising from the least 
ommon multiple ofthe head terms HT(p) and HT(q). Here we 
an introdu
e a similar 
on
ept ofleast 
ommon multiples, but now two terms 
an have no, one, �nitely many andeven in�nitely many su
h multiples.Given two non-zero polynomials p and q in FK let S(p; q) = ft jthere exist u1; u2 2 T su
h that HT(p?u1) = HT(HT(p)?u1) = t = HT(q ?u2) =HT(HT(q) ? u2) and HT(p) � t;HT(q) � tg. A subset LCM(p; q) of S(p; q) is
alled a set of least 
ommon multiples for p and q if for any t 2 S(p; q) thereexists t0 2 LCM(p; q) su
h that t0 � t and all other s 2 LCM(p; q) are not
omparable with t0 with respe
t to the redu
tive ordering �.For polynomial rings over �elds a term t is smaller than another term s withrespe
t to the redu
tive ordering if t is a divisor of s and LCM(p; q) 
onsists ofthe least 
ommon multiple of the head terms HT(p) and HT(q). But for fun
tionrings in general other situations are possible. Two polynomials do not have togive rise to any s-polynomial. Just take T to be the free monoid on fa; bg andK = Q. Then for the two polynomials p = a+1 and q = b+1 we have S(p; q) = ;as there are no terms u1; u2 in T su
h that a ? u1 = b ? u2.Next we give an example where the set LCM(p; q) is �nite but larger that oneelement.Example 4.2.24Let our set of terms T be presented as a monoid by (fa; b; 
; d1; d2; x1; x2g; faxi =
xi; bxi = 
xi; djxi = xidj j i; j 2 f1; 2gg), � is the length-lexi
ographi
al orderingindu
ed by the pre
eden
e x2 � x1 � a � b � 
 � d1 � d2 and the redu
tive



4.2 Right Ideals and Right Standard Representations 87ordering � is the pre�x ordering. Then for the two polynomials p = a + d1and q = b + d2 we get the respe
tive sets S(p; q) = f
x1w; 
x2w j w 2 T gand LCM(p; q) = f
x1; 
x2g with resulting s-polynomials spolr(p; q; 
x1; x1; x1) =x1d1 � x1d2 and spolr(p; q; 
x2; x2; x2) = x2d1 � x2d2. �It is also possible to have in�nitely many least 
ommon multiples.Example 4.2.25Let our set of terms T be presented as a monoid by (fa; b; 
; d1; d2; xi j i 2Ng; faxi = 
xi; bxi = 
xi; djxi = xidj j i 2 N; j 2 f1; 2gg), � is the length-lexi
ographi
al ordering indu
ed by the pre
eden
e : : : � xn � : : : � x1 � a �b � 
 � d1 � d2 and the redu
tive ordering � is the pre�x ordering. Thenfor the two polynomials p = a + d1 and q = b + d2 we get the respe
tive setS(p; q) = f
xiw j i 2 N; w 2 T g and the in�nite set LCM(p; q) = f
xi j i 2 Ngwith in�nitely many resulting s-polynomials spolr(p; q; 
xi; xi; xi) = xid1 � xid2.�However, we have to show that we 
an restri
t the set Cs(p; q) to those tuples
orresponding to terms in LCM(p; q).Remember that one problem whi
h is related to the fa
t that the ordering � andthe multipli
ation ? in general are not 
ompatible is that an important propertyful�lled for representations of polynomials in 
ommutative polynomial rings over�elds no longer holds. This property in fa
t underlies Lemma 2.3.9 (4), whi
h isessential in Bu
hberger's 
hara
terization of Gr�obner bases in polynomial rings:p ��!bF 0 implies p ? m ��!bF 0 for any monomial m. Noti
e that p ��!bF 0 impliesthat p has a standard representation with respe
t to F , sayPni=1 fi ?mi, and it iseasy to see that then Pni=1 fi ? mi ? m is a standard representation of p ?m withrespe
t to F . This lemma is 
entral in lo
alizing all the 
riti
al situations relatedto two polynomials to the one s-polynomial resulting from the least 
ommonmultiple of the respe
tive head terms.Unfortunately, neither the lemma nor its impli
ation for the existen
e of therespe
tive standard representations holds in our more general setting. There, ifg 2 idealr(F ) has a right redu
tive standard representation g =Pni=1 fi ?mi, thenthe sumPni=1 fi ?mi ?m in general is no right redu
tive standard representationnot even a right standard representation of the multiple g ? m for m 2 M(FK).Even while g 2 idealr(fgg) has the trivial right redu
tive standard representationg = g, the multiple g ?m is in general no right redu
tive standard representationof the fun
tion g ? m for m 2 M(FK). Re
all the example on page 77 where forg = x+1 we have HM(g?x) = x while HM(g)?x = 1 as x?x = 1. Similarly, whileg�!g 0 must hold for any redu
tion relation, this no longer will imply g?m ��!g 0.To see this let us review Example 4.2.18: For g = a + 1 and m = b we get themultiple g ? m = (a + 1) ? b = 1 + b, but HT(g ? m) = b 6= 1 = HT(HT(g) ? m).Moreover, b+1 is not redu
ible by a+1 for any redu
tion relation based on headmonomial divisibility.



88 Chapter 4 - Fun
tion RingsIn order to give lo
alizations of the test sets from Theorem 4.2.23 it is importantto study under whi
h 
onditions the stability of right redu
tive standard repre-sentations with respe
t to multipli
ation by monomials 
an be restored. The nextlemma provides a suÆ
ient 
ondition.Lemma 4.2.26Let F � FKnfog and p a non-zero polynomial in FK. Moreover, we assume that phas a right redu
tive standard representation in terms of F and m is a monomialsu
h that HT(p ? m) = HT(HT(p) ? m) � HT(p). Then p ? m again has a rightredu
tive standard representation in terms of F .Proof :Let p = Pni=1 fi ? mi with n 2 N, fi 2 F , mi 2 M(FK) be a right redu
-tive standard representation of p in terms of F , i.e., HT(p) = HT(fi ? mi) =HT(HT(fi)?mi) � HT(fi), 1 � i � k and HT(p) � HT(fi?mi) for all k+1 � i � n.Let us �rst analyze fj ? mj ? m for 1 � j � k:Let T(fj ? mj) = fs1; : : : ; slg with s1 � si, 2 � i � l, i.e. s1 = HT(fj ? mj) =HT(HT(fj) ? mj) = HT(p). Hen
e HT(HT(p) ? m) = HT(s1 ? m) � HT(p) = s1and as s1 � si, 2 � i � l, by De�nition 4.2.13 we 
an 
on
lude HT(HT(p) ?m) =HT(s1?m) � si?m � HT(si?m) for 2 � i � l. This impliesHT(HT(fj?mj)?m) =HT(fj ? mj ? m). Hen
e we getHT(p ? m) = HT(HT(p) ? m)= HT(HT(fj ? mj) ? m); as HT(p) = HT(fj ? mj)= HT(fj ? mj ? m)and sin
e HT(p?m) � HT(p) � HT(fj) we 
an 
on
lude HT(fj?mj?m) � HT(fj).It remains to show that fj ?mj ?m has a right redu
tive standard representationin terms of F . First we show that HT(HT(fj) ? mj ? m) � HT(fj): We knowHT(fj) ?mj � HT(HT(fj) ?mj) = HT(fj ?mj) and hen
e HT(HT(fj) ?mj ?m) =HT(HT(fj ? mj) ? m) = HT(fj ? mj ? m) � HT(fj).Now in 
ase mj ?m 2 M(FK) we are done as then fj ? (mj ?m) is a right redu
tivestandard representation in terms of F .Hen
e let us assume mj ? m = Pki=1 ~mi, ~mi 2 M(FK). Let T(fj) = ft1; : : : ; tsgwith t1 � tp, 2 � p � s, i.e. t1 = HT(fj). As HT(HT(fj) ?mj) � HT(fj) � tp,2 �p � s, again by De�nition 4.2.13 we 
an 
on
lude HT(HT(fj) ? mj) � tp ? mj �HT(tp ? mj), and HT(fj) ? mj �Psp=2 tp ? m1. Then for ea
h si, 2 � i � l thereexists tp 2 T(fj) su
h that si 2 supp(tp ? mj). Sin
e HT(p) � si and even24HT(p) � tp ? mj we �nd that either HT(p ? m) � HT((tp ? mj) ? m) = HT(tp ?(mj ?m)) in 
ase HT(tp ?mj) = HT(fj ?mj) or HT(p ?m) � HT((tp ?mj) ?m) =24HT(p) � tp ? mj if HT(fj ? mj) 62 supp(tp ? mj).



4.2 Right Ideals and Right Standard Representations 89HT(tp ? (mj ?m)). Hen
e we 
an 
on
lude fj ? ~mi � HT(p ?m), 1 � i � l and forat least one ~mi we get HT(fj ? ~mi) = HT(fj ? mj ? m) � HT(fj).It remains to analyze the situation for the fun
tion (Pni=k+1 fi ? mi) ? m. Againwe �nd that for all terms s in the fi ? mi, k + 1 � i � n, we have HT(p) � s andwe get HT(p ? m) � HT(s ? m). Hen
e all polynomial multiples of the fi in therepresentation Pni=k+1Pkij=1 fi ? ~mij, where mi ? m = Pkij=1 ~mij, are bounded byHT(p ? m). q.e.d.Noti
e that these observations are no longer true in 
ase we only require HT(p ?m) = HT(HT(p) ? m) � HT(p), as then HT(p) � s no longer implies that HT(p ?m) � HT(s ? m) will hold.Of 
ourse this lemma now implies that if for two polynomials p and q in FKall s-polynomials related to the set LCM(p; q) have right redu
tive standardrepresentations so have all s-polynomials related to any tuple in Cs(p; q).So far we have 
hara
terized weak right redu
tive Gr�obner bases as spe
ial rightideal bases providing right redu
tive standard representations for the right idealelements. In the literature the existen
e of su
h representations is normally es-tablished by means of redu
tion relations. The spe
ial representations presentedhere 
an be related to a redu
tion relation based on the divisibility of terms asde�ned in the 
ontext of right redu
tive restri
tions of our ordering followingDe�nition 4.2.13. Let � be su
h a right redu
tive restri
tion of the ordering �.De�nition 4.2.27Let f; p be two non-zero polynomials in FK. We say f right redu
es p to q ata monomial � � t in one step, denoted by p�!rf q, if there exists m 2 M(FK)su
h that1. t 2 supp(p) and p(t) = �,2. HT(f ? m) = HT(HT(f) ? m) = t � HT(f),3. HM(f ? m) = � � t, and4. q = p � f ? m.We write p�!rf if there is a polynomial q as de�ned above and p is then 
alledright redu
ible by f . Further, we 
an de�ne ��!r ; +�!r and n�!r as usual. Rightredu
tion by a set F � FK is denoted by p�!rF q and abbreviates p�!rf q forsome f 2 F . �Noti
e that if f right redu
es p to q at � � t then t 62 supp(q). If for somew 2 T we have HT(f ? w) = HT(HT(f) ? w) = t � HT(f) we 
an always
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tion Ringsredu
e � � t in p by f using the monomial m = (� � HC(f ? w)�1) � w. Otherde�nitions of redu
tion relations are possible, e.g. substituting item 2 by the
ondition HT(HT(f) ? m) = HT(f ? m) (
alled right redu
tion in the 
ontext ofmonoid rings in [Rei95℄; su
h a redu
tion relation would be 
onne
ted to standardrepresentations as de�ned in De�nition 4.2.7) or by the 
ondition HT(f ? m) = t(
alled strong redu
tion in the 
ontext of monoid rings in [Rei95℄ and for fun
tionrings on page 77). We have 
hosen this parti
ular redu
tion relation as it providesthe ne
essary information to apply Lemma 4.2.26 to give lo
alizations for thetest sets in Theorem 4.2.23 later on. Let us 
ontinue by studying some of theproperties of our redu
tion relation.Lemma 4.2.28Let F be a set of polynomials in FKnfog.1. For p; q 2 FK, p�!rf2F q implies p � q, in parti
ular HT(p) � HT(q).2. �!rF is Noetherian.Proof :1. Assuming that the redu
tion step takes pla
e at a monomial � � t, by De�-nition 4.2.27 we know HM(f ? m) = � � t whi
h yields p � p � f ? m sin
eHM(f ? m) � RED(f ? m).2. This follows dire
tly from 1. as the ordering � on T is well-founded (
om-pare Theorem 4.2.3). q.e.d.The next lemma shows how redu
tion sequen
es and right redu
tive standardrepresentations are related.Lemma 4.2.29Let F � FKnfog and p 2 FKnfog. Then p ��!rF o implies that p has a rightredu
tive standard representation in terms of F .Proof :This follows dire
tly by adding up the polynomials used in the redu
tion stepso

urring in the redu
tion sequen
e p ��!rF o, say p�!rf1 p1�!rf2 : : : �!rfn o. Ifthe redu
tion steps take pla
e at the respe
tive head monomials only, we 
anadditionally state that p =Pni=1 fi?mi, HT(fi?mi) = HT(HT(fi)?mi) � HT(fi),1 � i � n, and even HT(f1 ? m1) � HT(f2 ? m2) � : : :HT(fn ? mn). q.e.d.



4.2 Right Ideals and Right Standard Representations 91If p ��!rF q, then p has a right redu
tive standard representation in terms of F [fqg, respe
tively p�q has a right redu
tive standard representation in terms of F .On the other hand, if a polynomial g has a right redu
tive standard representationin terms of some set F it is redu
ible by a polynomial in F . To see this letg = Pni=1 fi ? mi; fi 2 F;mi 2 M(FK); n 2 N be a right redu
tive standardrepresentation of g in terms of F . Then HT(g) = HT(f1 ? m1) = HT(HT(f1) ?m1) � HT(f1) and by De�nition 4.2.27 this implies that g�!rf1 g�� �f1?m1 = g0where � 2 K su
h that � � HC(f1 ? m1) = HC(g).So far we have given an algebrai
 
hara
terization of weak right redu
tive Gr�obnerbases in De�nition 4.2.20 and a 
hara
terization of them as right redu
tive stan-dard bases in Lemma 4.2.21. Another 
hara
terization known from the literatureis that for a Gr�obner basis in a polynomial ring every element of the ideal itgenerates redu
es to zero using the Gr�obner basis. Reviewing De�nition 3.1.2we �nd that this is in fa
t only the de�nition of a weak Gr�obner basis. Howeverin polynomial rings over �elds and many other stru
tures in the literature thede�nitions of weak Gr�obner bases and Gr�obner bases 
oin
ide as the TranslationLemma holds (see Lemma 2.3.9 (2)). This is also true for fun
tion rings over�elds.The �rst part of the following lemma is only needed for the proof of the se
ondpart whi
h is an analogon of the Translation Lemma for fun
tion rings over �elds.Lemma 4.2.30Let F be a set of polynomials in FK and p; q; h polynomials in FK.1. Let p � q�!rF h. Then there exist p0; q0 2 FK su
h that p ��!rF p0 andq ��!rF q0 and h = p0 � q0.2. Let o be a normal form of p�q with respe
t to F . Then there exists g 2 FKsu
h that p ��!rF g and q ��!rF g.Proof :1. Let p � q�!rF h at the monomial � � t, i.e., h = p � q � f ? m for somef 2 F ,m 2 M(FK) su
h that HT(HT(f) ? m) = HT(f ? m) = t � HT(f)and HM(f ? m) = � � t, i.e., � is the 
oeÆ
ient of t in p � q. We have todistinguish three 
ases:(a) t 2 supp(p) and t 2 supp(q): Then we 
an eliminate the o

urren
e oft in the respe
tive polynomials by right redu
tion and get p�!rf p ��1 � f ? m = p0, q�!rf q � �2 � f ? m = q0, where �1 � HC(f ? m) and�2 � HC(f ? m) are the 
oeÆ
ients of t in p respe
tively q. Moreover,
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tion Rings�1 � HC(f ? m) � �2 � HC(f ? m) = � and hen
e �1 � �2 = 1, asHC(f ?m) = �. This gives us p0� q0 = p��1 � f ?m� q+�2 � f ?m =p � q � (�1 � �2) � f ? m = p� q � f ? m = h.(b) t 2 supp(p) and t 62 supp(q): Then we 
an eliminate the term t in thepolynomial p by right redu
tion and get p�!rf p� f ? m = p0, q = q0,and, therefore, p0 � q0 = p� f ? m� q = h.(
) t 2 supp(q) and t 62 supp(p): Then we 
an eliminate the term t in thepolynomial q by right redu
tion and get q�!rf q + f ? m = q0, p = p0,and, therefore, p0 � q0 = p� (q + f ? m) = h.2. We show our 
laim by indu
tion on k, where p� q k�!rF o. In the base 
asek = 0 there is nothing to show as then p = q. Hen
e, let p�q�!rF h k�!rF o.Then by 1. there are polynomials p0; q0 2 FK su
h that p ��!rF p0 andq ��!rF q0 and h = p0 � q0. Now the indu
tion hypothesis for p0 � q0 k�!rF oyields the existen
e of a polynomial g 2 FK su
h that p ��!rF g and q ��!rF g.q.e.d.The essential part of the proof is that right redu
ibility is 
onne
ted to stabledivisors of terms. We will later see that for fun
tion rings over arbitrary redu
tionrings, when the 
oeÆ
ient is also involved in the redu
tion step, this lemma nolonger holds.De�nition 4.2.31A subset G of FK is 
alled a right Gr�obner basis (with respe
t to the redu
tionrelation �!r ) of the right ideal i = idealr(G) it generates, if � !rG = �i and�!rG is 
on
uent.Re
all the free group ring in Example 4.2.18. There the polynomial b+ 1 lies inthe right ideal generated by the polynomial a+1. Unlike in the 
ase of polynomialrings over �elds where for any set of polynomials F we have � !bF = �ideal(F ),here we have b+ 1 �idealr(fa+1g) o but b+ 1 6 � !ra+1 o. Hen
e the �rst 
ondition ofDe�nition 4.2.31 now be
omes ne
essary while it 
an be omitted in the de�nitionof Gr�obner bases for ordinary polynomial rings.Now by Lemma 4.2.30 and Theorem 3.1.5 weak right redu
tive Gr�obner basesare right Gr�obner bases and 
an be 
hara
terized as follows:Corollary 4.2.32Let G be a set of polynomials in FKnfog. G is a right Gr�obner basis if and onlyif for every g 2 idealr(G) we have g ��!rG o.Finally we 
an 
hara
terize right Gr�obner bases similar to Theorem 2.3.11.



4.2 Right Ideals and Right Standard Representations 93Theorem 4.2.33Let F be a set of polynomials in FKnfog. Then F is a right Gr�obner basis if andonly if1. for all f in F and for all m 2 M(FK) we have f ? m ��!rF o, and2. for all p and q in F and every tuple (t; u1; u2) in Cs(p; q) and the respe
tives-polynomial spolr(p; q; t; u1; u2) we have spolr(p; q; t; u1; u2) ��!rF o.However, the importan
e of Gr�obner bases in the 
lassi
al 
ase stems from thefa
t that we only have to 
he
k a �nite set of s-polynomials for F in order tode
ide, whether F is a Gr�obner basis. Hen
e, we are interested in lo
alizing thetest sets in Theorem 4.2.33 { if possible to �nite ones.De�nition 4.2.34A set of polynomials F � FKnfog is 
alled weakly saturated, if for everymonomial m 2 M(FK) and every polynomial f in F we have f ? m ��!rF o. �Then for a weakly saturated set F and any monomial m 2 M(FT ), f 2 F ,the multiple f ? m has a right redu
tive standard representation in terms of F .Noti
e that sin
e the 
oeÆ
ient domain is a �eld and F a ve
tor spa
e we 
aneven restri
t ourselves to multiples with elements of T . However, for redu
tionrings as 
oeÆ
ient domains, we will need monomial multiples and hen
e we givethe more general de�nition. For the free group ring in Example 4.2.18 the setfa+ 1; b+ 1g is weakly saturated.De�nition 4.2.35Let F be a set of polynomials in FKnf0g. A set SAT(F ) � ff ? m j f 2 F;m 2M(FK)g is 
alled a stable saturator for F if for any f 2 F , m 2 M(FK) thereexist s 2 SAT(F ), m0 2 M(FK) su
h that f ? m = s ? m0 and HT(f ? m) =HT(HT(s) ? m0) � HT(s).Noti
e that a stable saturator need not be weakly saturated. Let s 2 SAT(F ) �ff ? m j f 2 F;m 2 M(FK)g and m0 2 M(FK). For SAT(F ) to be weaklysaturated then s ? m0 ��!SAT(F ) o must hold. We know that s = f ? m for somef 2 F;m 2 M(FK). In 
ase m ? m0 2 M(FK) we are done. But this is nolonger true if the monomial multiple results in a polynomial. Let our set of terms
onsist of words on the alphabet fa; b; 
g with multipli
ation ? dedu
ed form theequations a ? b = a; b ? a = b2� b; a ? a = o. As ordering on T we take the lengthlexi
ographi
al ordering with pre
eden
e a � b � 
 and as redu
tive restri
tionthe pre�x ordering. For the polynomial f = 
a + 1 we get a stable saturatorSAT(ffg) = f
a + 1; 
a + b; 
a + b2; b3 + 
a; ag. Then the polynomial multiple(f ? b) ? a = f ? (b ? a) = f ? (b2� b) = 
a+ b2� (
a+ b) = b2� b is not redu
ibleby SAT(ffg) while f ? b = 
a+ b 2 SAT(ffg).
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tion RingsCorollary 4.2.36Let SAT(F ) be a stable saturator of a set F � FK. Then for any f 2 F ,m 2 M(FK) there exists s 2 SAT(F ) su
h that f ? m�!rs o.Lemma 4.2.37Let F be a set of polynomials in FKnf0g. If for all s in a stable saturator SAT(F )we have s ��!rF o, then for every m in M(FK) and every polynomial f in F theright multiple f ?m has a right redu
tive standard representation in terms of F .Proof :This follows immediately from Lemma 4.2.29 and Lemma 4.2.26. q.e.d.De�nition 4.2.38Let p and q be two non-zero polynomials in FK. Then a subset C �fspolr(p; q; t; u1; u2) j (t; u1; u2) 2 Cs(p; q)g is 
alled a stable lo
alization for the
riti
al situations if for every s-polynomial spolr(p; q; t; u1; u2) related to a tuple(t; u1; u2) in Cs(p; q) there exists a polynomial h 2 C and a monomialm 2 M(FK)su
h that1. HT(h) � HT(spolr(p; q; t; u1; u2)),2. HT(h ? m) = HT(HT(h) ? m) = HT(spolr(p; q; t; u1; u2)),3. spolr(p; q; t; u1; u2) = h ? m. �The set LCM(p; q) (see page 4.2.1) allows a stable lo
alization as follows: C =fspolr(p; q; t; u1; u2) j t 2 LCM(p; q); (t; u1; u2) 2 Cs(p; q)g.Corollary 4.2.39Let C � fspolr(p; q; t; u1; u2) j (t; u1; u2) 2 Cs(p; q)g be a stable lo
alization fortwo polynomials p; q 2 FK. Then for any s-polynomial spolr(p; q; t; u1; u2) thereexists h 2 C su
h that spolr(p; q; t; u1; u2)�!rh o.Lemma 4.2.40Let F be a set of polynomials in FKnf0g. If for all h in a stable lo
alizationC � fspolr(p; q; t; u1; u2) j (t; u1; u2) 2 Cs(p; q)g, we have h ��!rF o, then for every(t; u1; u2) in Cs(p; q) the s-polynomial spolr(p; q; t; u1; u2) has a right redu
tivestandard representation in terms of F .



4.2 Right Ideals and Right Standard Representations 95Proof :This follows immediately from Lemma 4.2.29 and Lemma 4.2.26. q.e.d.So far we have seen that basi
ally the theory for right Gr�obner bases and there�ned notion of right redu
tive standard bases (for right ideals of 
ourse) 
arriesover similar from the 
ase of polynomial rings over �elds. Now Lemma 4.2.26 andLemma 4.2.29 allow a lo
alization of the test situations from Theorem 4.2.33.Theorem 4.2.41Let F be a set of polynomials in FKnf0g. Then F is a right Gr�obner basis if andonly if1. for all s in a stable saturator SAT(F ) we have s ��!rF o, and2. for all p and q in F , and every polynomial h in a stable lo
alization C �fspolr(p; q; t; u1; u2) j (t; u1; u2) 2 Cs(p; q)g, we have h ��!rF o.Proof :In 
ase F is a right Gr�obner basis by Lemma 4.2.32 all elements of idealr(F ) mustright redu
e to zero by F . Sin
e the polynomials in question all belong to theright ideal generated by F we are done.The 
onverse will be proven by showing that every element in idealr(F ) has aright redu
tive representation in terms of F . Now, let g = Pmj=1 fj ? mj be anarbitrary representation of a non-zero polynomial g 2 idealr(F ) su
h that fj 2 F ,and mj 2 M(FK).By our �rst assumption for every multiple fj ? mj in this sum we have somes 2 SAT(F ), m 2 M(FK) su
h that fj ?mj = s?m and HT(fj ?mj) = HT(s?m) =HT(HT(s) ? m) � HT(s). Sin
e we have s ��!rF o, by Lemma 4.2.26 we 
an
on
lude that ea
h fj ?mj has a right redu
tive standard representation in termsof F . Therefore, we 
an assume that HT(HT(fj) ? mj) = HT(fj ? mj) � HT(fj)holds.Depending on this representation of g and the well-founded total ordering � onT we de�ne t = max�fHT(fj ? mj) j 1 � j � mg and K as the number ofpolynomials fj ? mj with head term t.Without loss of generality we 
an assume that the polynomial multiples withhead term t are just f1 ? m1; : : : ; fK ? mK. We pro
eed by indu
tion on (t;K),where (t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and K 0 < K)25. Obviously,t � HT(g) must hold. If K = 1 this gives us t = HT(g) and by our assumptionour representation is already of the required form.Hen
e let us assume K > 1, then for the two not ne
essarily di�erent polynomials25Note that this ordering is well-founded sin
e � is well-founded on T and K 2 N.



96 Chapter 4 - Fun
tion Ringsf1; f2 and 
orresponding monomials m1 = �1 � w1, m2 = �2 � w2, �1; �2 2 K,w1; w2 2 T , in the 
orresponding representation we have t = HT(HT(f1) ? w1) =HT(f1 ? w1) = HT(f2 ? w2) = HT(HT(f2) ? w2) and t � HT(f1), t � HT(f2).Then the tuple (t; w1; w2) is in Cs(f1; f2) and we have a polynomial h in a stablelo
alization C � fspolr(f1; f2; t; w1; w2) j (t; w1; w2) 2 Cs(f1; f2)g and m 2 M(FK)su
h that spolr(f1; f2; t; w1; w2) = HC(f1?w1)�1 �f1 ?w1�HC(f2?w2)�1 �f2 ?w2 =h ? m and HT(spolr(f1; f2; t; w1; w2)) = HT(h ? m) = HT(HT(h) ? m) � HT(h).We will now 
hange our representation of g by using the additional informationon this situation in su
h a way that for the new representation of g we either havea smaller maximal term or the o

urren
es of the term t are de
reased by at least1. Let us assume the s-polynomial is not o26. By our assumption, h ��!rF o andby Lemma 4.2.29 h then has a right redu
tive standard representation in terms ofF . Then by Lemma 4.2.26 the multiple h?m again has a right redu
tive standardrepresentation in terms of F , say Pni=1 hi ? li, where hi 2 F , and li 2 M(FK) andall terms o

urring in this sum are bounded by t � HT(h ? m). This gives us:�1 � f1 ? w1 + �2 � f2 ? w2= �1 � f1 ? w1 + �02 � �1 � f1 ? w1 � �02 � �1 � f1 ? w1| {z }=0 +�02 � �2| {z }=�2 �f2 ? w2= (�1 + �02 � �1) � f1 ? w1 � �02 � (�1 � f1 ? w1 � �2 � f2 ? w2)| {z }=h?m= (�1 + �02 � �1) � f1 ? w1 � �02 � ( nXi=1 hi ? li) (4.4)where �1 = HC(f1 ? w1)�1, �2 = HC(f2 ? w2)�1 and �02 � �2 = �2. By substituting(4.4) our representation of g be
omes smaller. q.e.d.Obviously we now have 
riteria for when a set is a right Gr�obner basis. As inthe 
ase of 
ompletion pro
edures su
h as the Knuth-Bendix pro
edure or theBu
hberger algorithm, elements from these test sets whi
h do not redu
e to zero
an be added to the set being tested, to gradually des
ribe a not ne
essarily �niteright Gr�obner basis. Of 
ourse in order to get a 
omputable 
ompletion pro
edure
ertain assumptions on the test sets have to be made, e.g. they should themselvesbe re
ursively enumerable, and normal forms with respe
t to �nite sets have to be
omputable. Then provided su
h enumeration pro
edures for stable saturatorsand 
riti
al situations, an enumeration pro
edure for a respe
tive right Gr�obnerbasis has to ensure that all ne
essary 
andidates are enumerated and tested for26In 
ase h = o, just substitute the empty sum for the right redu
tive representation of h inthe equations below.
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ibility to o. If this is not the 
ase they are added to the right Gr�obner basis,have to be added to the enumeration of the stable saturator 
andidates and thenew arising 
riti
al situations have to be added to the respe
tive enumerationpro
ess.We 
lose this subse
tion by outlining how di�erent stru
tures known to allow�nite Gr�obner bases 
an be interpreted as fun
tion rings. Using the respe
tiveinterpretations the terminology 
an be adapted at on
e to the respe
tive stru
-tures and in general the resulting 
hara
terizations of Gr�obner bases 
oin
idewith the results known from literature.Polynomial RingsA 
ommutative polynomial ring K[x1; : : : ; xn℄ is a fun
tion ring a

ording to thefollowing interpretation:� T is the set of terms fxi11 : : : xinn j i1; : : : ; in 2 Ng.� � 
an be any admissible term ordering on T . For the redu
tive ordering �we have t � s if s divides t as as term27.� Multipli
ation ? is spe
i�ed by the a
tion on terms, i.e. ? : T � T �! Twhere xi11 : : : xinn ? xj11 : : : xjnn = xi1+j11 : : : xin+jnn .We do not need the 
on
ept of weak saturation. A stable lo
alization of Cs(p; q)is already provided by the tuple 
orresponding to the least 
ommon multiple ofthe terms HT(p) and HT(q).Sin
e this stru
ture is Abelian, one-sided and two-sided ideals 
oin
ide. Bu
h-berger's Algorithm provides an eÆ
tive pro
edure to 
ompute �nite Gr�obnerbases.Solvable Polynomial RingsA

ording to [KRW90, Kre93℄, a solvable polynomial ring Kfx1 ; : : : ; xn; pij ; 
ijgwith 1 � j < i � n, pij 2 K[x1; : : : ; xn℄, 
ij 2 K� is a fun
tion ring a

ording tothe following interpretation:� T is the set of terms fxi11 : : : xinn j i1; : : : ; in 2 Ng.� � 
an be any admissible term ordering on T for whi
h xjxi � pij , j < i,must hold. For the redu
tive ordering � we have t � s if s divides t as asterm.27Apel has studied another possible redu
tive ordering � where we have t � s if s is a pre�xof t. This ordering gives rise to Janet bases.
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tion Rings� Multipli
ation ? is spe
i�ed by lifting the following a
tion on the variables:xi ? xj = xixj if i � j and xi ? xj = 
ij � xjxi + pij if i > j.We do not need the 
on
ept of weak saturation ex
ept in 
ase we also allow
ij = 0. Then appropriate term multiples whi
h \delete" head terms have to betaken into a

ount. This 
riti
al set 
an be des
ribed in a �nitary manner. Forthe redu
tive ordering � then we 
an 
hose t � s if s is a pre�x of t (
ompareExample 4.2.14).The set Cs(p; q) again 
ontains as a stable lo
alization the tuple 
orresponding tothe least 
ommon multiple of the terms HT(p) and HT(q).This stru
ture is no longer Abelian, but �nite Gr�obner bases 
an be 
omputedfor one- and two-sided ideals (see [KRW90, Kre93℄).Non-
ommutative Polynomial RingsA non-
ommutative polynomial ring K[fx1; : : : ; xng�℄ is a fun
tion ring a

ordingto the following interpretation:� T is the set of words on fx1; : : : ; xng.� � 
an be any admissible ordering on T . For the redu
tive ordering � we
an 
hose t � s if s is a subword of t.� Multipli
ation ? is spe
i�ed by the a
tion on words whi
h is just 
on
ate-nation.We do not need the 
on
ept of weak saturation. A stable lo
alization of Cs(p; q)is already provided by the tuples 
orresponding to word overlaps resulting fromthe equations u1HT(p)v1 = HT(q), u2HT(q)v2 = HT(p), u3HT(p) = HT(q)v3respe
tively u4HT(q) = HT(p)v4 with the restri
tion that ju3j < jHT(q)j andju4j < jHT(p)j, ui; vi 2 T .This stru
ture is not Abelian. For the 
ase of one-sided ideals �nite Gr�obner bases
an be 
omputed (see e.g. [Mor94℄). The 
ase of two-sided ideals only allows anenumerating pro
edure. This is not surprising as the word problem for monoids
an be redu
ed to the problem of 
omputing the respe
tive Gr�obner bases (seee.g. [Mor87, MR98d℄).Monoid and Group RingsA monoid or group ring K[M℄ is a fun
tion ring a

ording to the following inter-pretation:



4.2 Right Ideals and Right Standard Representations 99� T is the monoid or group M. In the 
ases studied by us as well as in[Ros93, Lo96℄, it is assumed that the elements of the monoid or grouphave a 
ertain form. This presentation is essential in the approa
h. Wewill assume that the given monoid or group is presented by a 
onvergentsemi-Thue system.� � will be the 
ompletion ordering indu
ed from the presentation ofM toM and hen
e to T . The redu
tive ordering � depends on the 
hoi
e of thepresentation.� Multipli
ation ? is spe
i�ed by lifting the monoid or group operation.The 
on
ept of weak saturation and the 
hoi
e of stable lo
alizations of Cs(p; q)again depend on the 
hoi
e of the presentation. We will 
lose this se
tion by listingmonoids and groups whi
h allow �nite Gr�obner bases for the respe
tive monoidor group ring and pointers to the literature where the appropriate solutions 
anbe found.Stru
ture Ideals QuoteFinite monoid one- and two-sided [Rei96, MR97b℄Free monoid one-sided [Mor94, MR97b℄Finite group one- and two-sided [Rei95, MR97b℄Free group one-sided [MR93a, Ros93, Rei95, MR97b℄Plain group one-sided [MR93a, Rei95, MR97b℄Context-free group one-sided [Rei95, MR97b℄Nilpotent group one- and two-sided [Rei95, MR97a℄Poly
y
li
 group one- and two-sided [Lo96, Rei96℄4.2.2 Fun
tion Rings over Redu
tion RingsThe situation be
omes more 
ompli
ated for a fun
tion ring FR where R is not a�eld. We will abbreviate FR by F .Noti
e that similar to the previous se
tion it is possible to study generalizationsof standard representations for fun
tion rings over redu
tion rings with respe
t tothe orderings � and � on T . General right standard representations as de�nedin De�nition 4.2.4, as well as the 
orresponding 
riti
al situations from De�nition4.2.5 and the 
hara
terization of general right standard bases as in Theorem 4.2.6
arry over to our fun
tion ring F . The same is true for right standard represen-tations as de�ned in De�nition 4.2.7, the 
orresponding 
riti
al situations from
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tion RingsDe�nition 4.2.8 and the 
hara
terization of right standard bases as in Theorem4.2.6. However, these standard representations 
an no longer be linked to weakright Gr�obner bases as de�ned in De�nition 4.2.10. This is of 
ourse obvious asfor fun
tion rings over �elds we have a 
hara
terization of su
h Gr�obner basesby head terms whi
h is no longer possible for fun
tion rings over redu
tion rings.This is already the 
ase for polynomial rings over the integers. For example takethe polynomial 3 �X in Q[X℄. Then obviously for F1 = f3 � Xg and F2 = fXgwe get that HT(idealr(F1)nf0g) = HT(f3 � X ? X i j i 2 Ng) = HT(fX ? X i ji 2 Ng) = HT(idealr(F2)nf0g) while of 
ourse F1 is no right Gr�obner basis ofidealr(F2) and F2 is no right Gr�obner basis of idealr(F1). One possible generaliz-ing of De�nition 4.2.10 is as follows: F is a weak right Gr�obner basis of idealr(F )if HM(idealr(F )nf0g) = HM(ff ? m j f 2 F;m 2 M(F)g). But this does notsolve the problem as there is no equivalent to Lemma 4.2.11 to link these rightGr�obner bases to the respe
tive standard bases. The reason for this is that thede�nitions of standard representations as provided by De�nition 4.2.4 and 4.2.7are no longer related to redu
tion relations 
orresponding to Gr�obner bases. Of
ourse it is possible to study other generalizations of these de�nitions, e.g. involv-ing the ordering on the 
oeÆ
ients, but we take a di�erent approa
h. Our studiesof standard representations for fun
tion rings over �elds revealed that in fa
t we
an identify stronger 
onditions for su
h representations in terms of weak rightGr�obner bases (review e.g. Corollary 4.2.12 and 4.2.22). These spe
ial represen-ations arise from redu
tion sequen
es. Hen
e we will pro
eed by studying su
hstandard representations whi
h 
an be dire
tly related to redu
tion relations inour fun
tion ring.Similar to fun
tion rings over �elds we need to view F as a ve
tor spa
e nowover R, a redu
tion ring as des
ribed in Se
tion 3.1. In general R is not Abelianand hen
e we have to distinguish right and left s
alar multipli
ation as de�nedon page 75. However, sin
e R is asso
iative as in the 
ase of �elds we 
an write� � f � �.Noti
e that for f; g in F and �; � 2 R we have1. � � (f � g) = � � f � � � g2. � � (� � f) = (� � �) � f3. (�+ �) � f = � � f � � � f ,i.e., F is a left R-module. Similarly we have1. (f � g) � � = f � �� g � �2. (f � �) � � = f � (� � �)3. f � (� + �) = f � �� f � �,



4.2 Right Ideals and Right Standard Representations 101i.e., F is a right R-module as well. Moreover, as (� � f) � � = � � (f � �) for allf 2 F , �; � 2 R, F is an R-R bimodule.In order to state how s
alar multipli
ation and ring multipli
ation are 
ompatible,we again require (� � f) ? g = � � (f ? g) and f ? (g � �) = (f ? g) � � to hold. Thisis true for all examples we know from the literature.If we additionally require that for �; � 2 R and t; s 2 T we have (� � t) ? (� �s) = (� � �) � (t ? s), then the multipli
ation in F 
an be spe
i�ed by knowing? : T � T �! F .If F 
ontains a unit 1, R 
an be embedded into F via the mapping � 7�! � � 1.Then for � 2 R and f 2 F the equations � � f = (� � 1) ? f and f �� = f ? (� � 1)hold. Sin
e for � 2 R and t 2 T we have � � t = t �� this implies (� � t) ? (� � s) =(� � �) � (t ? s)28.Moreover, if R is Abelian, we get � � (f ? g) = f ? (� � g) and F is an algebra.Remember that we want to study standard representations dire
tly related toredu
tion relations on F . Sin
e we have a fun
tion ring over a redu
tion ringsu
h a redu
tion relation originates from the redu
tion relation on the redu
tionring R. Here we want to distinguish two su
h redu
tion relations on F .One possible generalization in the spirit of these ideas for fun
tion rings overredu
tion rings is as follows:De�nition 4.2.42Let F be a set of polynomials in F and g a non-zero polynomial in idealr(F ). Arepresentation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(F); n 2 Nsu
h that HT(g) = HT(HT(f1)?m1) = HT(f1?m1) � HT(f1) and HT(g) � HT(fi?mi) for all 2 � i � n is 
alled a right redu
tive standard representationin terms of F . A set F � Fnfog is 
alled a right redu
tive standard basisof idealr(F ) if every polynomial f 2 idealr(F ) has a right redu
tive standardrepresentation in terms of F . �Noti
e that that this de�nition di�ers from De�nition 4.2.15 insofar as we demandHT(g) � HT(fi ? mi) for all 2 � i � n. In fa
t we use those spe
ial standardrepresentations whi
h arise in the 
ase of fun
tion rings for g 2 idealr(F ) when Falready is a right redu
tive standard basis (
ompare Corollary 4.2.22). Thisde�nition is dire
tly related to the redu
tion relation presented in De�nition4.2.27 for FK generalized to F . A possible de�nition of redu
tion 
an be givenin the following fashion where we require that the redu
tion step eliminates therespe
tive monomial it is applied to.28(� � t)? (� �s) = (� � t)? ((� �1)?s) = ((� � t)? (� �1))?s = (� � (t? (� �1))?s = (� � (t ��))?s =(� � (� � t)) ? s = (� � �) � (t ? s).
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tion RingsDe�nition 4.2.43Let f; p be two non-zero polynomials in F . We say f right redu
es p to qeliminating the monomial � � t in one step, denoted by p�!r;ef q, if thereexists m 2 M(F) su
h that1. t 2 supp(p) and p(t) = �,2. HT(HT(f) ? m) = HT(f ? m) = t � HT(f),3. HM(f ? m) = � � t, su
h that � =)HC(f?m) 0, and4. q = p � f ? m.We write p�!r;ef if there is a polynomial q as de�ned above and p is then 
alledright redu
ible by f . Further, we 
an de�ne ��!r;e ; +�!r;e and n�!r;e as usual.Right redu
tion by a set F � F is denoted by p�!r;eF q and abbreviates p�!r;ef qfor some f 2 F . �This redu
tion relation is related to a spe
ial instan
e29 of the redu
tion relation=). Noti
e that by Axiom (A2) � =)HC(f?m) 0 implies � 2 idealRr (HC(f ? m))and hen
e � = HC(f ? m) � � for some � 2 R.Noti
e that in 
ontrary to FK now for g; f 2 F and m 2 M(F) the situationHT(g) = HT(f ? m) = HT(HT(f) ? m) � HT(f) alone no longer implies thatHM(g) is right redu
ible by f . This is due to the fa
t that we 
an no longermodify the 
oeÆ
ients involved in the redu
tion step in the appropriate mannersin
e redu
tion rings in general will not 
ontain inverse elements.Let us 
ontinue by studying our redu
tion relation.Lemma 4.2.44Let F be a set of polynomials in Fnfog.1. For p; q 2 F p�!r;eF q implies p � q, in parti
ular HT(p) � HT(q).2. �!r;eF is Noetherian.Proof :1. Assuming that the redu
tion step takes pla
e at a monomial � � t, by De�-nition 4.2.43 we know HM(f ? m) = � � t whi
h yields p � p � f ? m sin
eHM(f ? m) � RED(f ? m).2. This follows from 1.29Compare Pan's redu
tion relation for the integers as de�ned in Example 3.1.1.



4.2 Right Ideals and Right Standard Representations 103q.e.d.The Translation Lemma no longer holds for this redu
tion relation. This is al-ready so for polynomial rings over the integers.Example 4.2.45Let Z[X℄ be the polynomial ring in one indeterminant over Z. Moreover, let =)be the redu
tion relation on Zwhere for �; � 2 Z, � =)� if and only if thereexists 
 2Zsu
h that � = � �
 (
ompare Example 3.1.1). Let p = 2�x, q = �3�Xand f = 5 �X. Then p � q = 5 �X �!r;ef 0 while p 6�!r;ef and q 6�!r;ef . �The redu
tion relation �!r;e in polynomial rings over the integers is known asPan's redu
tion in the literature. The generalization of Gr�obner bases then areweak Gr�obner bases as by 
ompletion one 
an a
hieve that all ideal elementsredu
e to zero. Next we present a proper algebrai
 
hara
terization of weak rightGr�obner bases related to right redu
tive standard representations and the redu
-tion relation de�ned in De�nition 4.2.43. Noti
e that it di�ers from De�nition4.2.20 for fun
tion rings over �elds insofar as we now have to look at the headmonomials of the right ideal instead of the head terms only.De�nition 4.2.46A set F � Fnfog is 
alled a weak right redu
tive Gr�obner basis of idealr(F )if HM(idealr(F )nfog) = HM(ff ? m j f 2 F;m 2 M(F);HT(HT(f) ? m) =HT(f ? m) � HT(f)gnfog). �Similar to Lemma 4.2.21 right redu
tive standard bases and weak right redu
tiveGr�obner bases 
oin
ide.Lemma 4.2.47Let F be a subset of Fnfog. Then F is a right redu
tive standard basis if andonly if it is a weak right redu
tive Gr�obner basis.Proof :Let us �rst assume that F is a right redu
tive standard basis, i.e., every poly-nomial g in idealr(F ) has a right redu
tive standard representation with respe
tto F . In 
ase g 6= o this implies the existen
e of a polynomial f 2 F and amonomial m 2 M(F) su
h that HT(g) = HT(HT(f) ? m) = HT(f ? m) � HT(f)and HM(g) = HM(f ? m)30. Hen
e HM(g) 2 HM(ff ? m j m 2 M(F); f 2F;HT(HT(f) ? m) = HT(f ? m) � HT(f)gnfog). As the 
onverse, namelyHM(ff ? m j m 2 M(F); f 2 F;HT(HT(f) ? m) = HT(f ? m) � HT(f)gnfog) �HM(idealr(F )nfog) trivially holds, F is a weak right redu
tive Gr�obner basis.Now suppose that F is a weak right redu
tive Gr�obner basis and again let30Noti
e that if we had generalized the original De�nition 4.2.15 this would not holds.
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tion Ringsg 2 idealr(F ). We have to show that g has a right redu
tive standard repre-sentation with respe
t to F . This will be done by indu
tion on HT(g). In 
aseg = o the empty sum is our required right redu
tive standard representation.Hen
e let us assume g 6= o. Sin
e then HM(g) 2 HM(idealr(F )nfog) by the de�-nition of weak right redu
tive Gr�obner bases we know there exists a polynomialf 2 F and a monomialm 2 M(F) su
h that HT(HT(f)?m) = HT(f?m) � HT(f)and HM(g) = HM(f ?m). Let g1 = g� f ?m. Then HT(g) � HT(g1) implies theexisten
e of a right redu
tive standard representation for g1 whi
h 
an be addedto the multiple f ? m to give the desired right redu
tive standard representationof g. q.e.d.Corollary 4.2.48Let F a subset of Fnfog be a weak right redu
tive Gr�obner basis. Then everyg 2 idealr(F ) has a right redu
tive standard representation in terms of F of theform g =Pni=1 fi ?mi; fi 2 F;mi 2 M(F); n 2 N su
h that HT(g) = HT(HT(f1) ?m1) = HT(f1?m1) � HT(f1) and HT(f1?m1) � HT(f2?m2) � : : : � HT(fn?mn).Proof :This follows from inspe
ting the proof of Lemma 4.2.47. q.e.d.Another 
onsequen
e of Lemma 4.2.47 is the 
hara
terization of weak right re-du
tive Gr�obner bases in rewriting terms.Lemma 4.2.49A subset F of Fnfog is a weak right redu
tive Gr�obner basis if for all g 2 idealr(F )we have g ��!rF o.Now to �nd some analogon to s-polynomials in F we again study what polynomialmultiples o

ur when 
hanging arbitrary representations of right ideal elementsinto right redu
tive standard representations.Given a generating set F � F of a right ideal in F the key idea in order to 
har-a
terize weak right Gr�obner bases is to distinguish spe
ial elements of idealr(F )whi
h have representations Pni=1 fi ? mi, fi 2 F , mi 2 M(F) su
h that the headterms HT(fi ?mi) are all the same within the representation. Then on one handthe respe
tive 
oeÆ
ients HC(fi ? mi) 
an add up to zero whi
h means that thesum of the head 
oeÆ
ients is in an appropriate module in R | m-polynomialsare related to these situations (see also De�nition 4.2.8). If the result is not zerothe sum of the 
oeÆ
ients HC(fi ?mi) 
an be des
ribed in terms of a (weak) rightGr�obner basis in R | g-polynomials are related to these situations. Zero divisors



4.2 Right Ideals and Right Standard Representations 105in the redu
tion ring eliminating the head monomial of a polynomial o

ur as aspe
ial instan
e of m-polynomials where F = ffg and f ��, � 2 R are 
onsidered.The �rst problem is related to solving linear homogeneous equations in R and tothe existen
e of possibly �nite bases of the respe
tive modules. In 
ase we wante�e
tiveness, we have to require that these bases are 
omputable.The g-polynomials 
an su

essfully be treated when possibly �nite (weak) rightGr�obner bases exist for �nitely generated right ideals in R. Here, in 
ase we wante�e
tiveness, we have to require that the (weak) right Gr�obner bases as well asrepresentations for their elements in terms of the generating set are 
omputable.Using m- and g-polynomials, weak right Gr�obner bases 
an again be 
hara
terizedas in Se
tion 3.5. The de�nition of m- and g-polynomials is inspired by De�nition3.5.5. One main di�eren
e however is that in fun
tion rings multiples of onepolynomial by di�erent terms 
an result in the same head terms for the multipleswhile the multiples themselves are di�erent. These multiples have to be treatedas di�erent ones 
ontributing to the same overlap although they arise from thesame polynomial. Hen
e when looking at sets of polynomials we now have toassume that we have multisets whi
h 
an 
ontain polynomials more than on
e.Additionally, while in De�nition 3.5.5 we 
an restri
t our attention to overlapsequal to the maximal head term of the polynomials involved now we have tointrodu
e the overlapping term as an additional variable.De�nition 4.2.50Let P = fp1; : : : ; pkg be a multiset of not ne
essarily di�erent polynomials in Fand t an element in T su
h that there are w1; : : : ; wk 2 T with HT(pi ? wi) =HT(HT(pi) ? wi) = t � HT(pi), for all 1 � i � k. Further let 
i = HC(pi ? wi) for1 � i � k.Let G be a (weak) right Gr�obner basis of f
1; : : : ; 
kg in R with respe
t to =).Additionally let � = kXi=1 
i � ��ifor � 2 G, ��i 2 R, 1 � i � k. Then we de�ne the g-polynomials (Gr�obnerpolynomials) 
orresponding to p1; : : : ; pk and t by settingg� = kXi=1 pi ? wi � ��i :Noti
e that HM(g�) = � � t.For the right moduleM = f(Æ1; : : : ; Æk) jPki=1 
i�Æi = 0g, let the set fBj j j 2 IMgbe a basis with Bj = (�j;1; : : : ; �j;k) for �j;l 2 R and 1 � l � k. Then we de�ne them-polynomials (module polynomials) 
orresponding to P and t by settinghj = kXi=1 pi ? wi � �j;i for ea
h j 2 IM :
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tion RingsNoti
e that HT(hj) � t for ea
h j 2 IM . �Given a set of polynomials F , the set of 
orresponding g- and m-polynomials 
on-tains those whi
h are spe
i�ed by De�nition 4.2.50 for ea
h term t 2 T ful�llingthe respe
tive 
onditions. For a set 
onsisting of one polynomial the 
orrespond-ing m-polynomials re
e
t the multipli
ation of the polynomial with zero-divisorsof the head monomial, i.e., by a basis of the annihilator of the head monomial.Noti
e that given a �nite set of polynomials the 
orresponding sets of g- andm-polynomials in general 
an be in�nite.As in Theorem 4.2.23 we 
an use g- and m-polynomials instead of s-polynomialsto 
hara
terize spe
ial bases in fun
tion rings. As before we also have to take intoa

ount right multiples of the generating set as Example 4.2.18 does not requirea �eld as 
oeÆ
ient domain.Theorem 4.2.51Let F be a set of polynomials in Fnfog. Then F is a weak right Gr�obner basisof idealr(F ) if and only if1. for all f in F and for all m in M(F), f ? m has a right redu
tive standardrepresentation in terms of F , and2. all g- and m-polynomials 
orresponding to F as spe
i�ed in De�nition 4.2.50have right redu
tive standard representations in terms of F .Proof :In 
ase F is a weak right Gr�obner basis it is also a right redu
tive standard basis,and sin
e the multiples f ? m and the respe
tive g- and m-polynomials are allelements of idealr(F ) they must have right redu
tive standard representations.The 
onverse will be proven by showing that every element in idealr(F ) has aright redu
tive standard representation in terms of F . Let g 2 idealr(F ) have arepresentation in terms of F of the following form: g =Pmj=1 fj?(wj ��j) su
h thatfj 2 F , wj 2 T and �j 2 R. Depending on this representation of g and the well-founded total ordering � on T we de�ne t = max�fHT(fj?(wj ��j)) j 1 � j � mgand K as the number of polynomials fj ? (wj � �j) with head term t. We showour 
laim by indu
tion on (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or(t0 = t and K 0 < K).Sin
e by our �rst assumption every multiple fj ? (wj � �j) in this sum has a rightredu
tive standard representation in terms of F , we 
an assume that HT(HT(fj)?wj) = HT(fj ? wj) � HT(fj) holds. Moreover, without loss of generality we 
anassume that the polynomial multiples with head term t are just f1 ? w1; : : : ; fK ?wK. Noti
e that these assumptions on the representation of g neither 
hange tnor K.



4.2 Right Ideals and Right Standard Representations 107Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and by ourassumptions our representation is already a right redu
tive one and we are done.Hen
e let us assume K > 1.First letPKj=1 HM(fj?(wj ��j)) = o. Then by De�nition 4.2.50 there exists a tuple(�1; : : : ; �K) 2 M , as PKj=1 HC(fj ? wj) � �j = 0. Hen
e there are Æ1; : : : ; ÆK 2 Rsu
h thatPli=1Ai � Æi = (�1; : : : ; �K) for some l 2 N, Ai = (�i;1; : : : ; �i;K) 2 fAj jj 2 IMg, and �j =Pli=1 �i;j �Æi, 1 � j � K. By our assumption there are modulepolynomials hi =PKj=1 fj ? wj ��i;j,1 � i � l, all having right redu
tive standardrepresentations in terms of F .Then sin
e KXj=1 fj ? (wj � �j) = KXj=1 fj ? wj � ( lXi=1 �i;j � Æi)= KXj=1 lXi=1 (fj ? wj � �i;j) � Æi= lXi=1 ( KXj=1 fj ? wj � �i;j) � Æi= lXi=1 hi � Æiwe 
an 
hange the representation of g to Pli=1 hi � Æi + Pmj=K+1 fj ? (wj � �j)and repla
e ea
h hi by its right redu
tive standard representation in terms of F .Remember that for all hi, 1 � i � l we have HT(hi) � t. Hen
e, for this newrepresentation we now have maximal term smaller than t and by our indu
tionhypothesis we have a right redu
tive standard representation for g in terms of Fand are done.It remains to study the 
ase where PKj=1HM(fj ? (wj � �j)) 6= 0. Then we haveHT(f1 ? (w1 ��1)+ : : :+ fK ? (wK ��K)) = t = HT(g), HC(g) = HC(f1 ? (w1 ��1)+: : :+ fK ? (wK ��K)) 2 idealr(fHC(f1 ? w1); : : : ;HC(fK ? wK)g) and HM(f1 ? (w1 ��1)+ : : :+fK ?(wK ��K)) = HM(g). Hen
e HC(g) = � �Æ with Æ 2 R and � 2 G31,G being a (weak) right Gr�obner basis of idealr(fHC(f1 ? w1); : : : ;HC(fK ? wK)g)(
ompare De�nition 4.2.50). Let g� be the respe
tive g-polynomial 
orrespondingto �. Then the polynomial g0 = g � g� � Æ lies in idealr(F ). Sin
e the multiple32g� �Æ has a right redu
tive standard representation in terms of F , sayPlj=1 fj ?mj,for the situationPKj=1 fj ? (wj ��j)� f1 ?m1 all polynomial multiples involved inthis sum have head term t and their head monomials add up to o. Therefore, this31Remember that we assume the redu
tion relation =) on R based on division, see the remarkafter De�nition 4.2.43.32Note that right redu
tive standard representations are stable under multipli
ation with
oeÆ
ients whi
h are no zero-divisors of the head 
oeÆ
ient.
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tion Ringssituation again 
orresponds to an m-polynomial of F . Hen
e we 
an apply ourresults from above and get that the polynomial g0 has a smaller representationthan g, espe
ially the maximal term t0 is smaller. Moreover, we 
an assume that g0has a right redu
tive standard representation in terms of F , say g0 =Pni=1 fi? ~mi.Then g =Pni=1 fi ? ~mi + g� � Æ =Pni=1 fi ? ~mi +Plj=1 fj ? mj is a right redu
tivestandard representation of g in terms of F and we are done. q.e.d.Sin
e in general we will have in�nitely many g- and m-polynomials related toF , it is important to look for possible lo
alizations of these situations. We arelooking for 
on
epts similar to those of weak saturation and stable lo
alizationsin the previous se
tion. Remember that Lemma 4.2.26 is 
entral there. It de-s
ribes when the existen
e of a right redu
tive standard representation for somepolynomial implies the existen
e of a right redu
tive standard representation fora multiple of the polynomial. Unfortunately we 
annot establish an analogonto this lemma for right redu
tive standard representations in F as de�ned inDe�nition 4.2.42.Example 4.2.52Let F be a fun
tion ring over the integers with T = fX1; : : : ;X7g and multi-pli
ation ? : T � T 7! F de�ned by the following equations: X1 ? X2 = X4,X4 ? X3 = X5, X2 ? X3 = X6 +X7, X1 ? X6 = 3 �X5, X1 ? X7 = �2 �X5 and elseXi ? Xj = o. Additionally let X5 > X4 > X1 � X2 � X3 � X6 � X7.Then for p = X4, f = X1 and m = X3 we �nd that1. p has a right redu
tive standard representation in terms of ffg, namelyp = f ? X2.2. HT(p ? m) = HT(HT(p) ? m) � HT(p) as X5 = X4 ? X3 > X4 and for allXi � X4 we have Xi ? X3 � X5.3. p ? m = X5 has no right redu
tive standard representation in terms of ffgas only X1 ?Xj 6= o for j = f2; 6; 7g, namely X1?X2 = X4, X1 ?X6 = 3 �X5,X1 ? X7 = �2 �X5, and X1 ? (Xj � �) 6= X5 for all j 2 f2; 6; 7g, � 2Z.Noti
e that these problems are due to the fa
t that while (X1 ? X2) ? X3 =X1 ? (X2 ? X3) = X5, X1 ? (X2 ? X3) = X1 ? (X6 + X7) = X1 ? X6 + X1 ? X7does not give us a right redu
tive standard representation in terms of X1 asHT(X1 ? X6) = X5 and HT(X1 ? X7) = X5 (
ompare De�nition 4.2.42). Thiswas the 
ru
ial point in the proof of Lemma 4.2.26 and it is only ful�lled forthe weaker form of right redu
tive standard representations in FK as de�ned inDe�nition 4.2.15. �As this example shows an analogon to Lemma 4.2.26 does not hold in our general
ase. Note that the trouble arises from the fa
t that we allow multipli
ation of
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t ourselves to multipli
ationswhere multiples of monomials are again monomials, the proof of Lemma 4.2.26
arries over and we 
an look for appropriate lo
alizations.However, the redu
tion relation de�ned in De�nition 4.2.43 is only one way ofde�ning a redu
tion relation in F and we stated that the main motivation behindit is to link the redu
tion relation with spe
ial standard representations as it isdone in the 
ase of FK. The question now arises whether this motivation is asappropriate for F as it was for FK. In FK any redu
tion relation based on stabledivisibility of terms 
an be linked to right redu
tive standard representations asde�ned in De�nition 4.2.15 and hen
e the approa
h is very powerful. It turns outthat for di�erent redu
tion relations in F based on stable right divisibility thisis no longer so. Let us look at another familiar way of generalizing a redu
tionrelation for F from one de�ned in the redu
tion ring. From now on we require a(not ne
essarily Noetherian) partial ordering on R: for �; � 2 R, � >R � if andonly if there exists a �nite set B � R su
h that � +=)B �. This ordering ensuresthat redu
tion in F is terminating when using a �nite set of polynomials.De�nition 4.2.53Let f; p be two non-zero polynomials in F . We say f right redu
es p to q ata monomial � � t in one step, denoted by p�!rf q, if there exists m 2 M(F)su
h that1. t 2 supp(p) and p(t) = �,2. HT(HT(f) ? m) = HT(f ? m) = t � HT(f),3. � =)HC(f?m) �, with � = HC(f ? m) + � for some � 2 R, and4. q = p � f ? m.We write p�!rf if there is a polynomial q as de�ned above and p is then 
alledright redu
ible by f . Further, we 
an de�ne ��!r ; +�!r and n�!r as usual. Rightredu
tion by a set F � Fnfog is denoted by p�!rF q and abbreviates p�!rf qfor some f 2 F . �Noti
e that in spe
ifying this redu
tion relation we use a spe
ial instan
e of� =)HC(f?m) �, namely the 
ase that � = HC(f ? m) + � for some � 2 R.Moreover, for this redu
tion relation we 
an still have t 2 supp(q). Hen
e otherarguments than used in the proof of Lemma 4.2.44 have to be provided to showtermination. It turns out that for in�nite subsets of polynomials F in F theredu
tion relation �!rF need not terminate.Example 4.2.54Let R = Q[fXi j i 2 Ng℄ with X1 � X2 � : : : be the polynomial ring over the
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tion Ringsrationals with in�nitely many indeterminates. We asso
iate this ring with theredu
tion relation based on divisibility of terms. Let F = R[Y ℄ be our fun
tionring. Elements of F are polynomials in Y i, i 2 N with 
oeÆ
ients in R. Thenfor p = X1 � Y and the in�nite set F = ffi = (Xi �Xi+1) � Y j i 2 Ng we get thein�nite redu
tion sequen
e p�!rf1X2 � Y �!rf2 X3 � Y �!rf3 : : : �However, if we restri
t ourselves to �nite sets of polynomials the redu
tion relationis Noetherian.Lemma 4.2.55Let F be a �nite set of polynomials in Fnfog.1. For p; q 2 F p�!rF q implies p � q, in parti
ular HT(p) � HT(q).2. �!rF is Noetherian.Proof :1. Assuming that the redu
tion step takes pla
e at a monomial � � t, by De�-nition 4.2.53 we know HM(� � t� f ? m) = � � t whi
h yields p � p � f ? msin
e � >R �.2. This follows from 1. and Axiom (A1) as long as only �nite sets of polyno-mials are involved. Sin
e we have HT(f ? m) = HT(HT(f) ? m) � HT(f)we get HC(f ? m) = HC(f) � HC(HT(f) ? m). Then � =)HC(f?m) � im-plies � =)HC(f). Hen
e an in�nite redu
tion sequen
e would give rise toan in�nite redu
tion sequen
e in R with respe
t to the �nite set of head
oeÆ
ients fHC(f) j f 2 Fg 
ontradi
ting our assumption. q.e.d.Now if we try to link the redu
tion relation in De�nition 4.2.53 to spe
ial standardrepresentations, we �nd that this is no longer as natural as in the 
ases studiedbefore, where for FK we linked the redu
tion relation from De�nition 4.2.27 tothe right redu
tive standard representations in De�nition 4.2.15 respe
tively forF the right redu
tion relation from De�nition 4.2.43 to right redu
tive standardrepresentations as de�ned in De�nition 4.2.42. Hen
e we 
laim that for gener-alizing Gr�obner bases to F , the rewriting approa
h is more suitable. Hen
e weuse the following de�nition of weak right Gr�obner bases in terms of our redu
tionrelation.De�nition 4.2.56A set F � Fnfog is 
alled a weak right Gr�obner basis (with respe
t to �!r ) ofidealr(F ) if for all g 2 idealr(F ) we have g ��!rF o. �



4.2 Right Ideals and Right Standard Representations 111Every redu
tion sequen
e g ��!rF o gives rise to a spe
ial representation of g interms of F whi
h 
ould be taken as a new de�nition of standard representations.Corollary 4.2.57Let F be a set of polynomials in F and g a non-zero polynomial in idealr(F ) su
hthat g ��!rF o. Then g has a representation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(F); n 2 Nsu
h that HT(g) = HT(HT(fi) ? mi) = HT(fi ? mi) � HT(fi) for 1 � i � k, andHT(g) � HT(fi ? mi) for all k + 1 � i � n.Proof :We show our 
laim by indu
tion on n where g n�!rF o. If n = 0 we are done.Else let g 1�!rF g1 n�!rF o. In 
ase the redu
tion step takes pla
e at the headmonomial, there exists a polynomial f 2 F and a monomialm 2 M(F) su
h thatHT(HT(f) ? m) = HT(f ? m) = HT(g) � HT(f) and HC(g) =)HC(f?m) � withHC(g) = HC(f ?m)+� for some � 2 R. Moreover the indu
tion hypothesis then isapplied to g1 = g�f ?m ��. If the redu
tion step takes pla
e at a monomial withterm smaller HT(g) for the respe
tive monomial multiple f ? m we immediatelyget HT(g) � HT(f?m) and we 
an apply our indu
tion hypothesis to the resultingpolynomial g1. In both 
ases we 
an arrange the monomial multiples f ?m arisingfrom the redu
tion steps in su
h a way that gives us th desired representation.q.e.d.Noti
e that on the other hand the existen
e of su
h a representation for a poly-nomial does not imply redu
ibility. For example take the polynomial ring Z[X℄with Pan's redu
tion. Then with respe
t to the polynomials F = f2 �X; 3 �Xgthe polynomial g = 5 �X has a representation 5 �X = 2 �X +3 �X of the desiredform but is neither redu
ible by 2 �X nor 3 �X. This is of 
ourse a 
onsequen
eof the fa
t that f2; 3g is no Gr�obner basis in Zwith respe
t to Pan's redu
tion.In fa
t Corollary 4.2.57 provides additional information for the head 
oeÆ
ientof g, namely HC(g) =Pki=1HC(fi) �HC(mi) and this is a standard representationof HC(g) in terms of fHC(fi) j 1 � i � kg in the redu
tion ring R.We 
an 
hara
terize weak right Gr�obner bases similar to Theorem 4.2.51. Of
ourse the g-polynomials in De�nition 4.2.50 depend on the redu
tion relation=) in R whi
h now is de�ned a

ording to De�nition 4.2.53. Noti
e that the
hara
terization will only hold for �nite sets as the proof requires the redu
tionrelation to be Noetherian. Additionally we need that the redu
tion ring ful�lls
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tion RingsAxiom (A4), i.e., for �; �; 
; Æ 2 R, � =)� and � =)
 Æ imply � =)
 or� =)Æ33.Theorem 4.2.58Let F be a �nite set of polynomials in Fnfog where the redu
tion ring satis�es(A4). Then F is a weak right Gr�obner basis of idealr(F ) if and only if1. for all f in F and for all m in M(F) we have f ? m ��!rF o, and2. all g- and m-polynomials 
orresponding to F as spe
i�ed in De�nition 4.2.50redu
e to o using F .Proof :In 
ase F is a weak right Gr�obner basis, sin
e the multiples f ?m and the respe
-tive g- and m-polynomials are all elements of idealr(F ) they must redu
e to zerousing F .The 
onverse will be proven by showing that every element in idealr(F ) is re-du
ible by F . Then as g 2 idealr(F ) and g�!rF g0 implies g0 2 idealr(F ) wehave g ��!rF o. Noti
e that this only holds in 
ase the redu
tion relation �!rF isNoetherian. This follows as by our assumption F is �nite (Lemma 4.2.55).Let g 2 idealr(F ) have a representation in terms of F of the following form:g = Pmj=1 fj ? (wj � �j) su
h that fj 2 F , wj 2 T , �j 2 R. Depending onthis representation of g and the well-founded total ordering � on T we de�net = max�fHT(fj ? (wj � �j)) j 1 � j � mg and K as the number of polynomialsfj ? (wj ��j) with head term t. We show our 
laim by indu
tion on (t;K), where(t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and K 0 < K).Sin
e by our �rst assumption every multiple fj ? (wj � �j) in this sum redu
es tozero using F and hen
e has a right representation as de�ned in Corollary 4.2.57,we 
an assume that HT(HT(fj) ? wj) = HT(fj ? wj) � HT(fj) holds. Moreover,without loss of generality we 
an assume that the polynomial multiples with headterm t are just f1 ? (w1 � �1); : : : ; fK ? (wK � �K). Noti
e that these assumptionsneither 
hange t nor K for our representation of g.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and evenHM(g) = HM(f1 ? (w1 � �1)), implying that g is right redu
ible at HM(g) by f1.Hen
e let us assume K > 1.First let PKj=1HM(fj ? (wj � �j)) = o. Then by De�nition 4.2.50 we know(�1; : : : ; �K) 2 M , as PKj=1 HC(fj ? wj) � �j = 0. Hen
e there are Æ1; : : : ; ÆK 2 Rsu
h thatPli=1Ai � Æi = (�1; : : : ; �K) for some l 2 N, Ai = (�i;1; : : : ; �i;K) 2 fAj jj 2 IMg, and �j =Pli=1 �i;j �Æi, 1 � j � K. By our assumption there are module33Noti
e that (A4) is no basis for lo
alizing test sets, as this would require that � =)� and� =)
 Æ imply � =)
 . Hen
e even if the redu
tion relation in F satis�es (A4), this does notsubstitute Lemma 4.2.26 or its variants.



4.2 Right Ideals and Right Standard Representations 113polynomials hi =PKj=1 fj ? wj ��i;j ,1 � i � l, all having representations in termsof F as de�ned in Corollary 4.2.57.Then sin
e KXj=1 fj ? (wj � �j) = KXj=1 fj ? wj � ( lXi=1 �i;j � Æi)= KXj=1 lXi=1 (fj ? wj � �i;j) � Æi= lXi=1 ( KXj=1 fj ? wj � �i;j) � Æi= lXi=1 hi � Æiwe 
an 
hange the representation of g to Pli=1 hi � Æi +Pmj=K+1 fj ? (wj � �j) andrepla
e ea
h hi by its respe
tive representation in terms of F . Remember that forall hi, 1 � i � l we have HT(hi) � t. Hen
e, for this new representation we nowhave maximal term smaller than t and by our indu
tion hypothesis g is redu
ibleby F and we are done.It remains to study the 
ase where PKj=1HM(fj ? (wj � �j)) 6= 0. Then we haveHT(f1 ? (w1 ��1)+ : : :+ fK ? (wK ��K)) = t = HT(g), HC(g) = HC(f1 ? (w1 ��1)+: : :+ fK ? (wK ��K)) 2 idealr(fHC(f1 ? w1); : : : ;HC(fK ? wK)g) and even HM(f1 ?(w1 ��1)+: : :+fK ?(wK ��K)) = HM(g). Hen
e HC(g) is =)-redu
ible by some �,� 2 G, a (weak) right Gr�obner basis of idealr(fHC(f1?w1); : : : ;HC(fK?wK)g) in Rwith respe
t to the redu
tion relation =). Let g� be the respe
tive g-polynomial
orresponding to � and t. Then we know that g� ��!rF o. Moreover, we know thatthe head monomial of g� is redu
ible by some polynomial f 2 F and we assumeHT(g�) = HT(HT(f) ? m) = HT(f ? m) � HT(f) and HC(g�) =)HC(f?m). Then,as HC(g) is =)-redu
ible by HC(g�), HC(g�) is =)-redu
ible and (A4) holds, thehead monomial of g is also redu
ible by some f 0 2 F and we are done. q.e.d.Of 
ourse this theorem is also true for in�nite F if we 
an show that for therespe
tive fun
tion ring the redu
tion relation is terminating.Now the question arises when the 
riti
al situations in this 
hara
terization 
anbe lo
alized to subsets of the respe
tive sets as in Theorem 4.2.41. Reviewing theProof of Theorem 4.2.41 we �nd that Lemma 4.2.26 is 
entral as it des
ribes whenmultiples of polynomials whi
h have a right redu
tive standard representation interms of some set F again have su
h a representation. As we have seen above,this will not hold for fun
tion rings over redu
tion rings in general. Now one wayto introdu
e lo
alizations would be to restri
t the attention to those F satisfying
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tion RingsLemma 4.2.26. Then appropriate adaptions of De�nition 4.2.34, 4.2.35 and 4.2.38would allow a lo
alization of the 
riti
al situations. However, we have stated thatit is not natural to link right redu
tion as de�ned in De�nition 4.2.43 to spe
ialstandard representations. Hen
e, to give lo
alizations of Theorem 4.2.58 anotherproperty for F is suÆ
ient:De�nition 4.2.59A set C � S � F is 
alled a stable lo
alization of S if for every g 2 S thereexists f 2 C su
h that g�!rf o. �In 
ase F and �!r allow su
h stable lo
alizations, we 
an rephrase Theorem4.2.58 as follows:Theorem 4.2.60Let F be a �nite set of polynomials in Fnfog where the redu
tion ring satis�es(A4). Then F is a weak right Gr�obner basis of idealr(F ) if and only if1. for all s in a stable lo
alization of ff ? m j f 2 F ;m 2 M(F)g we haves ��!rF o, and2. for all h in a stable lo
alization of the g- and m-polynomials 
orrespondingto F as spe
i�ed in De�nition 4.2.50 we have h ��!rF o.We have stated that for arbitrary redu
tion relations in F it is not natural to linkthem to spe
ial standard representations. Still, when proving Theorem 4.2.60,we will �nd that in order to 
hange the representation of an arbitrary right idealelement, De�nition 4.2.59 is not enough to ensure redu
ibility. However, we
an substitute the 
riti
al situation using an analogon of Lemma 4.2.26, whi
h,while not related to redu
ibility, in this 
ase will still be suÆ
ient to make therepresentation smaller.Lemma 4.2.61Let F be a subset of polynomials in Fnfog and f , p non-zero polynomials in F .If p�!rf o and f ��!rF o, then p has a standard representation of the formp = nXi=1 fi ? li; fi 2 F; li 2 M(F); n 2 Nsu
h that HT(p) = HT(HT(fi) ? li) = HT(fi ? li) � HT(fi) for 1 � i � k andHT(p) � HT(fi ? li) for all k + 1 � i � n (
ompare De�nition 4.2.15).Proof :If p�!rf o then p = f ? m with m 2 M(F) and HT(p) = HT(HT(f) ? m) =HT(f ? m) � HT(f). Similarly f ��!rF o implies f = Pni=1 fi ? mi; fi 2 F;mi 2



4.2 Right Ideals and Right Standard Representations 115M(F); n 2 N su
h that HT(f) = HT(HT(fi) ? mi) = HT(fi ? mi) � HT(f1),1 � i � k, and HT(f) � HT(fi ? mi) for all k + 1 � i � n (
ompare Corollary4.2.57).Let us �rst analyze fi ? mi ? m with HT(fi ? mi) = HT(f), 1 � i � k.Let T(fi ? mi) = fsi1; : : : ; sikig with si1 � sij , 2 � j � ki, i.e., si1 = HT(fi ? mi) =HT(HT(fi) ? mi) = HT(f). Hen
e HT(f) ? m = si1 ? m � HT(f) = si1 and assi1 � sij, 2 � j � ki, by De�nition 4.2.13 we 
an 
on
lude that HT(HT(f) ? m) =HT(si1 ?m) � sij ?m � HT(sij ?m) for 2 � j � ki. This implies HT(HT(fi ?mi) ?m) = HT(fi ? mi ? m). Hen
e we getHT(f ? m) = HT(HT(f) ? m)= HT(HT(fi ? mi) ? m); as HT(f) = HT(fi ? mi)= HT(fi ? mi ? m)and sin
e HT(f ?m) � HT(f) � HT(fi) we 
an 
on
lude HT(fi?mi?m) � HT(fi).It remains to show that the fi ? mi ? m have representations of the desired formin terms of F . First we show that HT(HT(fi) ? mi ? m) � HT(fi). We knowHT(fi)?mi � HT(HT(fi)?mi) = HT(fi ?mi)34 and hen
e HT(HT(fi)?mi ?m) =HT(HT(fi ? mi) ? m) = HT(fi ? mi ? m) � HT(fi). Then in 
ase mi ? m 2 M(F)we are done as then fi ? (mi ? m) is a representation of the desired form.Hen
e let us assume mi ? m = Pkir=1 ~mir, ~mir 2 M(F). Let T(fi) = fti1; : : : ; tiwigwith ti1 � til, 2 � l � wi, i.e., ti1 = HT(fi). As HT(HT(fi) ? mi) � HT(fi) � til,2 � l � wi, again by De�nition 4.2.13 we 
an 
on
lude that HT(HT(fi) ? mi) �til ? mi � HT(til ? mi), 2 � l � wi, and HT(fi) ? mi � Pwil=2 til ? mi. Thenfor ea
h sij, 2 � j � ki, there exists til 2 T(fi) su
h that s 2 supp(til ? mi).Sin
e HT(f) � sij and even HT(f) � til ? mi we �nd that either HT(f ? m) �HT((til ? mi) ? m) = HT(til ? (mi ? m)) in 
ase HT(til ? mi) = HT(fi ? mi) orHT(f?m) � (til?mi)?m = til?(mi?m). Hen
e we 
an 
on
lude fi? ~mir � HT(f?m),1 � r � ki and for at least one ~mir we get HT(fi? ~mir) = HT(fi?mi?m) � HT(fi).It remains to analyze the situation for the fun
tion (Pni=k+1 fi ? mi) ? m. Againwe �nd that for all terms s in the fi ?mi, k +1 � i � n, we have HT(f) � s andwe get HT(f ? m) � HT(s ? m). Hen
e all polynomial multiples of the fi in therepresentation Pni=k+1Pkij=1 fi ? ~mij, where mi ? m = Pkij=1 ~mij, are bounded byHT(f ? m). q.e.d.Now we are able to prove Theorem 4.2.60.Proof of Theorem 4.2.60:The proof is basi
ally the same as for Theorem 4.2.58. Due to Lemma 4.2.6134Noti
e that HT(fi) ?mi 
an be a polynomial and hen
e we 
annot 
on
lude HT(fi) ?mi =HT(HT(fi) ? mi).
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tion Ringswe 
an substitute the multiples fj ? mj by appropriate representations without
hanging (t;K). Hen
e, we only have to ensure that despite testing less polyno-mials we are able to apply our indu
tion hypothesis. Taking the notations fromthe proof of Theorem 4.2.58, let us �rst 
he
k the situation for m-polynomials.LetPKj=1 HM(fj?(wj ��j)) = o. Then by De�nition 4.2.50 we know (�1; : : : ; �K) 2M , as PKj=1 HC(fj ? wj) � �j = 0. Hen
e there are Æ1; : : : ; ÆK 2 R su
h thatPli=1Ai � Æi = (�1; : : : ; �K) for some l 2 N, Ai = (�i;1; : : : ; �i;K) 2 fAj j j 2IMg, and �j = Pli=1 �i;j � Æi, 1 � j � K. There are module polynomialshi = PKj=1 fj ? wj � �i;j,1 � i � l and by our assumption there are polynomi-als h0i in the stable lo
alization su
h that hi�!rh0i o. Moreover, h0i ��!rF o. Thenby Lemma 4.2.61 the m-polynomials hi all have representations bounded by t.Again we get KXj=1 fj ? (wj � �j) = KXj=1 fj ? wj � ( lXi=1 �i;j � Æi)= KXj=1 lXi=1 (fj ? wj � �i;j) � Æi= lXi=1 ( KXj=1 fj ? wj � �i;j) � Æi= lXi=1 hi � Æiand we 
an 
hange the representation of g to Pli=1 hi � Æi +Pmj=K+1 fj ? (wj � �j)and repla
e ea
h hi by the respe
tive spe
ial standard representation in terms ofF . Remember that for all hi, 1 � i � l we have HT(hi) � t. Hen
e, for this newrepresentation we now have maximal term smaller than t and by our indu
tionhypothesis g is redu
ible by F and we are done.It remains to study the 
ase where PKj=1HM(fj ? (wj � �j)) 6= 0. Then we haveHT(f1 ? (w1 � �1) + : : : + fK ? (wK � �K)) = t = HT(g), HC(g) = HC(f1 ? (w1 ��1) + : : : + fK ? (wK � �K)) 2 idealr(fHC(f1 ? w1); : : : ;HC(fK ? wK)g) and evenHM(f1 ? (w1 ��1) + : : :+ fK ? (wK ��K)) = HM(g). Hen
e HC(g) is =)-redu
ibleby some �, � 2 G, G being a (weak) right Gr�obner basis of idealr(fHC(f1 ?w1); : : : ;HC(fK ? wK)g) in R with respe
t to the redu
tion relation =). Letg� be the respe
tive g-polynomial 
orresponding to � and t. Then we know thatg��!rg0� o for some g0� in the stable lo
alization and g0� ��!rF o. Moreover, we knowthat the head monomial of g0� is redu
ible by some polynomial f 2 F and weassume HT(g�) = HT(HT(f) ?m) = HT(f ?m) � HT(f) and HC(g�) =)HC(f?m).Then, as HC(g) is =)-redu
ible by HC(g�), HC(g�) is =)-redu
ible by HC(g0�),HC(g0�) is =)-redu
ible to zero and (A4) holds, the head monomial of g is also
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ible by some f 0 2 F and we are done. q.e.d.Again, if for in�nite F we 
an assure that the redu
tion relation is Noetherian,the proof still holds.4.2.3 Fun
tion Rings over the IntegersIn the previous se
tion we have seen that for the redu
tion relations for F asde�ned in De�nition 4.2.43 and 4.2.53 the Translation Lemma no longer holds.This is due to the fa
t that the �rst de�nition is based on divisibility in R andhen
e too weak and the se
ond de�nition is based on the abstra
t notion of theredu
tion relation =) and hen
e there is not enough information on the redu
tionstep involving the 
oeÆ
ient.When studying spe
ial redu
tion rings where we have more information on thespe
i�
 redu
tion relation =) the situation often 
an be improved. Here we wantto go into the details for the 
ase that R is the ring of the integersZ. Rememberthat there are various ways of de�ning a redu
tion relation for the integers. InExample 3.1.1 two possibilities are presented. Here we want to use the se
ond onebased on division with remainders in order to introdu
e a redu
tion relation toFZ. We follow the ideas presented in [MR93b℄ for 
hara
terizing pre�x Gr�obnerbases in monoid rings Z[M℄ whereM is presented by a �nite 
onvergent stringrewriting system.In order to use elements of FZas rules for a redu
tion relation we need an orderingon Z. We spe
ify a total well{founded ordering on Zas follows35:� <Z � i� 8>>><>>>: � � 0 and � < 0� � 0; � > 0 and � < �� < 0; � < 0 and � > �and � �Z � i� � = � or � <Z �. Hen
e we get 0 �Z 1 �Z 2 �Z 3 �Z: : : �Z �1 �Z �2 �Z �3 �Z : : :. Then we 
an make the following importantobservation: Let 
 2 N. We 
all the positive numbers 0; : : : ; 
�1 the remaindersof 
. Then for ea
h Æ 2 Zthere are unique �; � 2Zsu
h that Æ = � � 
 + � and� is a remainder of 
. We get � < 
 and in 
ase Æ > 0 and � 6= 0 even 
 � Æ.Further 
 does not divide �1 � �2, if �1; �2 are di�erent remainders of 
.As we will later on only use polynomials with head 
oeÆ
ients in N for redu
tion,we will mainly require the part of the ordering on N whi
h then 
oin
ides with35If not stated otherwise < is the usual ordering on Z, i.e. : : : < �3 < �2 < �1 < 0 < 1 <2 < 3 : : :.
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tion Ringsthe natural ordering on this set. Then we will drop the suÆx36.This ordering <Z 
an be used to indu
e an ordering on FZas follows: for twoelements f; g in F we de�ne f � g i� HT(f) � HT(g) or ((HT(f) = HT(g) andHC(f) >Z HC(g)) or ((HM(f) = HM(g) and RED(f) � RED(g)).The redu
tion relation presented in De�nition 4.2.53 now 
an be adapted to thisspe
ial 
ase: Let =) be our redu
tion relation on Zwhere � =)
 �, if 
 > 0and for some Æ 2Zwe have � = 
 � Æ+ � with 0 � � < 
, i.e. � is the remainderof � modulo 
.De�nition 4.2.62Let p, f be two non-zero polynomials in FZ. We say f right redu
es p to q ata monomial � � t in one step, i.e. p�!rf q, if there exists s 2 T(FZ) su
h that1. t 2 supp(p) and p(t) = �,2. HT(HT(f) ? s) = HT(f ? s) = t � HT(f),3. � �ZHC(f ? m) > 0 and � =)HC(f?s) Æ where � = HC(f ? s) � � + Æ with�; Æ 2Z, 0 � Æ < HC(f ? s), and4. q = p � f ? m where m = � � s.We write p�!rf if there is a polynomial q as de�ned above and p is then 
alledright redu
ible by f . Further, we 
an de�ne ��!r ; +�!r and n�!r as usual. Rightredu
tion by a set F � Fnfog is denoted by p�!rF q and abbreviates p�!rf qfor some f 2 F . �As before, for this redu
tion relation we 
an still have t 2 supp(q). Hen
e otherarguments than those used in the proof of Lemma 4.2.44 have to be used to showtermination. The important part now is that if we still have t 2 supp(q) then its
oeÆ
ient will be smaller a

ording to our ordering <Z
hosen for Zand sin
ethis ordering is well-founded we are done. Noti
e that in 
ontrary to Lemma4.2.55 we do not have to restri
t ourselves to �nite sets of polynomials in orderto ensure termination.The additional information we have on the 
oeÆ
ients before and after the re-du
tion step now enables us to prove an analogon of the Translation Lemma forfun
tion rings over the integers. The �rst and se
ond part of the lemma are onlyneeded to prove the essential third part.Lemma 4.2.63Let F be a set of polynomials in FZand p; q; h polynomials in FZ.36In the literature other orderings on the integers are used by Bu
hberger and Stifter [Sti87℄and Kapur and Kandri-Rody [KRK88℄. They then have to 
onsider s- and t-polynomials as
riti
al situations.
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h that the redu
tion step takes pla
e at the monomial� � t and we additionally have t 62 supp(h). Then there exist p0; q0 2 FZsu
hthat p ��!rF p0 and q ��!rF q0 and h = p0 � q0.2. Let o be the unique normal form of p with respe
t to F and t = HT(p).Then there exists a polynomial f 2 F su
h that p�!rf p0 and t 62 supp(p0).3. Let o be the unique normal form of p � q with respe
t to F . Then thereexists g 2 FZsu
h that p ��!rF g and q ��!rF g.Proof :1. Let p � q�!rF h at the monomial � � t, i.e., h = p � q � f ? m for somem = � � s 2 M(FZ) su
h that HT(HT(f) ? s) = HT(f ? s) = t � HT(f)and HC(f ? s) > 0. Remember that � is the 
oeÆ
ient of t in p � q.Then as t 62 supp(h) we know � = HC(f ? m). Let �1 respe
tively �2be the 
oeÆ
ients of t in p respe
tively q and �1 = HC(f ? m) � �1 + 
1respe
tively �2 = HC(f ? m) � �2 + 
2 for some �1; �2; 
1; 
2 2 Zwhere0 � 
1; 
2 < HC(f ? s) � HC(f ? m). Then � = HC(f ? m) = �1 � �2 =HC(f ?m) � (�1��2)+ (
1� 
2), and as 
1� 
2 is no multiple of HC(f ?m)we have 
1 � 
2 = 0 and hen
e �1 � �2 = 1. We have to distinguish two
ases:(a) �1 6= 0 and �2 6= 0: Then p�!rF p�f ?m��1 = p0, q�!rF q�f ?m��2 =q0 and p0 � q0 = p � f ? m � �1 � q + f ? m � �2 = p � q � f ? m = h.(b) �1 = 0 and �2 = �1 (the 
ase �2 = 0 and �1 = 1 being symmetri
):Then p0 = p, q�!rF q � f ? m � �2 = q + f ? m � � = q0 and p0 � q0 =p � q � f ? m = h.2. Sin
e p ��!rF o, HM(p) = � � t must be F -redu
ible. Let f1; : : : ; fk 2 F be allpolynomials in F su
h that � � t is redu
ible by them. Let m1; : : :mk be therespe
tive monomials involved in possible redu
tion steps. Moreover, let
 = min1�i�kfHC(fi ?mi)g and without loss of generality HM(f ?m) = 
 � tfor some f 2 F , HT(HT(f) ? m) = HT(f ? m) � HT(f). We 
laim thatfor p�!rf1 p � f ? m = p0 we have t 62 supp(p0). Suppose HT(p0) = t. Thenby our de�nition of redu
tion we must have 0 < HC(p0) < HC(f ? m). Butthen p0 would no longer be F -redu
ible 
ontradi
ting our assumption thato is the unique normal form of p.3. Sin
e o is the unique normal form of p � q by 2. there exists a redu
tionsequen
e p � q�!rfi1 h1�!rfi2 : : : �!rfik o su
h that for the head terms weget HT(p�q) � HT(h1) � : : :. We show our 
laim by indu
tion on k, where
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tion Ringsp � q k�!rF o is su
h a redu
tion sequen
e. In the base 
ase k = 0 there isnothing to show as then p = q. Hen
e, let p � q�!rF h k�!rF o. Then by1. there are polynomials p0; q0 2 FZsu
h that p ��!rF p0 and q ��!rF q0 andh = p0 � q0. Now the indu
tion hypothesis for p0 � q0 k�!rF o yields theexisten
e of a polynomial g 2 FZsu
h that p ��!rF g and q ��!rF g. q.e.d.Hen
e weak Gr�obner bases are in fa
t Gr�obner bases and 
an be 
hara
terized asfollows:De�nition 4.2.64A set F � FZnfog is 
alled a (weak) right Gr�obner basis of idealr(F ) if for allg 2 idealr(F ) we have g ��!rF o. �Corollary 4.2.65Let F be a set of polynomials in FZand g a non-zero polynomial in idealr(F )su
h that g ��!rF o. Then g has a representation of the formg = nXi=1 fi ? mi; fi 2 F;mi 2 M(FZ); n 2 Nsu
h that HT(g) = HT(HT(fi) ? mi) = HT(fi ? mi) � HT(fi), 1 � i � k, andHT(g) � HT(fi ? mi) = HT(HT(fi) ? mi) for all k + 1 � i � n.Proof :We show our 
laim by indu
tion on n where g n�!rF o. If n = 0 we are done. Elselet g 1�!rF g1 n�!rF o. In 
ase the redu
tion step takes pla
e at the head monomial,there exists a polynomial f 2 F and a monomial m = � � s 2 M(F) su
h thatHT(HT(f) ? s) = HT(f ? s) = HT(g) � HT(f) and HC(g) =)HC(f?s) Æ withHC(g) = HC(f ? s) � � + Æ for some �; Æ 2 Z, 0 � Æ < HC(f ? s). Moreover theindu
tion hypothesis then is applied to g1 = g � f ? m. If the redu
tion steptakes pla
e at a monomial with term smaller HT(g) for the respe
tive monomialmultiple f ? m we immediately get HT(g) � HT(f ? m) and we 
an apply ourindu
tion hypothesis to the resulting polynomial g1. In both 
ases we 
an arrangethe monomial multiples f ?m arising from the redu
tion steps in su
h a way thatgives us the desired representation. q.e.d.We 
an even state that HC(g) �=)fHC(fi?mi)j1�i�kg 0. Now right Gr�obner bases
an be 
hara
terized using the 
on
ept of s-polynomials 
ombined with the te
h-nique of saturation whi
h is ne
essary in order to des
ribe the whole right ideal
ongruen
e by the redu
tion relation.



4.2 Right Ideals and Right Standard Representations 121De�nition 4.2.66Let p1; p2 be two polynomials in FZ. If there are respe
tive terms t; u1; u2 2 Tsu
h that HT(HT(pi) ? ui) = HT(pi ? ui) = t � HT(pi) let HC(pi ? ui) = 
i.Assuming 
1 � 
2 > 037, there are �; Æ 2 Zsu
h that 
1 = 
2��+Æ and 0 � Æ < 
2and we get the following s-polynomialspolr(p1; p2; t; u1; u2) = p2 ? u2 � � � p1 ? u1:The set SPOL(fp1; p2g) then is the set of all su
h s-polynomials 
orresponding top1 and p2. �These sets 
an be in�nite38.Theorem 4.2.67Let F be a set of polynomials in FZnfog. Then F is a right Gr�obner basis ofidealr(F ) if and only if1. for all f in F and for all m in M(FZ) we have f ? m ��!rF o, and2. all s-polynomials 
orresponding to F as spe
i�ed in De�nition 4.2.66 redu
eto o using F .Proof :In 
ase F is a right Gr�obner basis, sin
e the multiples f ? m and the respe
tives-polynomials are all elements of idealr(F ) they must redu
e to zero using F .The 
onverse will be proven by showing that every element in idealr(F ) is redu
ibleby F . Then as g 2 idealr(F ) and g�!rF g0 implies g0 2 idealr(F ) we have g ��!rF o.Noti
e that this is suÆ
ient as the redu
tion relation �!rF is Noetherian.Let g 2 idealr(F ) have a representation in terms of F of the following form:g = Pmj=1 fj ? wj � �j su
h that fj 2 F , wj 2 T and �j 2 Z. Depending onthis representation of g and the well-founded total ordering � on T we de�net = max�fHT(fj ? wj) j 1 � j � mg, K as the number of polynomials fj ? wjwith head term t, and M = ffHC(fi ? wi) j HT(fj ? wj) = tgg a multiset in Z.We show our 
laim by indu
tion on (t;M), where (t0;M 0) < (t;M) if and only ift0 � t or (t0 = t and M 0 �M)39.Sin
e by our �rst assumption every multiple fj ? wj in this sum redu
es to zerousing F and hen
e has a representation as spe
i�ed in Corollary 4.2.65, we 
anassume that HT(HT(fj) ? wj) = HT(fj ? wj) � HT(fj) holds. Moreover, without37Noti
e that 
i > 0 
an always be a
hieved by studying the situation for �pi in 
ase wehave HC(pi ? ui) < 0.38This is due to the fa
t that in general we 
annot always �nd �nite lo
ations for t. Onewell-studied �eld are monoid rings.39We de�ne M 0 �M if M 
an be transformed into M 0 by substituting elements in M withsets of smaller elements (with respe
t to our ordering on the integers.



122 Chapter 4 - Fun
tion Ringsloss of generality we 
an assume that the polynomial multiples with head term tare just f1 ? w1; : : : ; fK ? wK and additionally we 
an assume HC(fj ? wj) > 040.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and evenHM(g) = HM(f1 ? w1 � �1), implying that g is right redu
ible at HM(g) by f1.Hen
e let us assume K > 1.Without loss of generality we 
an assume that HC(f1 ?w1) � HC(f2 ?w2) > 0 andthere are �; � 2Zsu
h that HC(f2 ? w2) ��+� = HC(f1 ? w1) and HC(f2 ? w2) >� � 0. Sin
e t = HT(f1 ? w1) = HT(f2 ? w2) by De�nition 4.2.66 we have ans-polynomial spolr(f1; f2; t; w1; w2) = f2?w2 ���f1?w1. If spolr(f1; f2; t; w1; w2) 6=o41 then spolr(f1; f2; t; w1; w2) ��!rF o implies spolr(f1; f2; t; w1; w2) =Pki=1 Æi �hi ?vi, Æi 2 Z, hi 2 F , vi 2 T where this sum is a representation in the sense ofCorollary 4.2.65 with terms bounded by HT(spolr(f1; f2; t; w1; w2)) � t. Thisgives usg = f1 ? w1 � �1 + f2 ? w2 � �2 + mXj=3 fj ? wj � �j (4.5)= f1 ? w1 � �1 + f2 ? w2 � �1 � � � f2 ? w2 � �1 � �| {z }=o +f2 ? w2 � �2 + mXj=3 fj ? wj � �j= f2 ? w2 � (�1 � �+ �2)� (f2 ? w2 � �� f1 ? w1| {z }=spolr(f1;f2;t;w1;w2) ��1 + mXj=3 fj ? wj � �j= f2 ? w2 � (�1 � �+ �2)� ( kXi=1 Æi � hi ? vi) � �1 + mXj=3 fj ? wj � �jand depending on this new representation of g we de�ne t0 = max�fHT(fj ?wj);HT(hj ? vj) j fj; hj appearing in the new representation g, and M 0 =ffHC(fi ? wi);HC(hj ? vj) j HT(fj ? wj) = HT(hj ? vj) = t0gg and we eitherget t0 � t and have a smaller representation for g or in 
ase t0 = t we have todistinguish two 
ases1. �1 � �+ �2 = 0.ThenM 0 =M�ffHC(f1?w1);HC(f2?w2)gg[ffHC(hj ?vj) j HT(hj ?vj) =tgg. As those polynomials hj with HT(hj ? vj) = t are used to right redu
ethe monomial � � t = HM(spolr(f1; f2; t; w1; w2)) we know that for them wehave 0 < HC(hj ? vj) � � < HC(f2 ? w2) � HC(f1 ? w1). Hen
e M 0 � Mand we have a smaller representation for g.40This 
an easily be a
hieved by adding �f to F for all f 2 F and using (�fj) ? wj in 
aseHC(fj ? wj) < 0.41In 
ase spolr(f1; f2; t; w1; w2) = o the proof is similar. We just have to substitute o in theequations below whi
h immediately gives us a smaller representation of g.



4.2 Right Ideals and Right Standard Representations 1232. �1 � �+ �2 6= 0.Then M 0 = (M � ffHC(f1 ? w1)gg) [ ffHC(hj ? vj) j HT(hj ? vj) = tgg.Again M 0 �M and we have a smaller representation for g.Noti
e that the 
ase t0 = t and M 0 �M 
annot o

ur in�nitely often but has toresult in either t0 < t or will lead to t0 = t and K = 1 and hen
e to redu
ibilityby �!rF . q.e.d.Now the question arises when the 
riti
al situations in this 
hara
terization 
anbe lo
alized to subsets of the respe
tive sets as in Theorem 4.2.41. Reviewing theProof of Theorem 4.2.41 we �nd that Lemma 4.2.26 is 
entral as it des
ribes whenmultiples of polynomials whi
h have a right redu
tive standard representation interms of some set F again have su
h a representation. As we have seen before,this will not hold for fun
tion rings over redu
tion rings in general. As in Se
tion4.2.2, to give lo
alizations of Theorem 4.2.67 the 
on
ept of stable subsets issuÆ
ient:De�nition 4.2.68A set C � S � FZis 
alled a stable lo
alization of S if for every g 2 S thereexists f 2 C su
h that g�!rf o. �Stable lo
alizations for the sets of s-polynomials again arise from the appropriatesets of least 
ommon multiples as presented on page 4.2.1. In 
ase FZand �!rallow su
h stable lo
alizations, we 
an rephrase Theorem 4.2.67 as follows:Theorem 4.2.69Let F be a set of polynomials in FZnfog. Then F is a right Gr�obner basis ofidealr(F ) if and only if1. for all s in a stable lo
alization of ff ? m j f 2 FZ;m 2 M(FZ)g we haves ��!rF o, and2. for all h in a stable lo
alization of the s-polynomials 
orresponding to F asspe
i�ed in De�nition 4.2.66 we have h ��!rF o.When proving Theorem 4.2.69, we 
an substitute the 
riti
al situation using ananalogon of Lemma 4.2.26, whi
h will be suÆ
ient to make the representationused in the proof smaller. It is a dire
t 
onsequen
e of Lemma 4.2.61.Corollary 4.2.70Let F � FZnfog and f , p non-zero polynomials in FZ. If p�!rf o and f ��!rF o,then p has a representation of the formp = nXi=1 fi ? li; fi 2 F; li 2 M(FZ); n 2 N
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tion Ringssu
h that HT(p) = HT(HT(fi) ? li) = HT(fi ? li) � HT(fi) for 1 � i � k andHT(p) � HT(fi ? li) for all k + 1 � i � n (
ompare De�nition 4.2.15).Proof Theorem 4.2.69:The proof is basi
ally the same as for Theorem 4.2.67. Due to Corollary 4.2.70we 
an substitute the multiples fj ?wj by appropriate representations. Hen
e, weonly have to ensure that despite testing less polynomials we are able to apply ourindu
tion hypothesis. Taking the notations from the proof of Theorem 4.2.67, letus 
he
k the situation for K > 1.Without loss of generality we 
an assume that HC(f1 ?w1) � HC(f2 ?w2) > 0 andthere are �; � 2Zsu
h that HC(f2 ? w2) ��+� = HC(f1 ? w1) and HC(f2 ? w2) >� � 0. Sin
e t = HT(f1 ? w1) = HT(f2 ? w2) by De�nition 4.2.66 we have an s-polynomial h 2 SPOL(f1; f2) and m 2 M(FZ) su
h that h?m = ��f2?w2�f1?w1.If h 6= o42 then by Corollary 4.2.70 f2 ? w2 ��� f1 ? w1�!rh o and h ��!rF o implyf2 ? w2 � � � f1 ? w1 = Pki=1 hi ? vi � Æi, Æi 2 Z, hi 2 F , vi 2 T where thissum is a representation in the sense of Corollary 4.2.65 with terms bounded byHT(h ? m) � t. As in the proof of Theorem 4.2.67 we now 
an use this boundedrepresentation to get a smaller representation of g and are done. q.e.d.We 
lose this subse
tion by outlining how di�erent stru
tures known to allow�nite Gr�obner bases 
an be interpreted as fun
tion rings. Using the respe
tiveinterpretations the terminology 
an be adapted at on
e to the respe
tive stru
-tures and in general the resulting 
hara
terizations of Gr�obner bases 
oin
idewith the results known from literature.Polynomial RingsA 
ommutative polynomial ring Z[x1; : : : ; xn℄ is a fun
tion ring a

ording to thefollowing interpretation:� T is the set of terms fxi11 : : : xinn j i1; : : : ; in 2 Ng.� � 
an be any admissible term ordering on T . For the redu
tive ordering �we have t � s if s divides t as as term.� Multipli
ation ? is spe
i�ed by the a
tion on terms, i.e. ? : T � T �! Twhere xi11 : : : xinn ? xj11 : : : xjnn = xi1+j11 : : : xin+jnn .We do not need the 
on
ept of weak saturation.42In 
ase h = o the proof is similar. We just have to substitute o in the equations belowwhi
h immediately gives us a smaller representation of g.
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e the integers are an instan
e of eu
lidean domains, similar redu
tions tothose given by Kandri-Rodi and Kapur in [KRK88℄ arise. A stable lo
alizationof Cs(p; q) is already provided by the tuple 
orresponding to the least 
ommonmultiple of the terms HT(p) and HT(q). In 
ontrast to the s- and t-polynomialsstudied by Kandri-Rodi and Kapur, we restri
t ourselves to s-polynomials asdes
ribed in De�nition 4.2.66.Sin
e this stru
ture is Abelian, one-sided and two-sided ideals 
oin
ide. Bu
h-berger's Algorithm provides an eÆ
tive pro
edure to 
ompute �nite Gr�obnerbases.Non-
ommutative Polynomial RingsA non-
ommutative polynomial ring Z[fx1; : : : ; xng�℄ is a fun
tion ring a

ordingto the following interpretation:� T is the set of words on fx1; : : : ; xng.� � 
an be any admissible ordering on T . For the redu
tive ordering � we
an 
hose t � s if s is a subword of t.� Multipli
ation ? is spe
i�ed by the a
tion on words whi
h is just 
on
ate-nation.We do not need the 
on
ept of weak saturation. A stable lo
alization of Cs(p; q)is already provided by the tuples 
orresponding to word overlaps resulting fromthe equations u1HT(p)v1 = HT(q), u2HT(q)v2 = HT(p), u3HT(p) = HT(q)v3respe
tively u4HT(q) = HT(p)v4 with the restri
tion that ju3j < jHT(q)j andju4j < jHT(p)j, ui; vi 2 T . The 
oeÆ
ients arise as des
ribed in De�nition 4.2.66.This stru
ture is not Abelian. For the 
ase of one-sided ideals �nite Gr�obner bases
an be 
omputed. The 
ase of two-sided ideals only allows an enumerating pro
e-dure. This is not surprising as the word problem for monoids 
an be redu
ed to theproblem of 
omputing the respe
tive Gr�obner bases (see e.g. [Mor87, MR98d℄).Monoid and Group RingsA monoid or group ring Z[M℄ is a fun
tion ring a

ording to the following inter-pretation:� T is the monoid or group M. In the 
ases studied by us as well as in[Ros93, Lo96℄, it is assumed that the elements of the monoid or grouphave a 
ertain form. This presentation is essential in the approa
h. Wewill assume that the given monoid or group is presented by a 
onvergentsemi-Thue system.
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tion Rings� � will be the 
ompletion ordering indu
ed from the presentation ofM toM and hen
e to T . The redu
tive ordering � depends on the 
hoi
e of thepresentation.� Multipli
ation ? is spe
i�ed by lifting the monoid or group operation.The 
on
ept of weak saturation and the 
hoi
e of stable lo
alizations of Cs(p; q)again depend on the 
hoi
e of the presentation. More on this topi
 
an be foundin [Rei95℄.4.3 Right F-ModulesThe 
on
ept of modules arises naturally as a generalization of the 
on
ept ofan ideal in a ring: Remember that an ideal of a ring is an additive subgroupof the ring whi
h is additionally 
losed under multipli
ation with ring elements.Extending this idea to arbitrary additive groups then gives us the 
on
ept ofmodules.In this se
tion we turn our attention to right modules, but left modules 
an bede�ned similarly and all results 
arry over (with the respe
tive modi�
ations ofthe terms \right" and \left"). Let F be a fun
tion ring with unit 1.Example 4.3.1Let us provide some examples for right F -modules.1. Any right ideal in F is of 
ourse a right F -module.2. The set M = f0g with right s
alar multipli
ation 0 ? f = 0 is a rightF -module 
alled the trivial right F -module.3. Given a fun
tion ring F and a natural number k, let Fk = f(f1; : : : ; fk) jfi 2 Fg be the set of all ve
tors of length k with 
oordinates in F . Obvi-ously Fk is an additive 
ommutative group with respe
t to ordinary ve
toraddition. Moreover, Fk is a right F -module with right s
alar multipli
ation? : Fk �F �! Fk de�ned by (f1; : : : ; fk) ? f = (f1 ? f; : : : ; fk ? f). �De�nition 4.3.2A subset of a right F -module M whi
h is again a right F -module is 
alled aright submodule ofM. �For example any right ideal of F is a right submodule of the right F -module F1.Provided a set of ve
tors S �M the set fPsi=1mi?gi j s 2 N; gi 2 F ;mi 2 Sg isa right submodule ofM. This set is denoted as hSir and S is 
alled its generating



4.3 Right F-Modules 127set. If hSir = M then S is a generating set of the right module itself. If S is�nite thenM is said to be �nitely generated. A generating set is 
alled linearlyindependent or a basis if for all s 2 N, pairwise di�erent m1; : : : ;ms 2 S andg1; : : : ; gs 2 F , Psi=1mi ? gi = 0 implies g1 = : : : = gs = o. A right F -module is
alled free if it has a basis. The rightF -moduleFk is free and one su
h basis is theset of unit ve
tors e1 = (1; o; : : : ; o); e2 = (o;1; o; : : : ; o); : : : ; ek = (o; : : : ; o;1).Using this basis the elements of Fk 
an be written uniquely as f = Pki=1 ei ? fiwhere f = (f1; : : : ; fk). Moreover, Fk has spe
ial properties similar to the spe
ial
ase of K[x1; : : : ; xn℄ and we will 
ontinue to state some of them.Theorem 4.3.3Let F be right Noetherian. Then every right submodule of Fk is �nitely gener-ated.Proof :Let S be a right submodule of Fk. We show our 
laim by indu
tion on k. For k =1 we �nd that S is in fa
t a right ideal in F and hen
e by our hypothesis �nitelygenerated. For k > 1 let us look at the set I = ff1 j (f1; : : : ; fk) 2 Sg. Thenagain I is a right ideal in F and hen
e �nitely generated. Let fg1; : : : ; gs j gi 2 Fgbe a generating set of I. Choose g1; : : : ;gs 2 S su
h that the �rst 
oordinate of giis gi. Similarly, the set f(f2; : : : ; fk) j (o; f2; : : : ; fk) 2 Sg is a submodule of Fk�1and hen
e �nitely generated by some set f(ni2; : : : ; nik); 1 � i � wg. Then the setfg1; : : : ;gsg [ fni = (o; ni2; : : : ; nik) j 1 � i � wg is a generating set for S. To seethis assumem = (m1; : : : ;mk) 2 S. Then m1 =Psi=1 gi ?hi for some hi 2 F andm0 = m�Psi=1 gi ? hi 2 S with �rst 
oordinate o. Hen
e m0 = Pwi=1 ni ? li forsome li 2 F giving rise tom =m0 + sXi=1 gi ? hi = wXi=1 ni ? li + sXi=1 gi ? hi: q.e.d.Fk is 
alled right Noetherian if and only if all its right submodules are �nitelygenerated.If F is a right redu
tion ring, results on the existen
e of right Gr�obner bases forthe right submodules 
arry over from modi�
ations of the proofs in Se
tion 4.3.A natural redu
tion relation using the right redu
tion relation in F denoted by=) 
an be de�ned using the representation as (module) polynomials with respe
tto the basis of unit ve
tors as follows:De�nition 4.3.4Let f = Pki=1 ei ? fi, p = Pki=1 ei ? pi 2 Fk. We say that f redu
es p to q ates ? ps in one step, denoted by p �!f q, if



128 Chapter 4 - Fun
tion Rings1. pj = o for 1 � j < s,2. ps =)fs qs,3. q = p�Pni=1 f � di= (0; : : : ; 0; qs; ps+1 �Pni=1 fs+1 � d; : : : ; pk �Pni=1 fk � d). �Noti
e that item 2 of this de�nition is dependant on the de�nition of the redu
tionrelation =) in F . If we assume that the redu
tion relation is the one spe
i�edin De�nition 4.2.43 we get ps = qs + fs � d, d 2 M(F), but there are otherpossibilities. Reviewing the introdu
tion of right modules to redu
tion rings we
ould substitute 2. by ps = qs + fs � d, d 2 F as well (
ompare De�nition 3.4.8).To show that our redu
tion relation is terminating we have to extend the orderingfrom F to Fk. For two elements p = (p1; : : : ; pk), q = (q1; : : : ; qk) 2 Fk we de�nep � q if and only if there exists 1 � s � k su
h that pi = qi, 1 � i < s, andps � qs.Lemma 4.3.5Let F be a �nite set of module polynomials in Fk.1. For p;q 2 Fk p�!F q implies p � q.2. �!F is Noetherian in 
ase =)Fi is for 1 � i � k and Fi = ffi j f =(f1; : : : ; fk) 2 Fg.43.Proof :1. Assuming that the redu
tion step takes pla
e at es ? ps, by De�nition 4.3.4we know ps =)fs qs and ps > qs implying p � q.2. This follows from 1. and Axiom (A1). q.e.d.De�nition 4.3.6A subset B of Fk is 
alled a right Gr�obner basis of the right submoduleS = hBir, if � !B = �S and �!B is 
onvergent. �For any redu
tion relation in F ful�lling the Axioms (A1){(A3), the followingtheorem holds.43Noti
e that Fi � F .



4.3 Right F-Modules 129Theorem 4.3.7If in (F ; =) ) every �nitely generated right ideal has a �nite right Gr�obner basis,then the same holds for �nitely generated right submodules in (Fk;�!).Proof :Let S = hfs1; : : : ; sngi be a �nitely generated right submodule of Fk. We showour 
laim by indu
tion on k. For k = 1 we �nd that S is in fa
t a �nitelygenerated right ideal in F and hen
e by our hypothesis must have a �nite rightGr�obner basis. For k > 1 let us look at the set I = ff1 j (f1; : : : ; fk) 2 Sg whi
his in fa
t the right ideal generated by fsi1 j si = (si1; : : : ; sik); 1 � i � ng. Hen
eI must have a �nite right Gr�obner basis H = fg1; : : : ; gs j gi 2 Fg. Chooseg1; : : : ;gs 2 S su
h that the �rst 
oordinate of gi is gi. Similarly the set S 0 =f(f2; : : : ; fk) j (o; f2; : : : ; fk) 2 Sg is a submodule in Fk�1 whi
h by our indu
tionhypothesis then must have a �nite right Gr�obner basis f(~gi2; : : : ; ~gik); 1 � i � wg.Then the set G = fg1; : : : ;gsg [ f~gi = (o; ~gi2; : : : ; ~gik) j 1 � i � wg is a rightGr�obner basis for S. As shown in the proof of Theorem 4.3.3, G is a generatingset for S. It remains to show that G is in fa
t a right Gr�obner basis.First we have to show � !G = �S . By the de�nition of the redu
tion relation inFk we immediately �nd � !G � �S. To see the 
onverse let p = (p1; : : : ; pk) �Sq = (q1; : : : ; qk). Then p1 �hfs1i jsi=(si1;:::;sik);1�i�ngir q1 and hen
e by the de�nition ofG we get p1 � !fgi1jgi=(gi1;:::;gik);1�i�sg q1. But this gives us p � !H p+Psi=1 gi?ri =p0 = (q1; p20; : : : ; pk 0), ri 2 F , and we get (q1; p20; : : : ; pk0) �S (q1; q2; : : : ; qk) andhen
e (q1; p20; : : : ; pk0) � (q1; q2; : : : ; qk) = (o; p20 � q2; : : : ; pk 0 � qk) 2 S implying(p20� q2; : : : ; pk0� qk) 2 S 0 and (o; p20� q2; : : : ; pk0� qk) =Pwi=1 ~gi ? �i for �i 2 F .Hen
e (q1; p20; : : : ; pk0) and (q1; q2; : : : ; qk) = (q1; p20; : : : ; pk 0)�(o; p20�q2; : : : ; pk 0�qk) = (q1; p20; : : : ; pk0)�Pwi=1 ~gi ? �i must be joinable by f~gi j 1 � i � wg as therestri
tion of this set without the �rst 
oordinate is a right Gr�obner basis of S 0.Sin
e the redu
tion relation using the �nite set G is terminating we only haveto show lo
al 
on
uen
e. Let us assume there are p, q1, q2 2 Fk su
h thatp �!G q1 and p �!G q2. Then by the de�nition of G the �rst 
oordinates q11and q21 are joinable to some element say s by H = fg1; : : : ; gsg giving rise to theelements p1 = q1 +Psi=1 gi ? hi and p2 = q2 +Psi=1 gi ? ~hi with �rst 
oordinates. As before, p1 = p2 +Pwi=1 ~gi ? �i and hen
e p1 and p2 must be joinable byf~gi j 1 � i � wg. q.e.d.Now given a right submodule S ofM, we 
an de�neM=S = ff + S j f 2 Mg.Then with addition de�ned as (f + S) + (g + S) = (f + g) + S the set M=Sis an Abelian group and 
an be turned into a right F -module by the a
tion(f + S) ? g = f ? g + S. M=S is 
alled the right quotient module ofM by S.As usual this quotient 
an be related to homomorphisms. The results 
arry overfrom 
ommutative module theory as 
an be found in [AL94℄. Re
all that for



130 Chapter 4 - Fun
tion Ringstwo right F -modules M and N , a fun
tion � :M �! N is a right F -modulehomomorphism if �(f + g) = �(f) + �(g) for all f ;g 2 Mand �(f) ? g = �(f ? g) for all f 2 M; g 2 F :The homomorphism is 
alled an isomorphism if � is one to one and we then writeM�= N . Let S = ker(�) = ff 2 M j �(f) = 0g. Then S is a right submodule ofM and �(M) is a right submodule of N . Sin
e all are Abelian groups we knowM=S �= �(M) under the mappingM=S �! �(M) with f + S 7! �(f) whi
his in fa
t an isomorphism. All right submodules of the quotientM=S are of theform L=S where L is a right submodule ofM 
ontaining S.We 
an even show that every �nitely generated right F -module is of a spe
ialform.Lemma 4.3.8Every �nitely generated right F -module M is isomorphi
 to Fk=N for somek 2 N and some right submodule N of Fk.Proof :LetM be a �nitely generated right F -module with generating set f1; : : : fk 2 M.Consider the mapping � : Fk �! M de�ned by �(g1; : : : ; gk) = Pki=1 fi ? gi.Then � is an F -module homomorphism with image M. Let N be the kernelof �, then the First Isomorphism Theorem for modules yields our 
laim. Notethat � is uniquely de�ned by spe
ifying the image of ea
h unit ve
tor e1; : : : ; ek,namely by �(ei) = fi. q.e.d.Now, there are two ways to give a �nitely generated right F -moduleM � Fk.One is to be given expli
it f1; : : : ft 2 Fk su
h thatM = hff1; : : : fsgir. The otherway is to give a right submodule N = hfg1; : : :gsgir for expli
it g1; : : :gs 2 Fksu
h thatM�= Fk=N . This is 
alled a presentation ofM.Presentations are 
hosen when studying right ideals of F as right F -modules. Tosee how this is done let i be the right ideal generated by ff1; : : : ; fkg in F . Let us
onsider the right F -module homomorphism de�ned as a mapping � : Fk �! iwith �(g1; : : : ; gk) = Pki=1 fi ? gi. Then i �= Fk=ker(�) as F -modules. ker(�)is 
alled the right syzygy of ff1; : : : ; fkg denoted by Syz(f1; : : : ; fk). In fa
tSyz(f1; : : : ; fk) is the set of all solutions of the linear equation f1X1+: : :+fkXk = oin F . Syzygies play an important role in Gr�obner basis theory for ordinarypolynomial rings.



4.4 Ideals and Standard Representations 1314.4 Ideals and Standard RepresentationsA subset i � F is 
alled a (two-sided) ideal, if1. o 2 i,2. for f; g 2 i we have f � g 2 i, and3. for f 2 i, g; h 2 F we have g ? f ? h 2 i.Ideals 
an also be spe
i�ed in terms of a generating set. For F � Fnfog letideal(F ) = fPni=1 gi ? fi ? hi j fi 2 F; gi; hi 2 F ; n 2 Ng = fPmi=1mi ? fi ? li j fi 2F;mi; li 2 M(F); n 2 Ng. These generated sets are in fa
t subsets of F sin
e forf; g 2 F we have that f ? g as well as f � g are again elements of F , and it iseasily 
he
ked that they are in fa
t ideals:1. o 2 ideal(F ) sin
e o 
an be written as the empty sum.2. For two elementsPni=1 gi ? fi ? hi and Pmi=1 ~gi ? ~fi ? ~hi in ideal(F ), the sumPni=1 gi ? fi ? hi �Pmi=1 ~gi ? ~fi ? ~hi is again an element in ideal(F ).3. For an elementPni=1 gi ? fi ? hi in idealr(F ) and two polynomials g; h in F ,the produ
t g ? (Pni=1 gi ? fi ? hi) ? h = Pni=1(g ? gi) ? fi ? (hi ? h) is againan element in ideal(F ).Given an ideal i � F we 
all a set F � Fnfog a basis of i if i = ideal(F ). Thenevery element g 2 ideal(F )nfog 
an have di�erent representations of the formg = nXi=1 gi ? fi ? hi; fi 2 F; gi; hi 2 F ; n 2 N:Noti
e that the fi o

urring in this sum are not ne
essarily di�erent. The dis-tributivity law in F allows to 
onvert su
h a representation into one of the formg = mXj=1 mi ? fi ? li; fi 2 F;mi; li 2 M(F); n 2 N:Again spe
ial representations 
an be distinguished in order to 
hara
terize spe
ialideal bases. An ordering on F is used to de�ne appropriate standard representa-tions. As in the 
ase of right ideals we will �rst look at generalizations of standardrepresentations for the 
ase of fun
tion rings over �elds.



132 Chapter 4 - Fun
tion Rings4.4.1 The Spe
ial Case of Fun
tion Rings over FieldsLet FK be a fun
tion ring over a �eld K. We �rst look at an analogon to De�nition4.2.7De�nition 4.4.1Let F be a set of polynomials in FK and g a non-zero polynomial in ideal(F ). Arepresentations of the formg = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(FK); n 2 Nwhere additionally HT(g) � HT(mi ? fi ? li) holds for 1 � i � n is 
alled astandard representation of g in terms of F . If every g 2 ideal(F )nfog has su
ha representation in terms of F , then F is 
alled a standard basis of ideal(F ). �Noti
e that sin
e we assume f � � = � � f , we 
an also substitute the monomialsli by terms wi 2 T , i.e. study representations of the formg = nXi=1 mi ? fi ? wi; fi 2 F;mi 2 M(F); wi 2 T ; n 2 N:We will use this additional information in some proofs later on.As with right standard representations, in order to 
hange an arbitrary represen-tation of an ideal element into a standard representation we have to deal withspe
ial sums of polynomials. We get the following analogon to De�nition 4.2.8.De�nition 4.4.2Let F be a set of polynomials in FK and t an element in T . Then we de�ne aset C(F; t) to 
ontain all tuples of the form (t; f1; : : : ; fk;m1; : : : ;mk; l1; : : : ; lk),k 2 N, f1; : : : ; fk 2 F , m1; : : : ;mk; l1; : : : ; lk 2 M(FK) su
h that1. HT(mi ? fi ? li) = t, 1 � i � k, and2. Pki=1HM(mi ? fi ? li) = 0.We set C(F ) = St2T C(F; t). �Noti
e that this de�nition is motivated by the de�nition of syzygies of headmonomials in 
ommutative polynomial rings over rings. We 
an 
hara
terizestandard bases using this 
on
ept (
ompare Theorem 4.2.9).



4.4 Ideals and Standard Representations 133Theorem 4.4.3Let F be a set of polynomials in FKnfog. Then F is a standard basis of ideal(F )if and only if for every tuple (t; f1; : : : ; fk;m1; : : : ;mk; l1; : : : ; lk) in C(F ) the poly-nomialPki=1mi ? fi ? li (i.e. the element in FK 
orresponding to this sum) has astandard representation with respe
t to F .Proof :In 
ase F is a standard basis sin
e the polynomials related to the tuples are allelements of ideal(F ) they must have standard representations with respe
t to F .To prove the 
onverse, it remains to show that every element in ideal(F ) has astandard representation with respe
t to F . Hen
e, let g =Pmj=1mj ? fj ? lj be anarbitrary representation of a non-zero polynomial g 2 ideal(F ) su
h that fj 2 F ,mj; lj 2 M(FK), m 2 N. Depending on this representation of g and the well-founded total ordering � on T we de�ne t = max�fHT(mj ? fj ? lj) j 1 � j � mgand K as the number of polynomialsmj ?fj ?lj with head term t. Then t � HT(g)and in 
ase HT(g) = t this immediately implies that this representation is alreadya standard one. Else we pro
eed by indu
tion on t. Without loss of generality letf1; : : : ; fK be the polynomials in the 
orresponding representation su
h that t =HT(mj ? fj ? lj), 1 � j � K. Then the tuple (t; f1; : : : ; fK;m1; : : : ;mK; l1; : : : ; lK)is in C(F ) and let h =PKj=1mj?fj?lj . We will now 
hange our representation of gin su
h a way that for the new representation of g we have a smaller maximal term.Let us assume h is not o44. By our assumption, h has a standard representationwith respe
t to F , say Pni=1 ~mi ? ~fi ? ~li, where ~fi 2 F , and ~mi; ~li 2 M(FK) and allterms o

urring in the sum are bounded by t � HT(h). This gives us:g = KXj=1 mj ? fj ? lj + mXj=K+1mj ? fj ? lj= nXi=1 ~mi ? ~fi ? ~li + mXj=K+1mj ? fj ? ljwhi
h is a representation of g where the maximal term of the involved monomialmultiples is de
reased. q.e.d.Weak Gr�obner bases 
an be de�ned as in De�nition 4.2.10. Sin
e the ordering� and the multipli
ation ? in general are not 
ompatible, instead of 
onsideringmultiples of head terms of the generating set F we look at head terms of monomialmultiples of polynomials in F .44In 
ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.



134 Chapter 4 - Fun
tion RingsDe�nition 4.4.4A subset F of FKnfog is 
alled a weak Gr�obner basis of ideal(F ) ifHT(ideal(F )nfog) = HT(fm ? f ? l j f 2 F;m; l 2 M(FK)gnfog). �In the next lemma we show that in fa
t both 
hara
terizations of spe
ial bases,standard bases and weak Gr�obner bases, 
oin
ide as in the 
ase of polynomialrings over �elds (
ompare Lemma 4.2.11).Lemma 4.4.5Let F be a subset of FKnfog. Then F is a standard basis if and only if it is aweak Gr�obner basis.Proof :Let us �rst assume that F is a standard basis, i.e., every polynomial g in ideal(F )has a standard representation with respe
t to F . In 
ase g 6= o this implies theexisten
e of a polynomial f 2 F and monomialsm; l 2 M(FK) su
h that HT(g) =HT(m?f ? l). Hen
e HT(g) 2 HT(fm?f ? l j m; l 2 M(FK); f 2 Fgnfog). As the
onverse, namely HT(fm?f ? l j m; l 2 M(FK); f 2 Fgnfog) � HT(ideal(F )nfog)trivially holds, F then is a weak Gr�obner basis.Now suppose that F is a weak Gr�obner basis and again let g 2 ideal(F ). We haveto show that g has a standard representation with respe
t to F . This will be doneby indu
tion on HT(g). In 
ase g = o the empty sum is our required standardrepresentation. Hen
e let us assume g 6= o. Sin
e then HT(g) 2 HT(ideal(F )nfog)by the de�nition of weak Gr�obner bases we know there exists a polynomial f 2 Fand monomials m; l 2 M(FK) su
h that HT(g) = HT(m ? f ? l). Then thereexists a monomial ~m 2 M(FK) su
h that HM(g) = HM( ~m ? f ? l), namely45~m = (HC(g) �HC(m? f ? l)�1) �m). Let g1 = g� ~m? f ? l. Then HT(g) � HT(g1)implies the existen
e of a standard representation for g1 whi
h 
an be added tothe multiple ~m ? f ? l to give the desired standard representation of g. q.e.d.Inspe
ting this proof 
loser we get the following 
orollary (
ompare Corollary4.2.12).Corollary 4.4.6Let a subset F of FKnfog be a weak Gr�obner basis. Then every g 2 ideal(F ) hasa standard representation in terms of F of the form g = Pni=1mi ? fi ? li; fi 2F;mi; li 2 M(FK); n 2 N su
h that HM(g) = HM(m1?f1?l1) and HT(m1?f1?l1) �HT(m2 ? f2 ? l2) � : : : � HT(mn ? fn ? ln).45Noti
e that this step requires that we 
an view FKas a ve
tor spa
e. In order to get asimilar result without introdu
ing ve
tor spa
es we would have to use a di�erent de�nition ofweak Gr�obner bases. E.g. requiring that HM(ideal(F )nfog) = HM(fm ? f ? l j f 2 F;m; l 2M(FK)gnfogg) would be a possibility. However, then no lo
alization of 
riti
al situations tohead terms is possible, whi
h is the advantage of having a �eld as 
oeÆ
ient domain.
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e that we hen
e get stronger representations as spe
i�ed in De�nition 4.4.1for the 
ase that the set F is a weak Gr�obner basis or a standard basis.In order to pro
eed as before in the 
ase of one-sided ideals we have to extend ourrestri
tion of the ordering � on F to 
ope with two-sided multipli
ation similarto De�nition 4.2.13.De�nition 4.4.7We will 
all an ordering � on T a redu
tive restri
tion of the ordering � orsimply redu
tive, if the following hold:1. t � s implies t � s for t; s 2 T .2. � is a partial well-founded ordering on T whi
h is 
ompatible with multi-pli
ation ? in the following sense: if for t; t1; t2; w1; w2 2 T t2 � t1, t1 � tand t2 = HT(w1 ? t1 ? w2) hold, then t2 � HT(w1 ? t ? w2). �Again we 
an distiguish spe
ial \divisors" of monomials: For m1;m2 2 M(FK)we 
all m1 a (stable) divisor of m2 if and only if HT(m2) � HT(m1) and thereexist l1; l2 2 M(FK) su
h that m2 = HM(l1 ? m1 ? l2). We then 
all l1; l2 stablemultipliers of m1. The intention is that for all terms t with HT(m1) � t wethen 
an 
on
lude HT(m2) � HT(l1 ? t ? l2). Redu
tion relations based on thisdivisibility of terms will again have the stability properties we desire. In the
ommutative polynomial ring we 
an state a redu
tive restri
tion of any termordering by t � s for two terms t and s if and only if s divides t as a term. Inthe non-
ommutative polynomial ring we 
an state a redu
tive restri
tion of anyterm ordering by t � s for two terms t and s if and only if s is a subword of t.Let us 
ontinue with an algebrai
 
onsequen
e related to this redu
tive orderingby distinguishing spe
ial standard representations as we have done in De�nition4.2.15.De�nition 4.4.8Let F be a set of polynomials in FK and g a non-zero polynomial in ideal(F ). Arepresentation of the formg = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(FK); n 2 Nsu
h that HT(g) = HT(mi ? fi ? li) = HT(mi ?HT(fi) ? li) � HT(fi), 1 � i � k forsome k � 1, and HT(g) � HT(mi ?HT(fi)? li) for k < i � n is 
alled a redu
tivestandard representation in terms of F . �Again the empty sum is taken as redu
tive standard representation of o.In 
ase we have ? : T � T �! T the 
ondition 
an be rephrased as HT(g) =mi ? fi ? li = HT(mi ? HT(fi) ? li) � HT(fi), 1 � i � k.



136 Chapter 4 - Fun
tion RingsDe�nition 4.4.9A set F � FKnfog is 
alled a redu
tive standard basis (with respe
t to theredu
tive ordering �) of ideal(F ) if every polynomial f 2 ideal(F ) has a redu
tivestandard representation in terms of F . �Again, in order to 
hange an arbitrary representation into one ful�lling our ad-ditional 
ondition of De�nition 4.4.8 we have to deal with spe
ial sums of poly-nomials.De�nition 4.4.10Let F be a set of polynomials in FK and t an element in T .Then we de�ne the 
riti
al set Cr(t; F ) to 
ontain all tuples of theform (t; f1; : : : ; fk;m1; : : : ;mk; l1; : : : ; lk), k 2 N, f1; : : : ; fk 2 F 46,m1; : : : ;mk; l1; : : : ; lk 2 M(F) su
h that1. HT(mi ? fi ? li) = HT(mi ? HT(fi) ? li) = t, 1 � i � k,2. HT(mi ? fi ? li) � HT(fi), 1 � i � k, and3. Pki=1HM(mi ? fi ? li) = o.We set Cr(F ) = St2T Cr(t; F ). �Unfortunately, as in the 
ase of right redu
tive standard bases, these 
riti
alsituations will not be suÆ
ient to 
hara
terize redu
tive standard bases (
ompareagain Example 4.2.18). But we 
an give an analogon to Theorem 4.2.19.Theorem 4.4.11Let F be a set of polynomials in FKnfog. Then F is a redu
tive standard basisof ideal(F ) if and only if1. for every f 2 F and everym; l 2 M(FK) the multiplem?f ?l has a redu
tivestandard representation in terms of F ,2. for every tuple (t; f1; : : : ; fk;m1; : : : ;mk; l1; : : : ; lk) in Cr(F ) the polynomialPki=1mi ? fi ? li (i.e., the element in F 
orresponding to this sum) has aredu
tive standard representation with respe
t to F .Proof :In 
ase F is a redu
tive standard basis, sin
e these polynomials are all elementsof ideal(F ), they must have redu
tive standard representations with respe
t toF .46As in the 
ase of 
ommutative polynomials, f1; : : : ; fk are not ne
essarily di�erent polyno-mials from F .



4.4 Ideals and Standard Representations 137To prove the 
onverse, it remains to show that every element in ideal(F ) has aredu
tive standard representation with respe
t to F . Hen
e, let g = Pmj=1mj ?fj ? lj be an arbitrary representation of a non-zero polynomial g 2 ideal(F )su
h that fj 2 F , mj; lj 2 M(FK), m 2 N. By our �rst statement every su
hmonomial multiple mj ? fj ? lj has a redu
tive standard representation in termsof F and we 
an assume that all multiples are repla
ed by them. Depending onthis representation of g and the well-founded total ordering � on T we de�net = max�fHT(mj ? fj ? lj) j 1 � j � mg and K as the number of polynomialsmj ? fj ? lj with head term t. Then for ea
h monomial multiple mj ? fj ? lj withHT(mj ? fj ? lj) = t we know that HT(mj ? fj ? lj) = HT(mj ? HT(fj) ? lj) �HT(fj) holds. Then t � HT(g) and in 
ase HT(g) = t this immediately impliesthat this representation is already a redu
tive standard one. Else we pro
eed byindu
tion on t. Without loss of generality let f1; : : : ; fK be the polynomials in the
orresponding representation su
h that t = HT(mi ? fi ? li), 1 � i � K. Then thetuple (t; f1; : : : ; fK;m1; : : : ;mK; l1; : : : ; lK) is in Cr(F ) and let h =PKi=1mi?fi?li.We will now 
hange our representation of g in su
h a way that for the newrepresentation of g we have a smaller maximal term. Let us assume h is not o47.By our assumption, h has a redu
tive standard representation with respe
t to F ,say Pnj=1 ~mj ? hj ? ~lj, where hj 2 F , and ~mj; ~lj 2 M(FK) and all terms o

urringin the sum are bounded by t � HT(h) as PKi=1HM(mi ? fi ? li) = o. This givesus: g = KXi=1 mi ? fi ? li + mXi=K+1mi ? fi ? li= nXj=1 ~mj ? hj ? ~lj + mXi=K+1mi ? fi ? liwhi
h is a representation of g where the maximal term is smaller than t. q.e.d.An algebrai
 
hara
terization of weak Gr�obner bases again 
an be given by aproperty of head monomials based on stable divisors of terms (
ompare De�nition4.2.20).De�nition 4.4.12A set F � FKnfog is 
alled a weak redu
tive Gr�obner basis of ideal(F ) (withrespe
t to the redu
tive ordering �) if HT(ideal(F )nfog) = HT(fm ? f ? l j f 2F;m; l 2 M(FK);HT(m ? f ? l) = HT(m? HT(f) ? l) � HT(f)gnfog). �We will later on see that an analogon of the Translation Lemma holds for theredu
tion relation related to redu
tive standard representations. Hen
e weak47In 
ase h = o, just substitute the empty sum for the representation of h in the equationsbelow.



138 Chapter 4 - Fun
tion Ringsredu
tive Gr�obner bases and Gr�obner bases 
oin
ide. This is again due to thefa
t that the 
oeÆ
ient domain is a �eld and will not 
arry over for redu
tionrings as 
oeÆ
ient domains.The next lemma states that in fa
t both 
hara
terizations of spe
ial bases pro-vided so far 
oin
ide.Lemma 4.4.13Let F be a subset of FKnfog. Then F is a redu
tive standard basis if and onlyif it is a weak redu
tive Gr�obner basis.Proof :Let us �rst assume that F is a redu
tive standard basis, i.e., every polynomialg in ideal(F ) has a redu
tive standard representation with respe
t to F . In
ase g 6= o this implies the existen
e of a polynomial f 2 F and monomialsm; l 2 M(FK) su
h that HT(g) = HT(m ? f ? l) = HT(m ? HT(f) ? l) � HT(f).Hen
e HT(g) 2 HT(fm?f?l j m; l 2 M(FK); f 2 F;HT(m?f?l) = HT(m?HT(f)?l) � HT(f)gnfog). As the 
onverse, namely HT(fm ? f ? l j m; l 2 M(FK); f 2F;HT(m?f ?l) = HT(m?HT(f)?l) � HT(f)gnfog) � HT(ideal(F )nfog) triviallyholds, F is a weak redu
tive Gr�obner basis.Now suppose that F is a weak redu
tive Gr�obner basis and again let g 2 ideal(F ).We have to show that g has a redu
tive standard representation with respe
t toF . This will be done by indu
tion on HT(g). In 
ase g = o the empty sumis our required redu
tive standard representation. Hen
e let us assume g 6= o.Sin
e then HT(g) 2 HT(ideal(F )nfog) by the de�nition of weak redu
tive Gr�obnerbases we know there exists a polynomial f 2 F and monomials m; l 2 M(FK)su
h that HT(m ? f ? l) = HT(m ? HT(f) ? l) � HT(f) and there exists � 2 Ksu
h that HC(g) = HC(m ? f ? l) � �, i.e., HM(g) = HM(m ? f ? l � �). Letg1 = g �m ? f ? l � �. Then HT(g) � HT(g1) implies the existen
e of a redu
tivestandard representation for g1 whi
h 
an be added to the multiplem? f ? l �� togive the desired redu
tive standard representation of g. q.e.d.A 
lose inspe
tion of this proof reveals that in fa
t we 
an provide a stronger
ondition for standard representations in terms of weak redu
tive Gr�obner bases.Corollary 4.4.14Let a subset F of FKnfog be a weak redu
tive Gr�obner basis. Every g 2 ideal(F )has a redu
tive standard representation in terms of F of the form g =Pni=1mi ?fi?li; fi 2 F;mi; li 2 M(FK); n 2 N su
h that HT(g) = HT(m1?f1?l1) � HT(m2?f2?l2) � : : : � HT(mn?fn?ln) and HT(mi?fi?li) = HT(mi?HT(fi)?li) � HT(fi)for all 1 � i � n.



4.4 Ideals and Standard Representations 139The importan
e of Gr�obner bases in 
ommutative polynomial rings stems fromthe fa
t that they 
an be 
hara
terized by spe
ial polynomials, the so-
alled s-polynomials. This 
hara
terization 
an be 
ombined with a redu
tion relation toan algorithm whi
h 
omputes �nite Gr�obner bases.We provide a �rst 
hara
terization for our fun
tion ring over the �eld K. Here
riti
al situations lead to s-polynomials as in the original 
ase and 
an be iden-ti�ed by studying term multiples of polynomials. Let p and q be two non-zero polynomials in FK. We are interested in terms t; u1; u2; v1; v2 su
h thatHT(u1 ? p ? v1) = HT(u1 ?HT(p) ? v1) = t = HT(u2 ? q ? v2) = HT(u2 ?HT(q) ? v2)and HT(p) � t, HT(q) � t. Let Cs(p; q) (this is a spe
ialization of De�nition4.4.2) be the set 
ontaining all su
h tuples (t; u1; u2; v1; v2) (as a short hand for(t; p; q; u1; u2; v1; v2). We 
all the polynomial HC(u1?p?v1)�1 �u1?p?v1�HC(u2?q?v2)�1 �u2?q?v2 = spol(p; q; t; u1; u2; v1; v2) the s-polynomial of p and q relatedto the tuple (t; u1; u2; v1; v2).Again these 
riti
al situations are not suÆ
ient to 
hara
terize weak Gr�obnerbases (
ompare Example 4.2.18) and additionally we have to test monomial mul-tiples of polynomials now from both sides.Theorem 4.4.15Let F be a set of polynomials in FKnfog. Then F is a weak Gr�obner basis ofideal(F ) if and only if1. for all f in F and for all m; l in M(FK) the multiplem?f ? l has a redu
tivestandard representation in terms of F , and2. for all p and q in F and every tuple (t; u1; u2; v1; v2) in Cs(p; q) the respe
tives-polynomial spol(p; q; t; u1; u2; v1; v2) has a redu
tive standard representa-tion in terms of F .Proof :In 
ase F is a weak Gr�obner basis it is also a redu
tive standard basis, and sin
ethe multiples m ? f ? l as well as the respe
tive s-polynomials are all elements ofideal(F ) they must have redu
tive standard representations in terms of F .The 
onverse will be proven by showing that every element in ideal(F ) has aredu
tive standard representation in terms of F . Now, let g =Pmj=1 �j �vj ?fj ?wjbe an arbitrary representation of a non-zero polynomial g 2 ideal(F ) su
h that�j 2 K� ; fj 2 F , and vj; wj 2 T . Sin
e by our �rst assumption every multiplevj ? fj ? wj in this sum has a redu
tive standard representation we 
an assumethat HT(vj ? HT(fj) ? wj) = HT(vj ? fj ? wj) � HT(fj) holds.Depending on this representation of g and the well-founded total ordering � onT we de�ne t = max�fHT(vj ? fj ? wj) j 1 � j � mg and K as the number ofpolynomials vj?fj?wj with head term t. Without loss of generality we 
an assumethat the polynomial multipleswith head term t are just v1?f1?w1; : : : ; vK?fK?wK.
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tion RingsWe pro
eed by indu
tion on (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or(t0 = t and K 0 < K)48.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and byour assumptions our representation is already of the required form. Hen
e letus assume K > 1. Then for the two polynomials f1; f2 in the 
orrespondingrepresentation49 su
h that t = HT(v1 ?HT(f1) ? w1) = HT(v1 ? f1 ? w1) = HT(v2 ?f2 ? w2) = HT(v2 ? HT(f2) ? w2) and t � HT(f1), t � HT(f2). Then the tuple(t; v1; v2; w1; w2) is in Cs(f1; f2) and we have an s-polynomial h = HC(v1 ? f1 ?w1)�1 � v1 ? f1 ? w1 � HC(v2 ? f2 ? w2)�1 � v2 ? f2 ? w2 
orresponding to this tuple.We will now 
hange our representation of g by using the additional informationon this s-polynomial in su
h a way that for the new representation of g we eitherhave a smaller maximal term or the o

urren
es of the term t are de
reased byat least 1. Let us assume the s-polynomial is not o50. By our assumption, h hasa redu
tive standard representation in terms of F , sayPni=1 ~�i � ~vi ? ~fi ? ~wi, where~�i 2 K� ; ~fi 2 F , and ~vi; ~wi 2 T and all terms o

urring in this sum are boundedby t � HT(h). This gives us:�1 � v1 ? f1 ? w1 + �2 � v2 ? f2 ? w2= �1 � v1 ? f1 ? w1 + �02 � �1 � v1 ? f1 ? w1 � �02 � �1 � v1 ? f1 ? w1| {z }=0+�02 � �2| {z }�2 �v2 ? f2 ? w2= (�1 + �02 � �1) � v1 ? f1 ? w1 � �02 � (�1 � v1 ? f1 ? w1 � �2 � v2 ? f2 ? w2)| {z }= h= (�1 + �02 � �1) � v1 ? f1 ? w1 � �02 � ( nXi=1 ~�i � ~vi ? ~fi ? ~wi) (4.6)where �1 = HC(v1?f1?w1)�1, �2 = HC(v2?f2?w2)�1 and �02��2 = �2. Substituting(4.6) in the representation of g gives rise to a smaller one. q.e.d.Noti
e that both test sets in this 
hara
terization in general 
annot be des
ribedin a �nitary manner, i.e., provide no �nite test for the property of being a Gr�obnerbasis.A problem whi
h is related to the fa
t that the ordering � and the multipli
a-tion ? in general are not 
ompatible is that an important property ful�lled for48Note that this ordering is well-founded sin
e � is well-founded on T and K 2 N.49Not ne
essarily f2 6= f1.50In 
ase h = o, just substitute the empty sum for the redu
tive representation of h in theequations below.



4.4 Ideals and Standard Representations 141representations of polynomials in 
ommutative polynomial rings no longer holds:As in the 
ase of right ideals the existen
e of a standard representation for somepolynomial f 2 FK no longer implies the existen
e of one for a multiplem? f ? lwhere m; l 2 M(FK). However there are restri
tions where this impli
ation willhold (
ompare Lemma 4.2.26).Lemma 4.4.16Let F be a subset of FKnfog and p a non-zero polynomial in FK. If p has aredu
tive standard representation with respe
t to F and m; l are monomials su
hthat HT(m?p ? l) = HT(m?HT(p) ? l) � HT(p), then the multiplem?p ? l againhas a redu
tive standard representation with respe
t to F .Proof :Let p = Pni=1mi ? fi ? li with n 2 N, fi 2 F , mi; li 2 M(FK) be a redu
tivestandard representation of p in terms of F , i.e., HT(p) = HT(mi ? HT(fi) ? li) =HT(mi ? fi ? li) � HT(fi), 1 � i � k and HT(p) � HT(mi ? fi ? li) for allk + 1 � i � n.Let us �rst analyze the multiple m ? mj ? fj ? lj ? l.Let T(mj?fj ?lj) = fs1; : : : ; skg with s1 � si, 2 � i � l, i.e. s1 = HT(mj?fj ?lj) =HT(mj ? HT(fj) ? lj) = HT(p). Hen
e HT(m ? HT(p) ? l) = HT(m ? s1 ? l) �HT(p) = s1 and as s1 � si, 2 � i � l, by De�nition 4.4.7 we 
an 
on
ludeHT(m ? HT(p) ? l) = HT(m ? s1 ? l) � m ? si ? l � HT(m ? si ? l) for 2 � i � l.This implies HT(m? HT(mj ? fj ? lj) ? l) = HT(m?mj ? fj ? lj ? l). Hen
e we getHT(p ? m) = HT(m ? HT(p) ? l)= HT(m ? HT(mj ? fj ? lj) ? l); as HT(p) = HT(mj ? fj ? lj)= HT(m ?mj ? fj ? lj ? l)and sin
e HT(m?p?l) � HT(p) � HT(fj) we 
an 
on
lude HT(m?mj ?fj ?lj?l) �HT(fj). It remains to show that m ? mj ? fj ? lj ? l has a redu
tive standardrepresentation in terms of F . First we show that HT(m ? mj ? HT(fj) ? lj ? l) �HT(fj). We know mj ? HT(fj) ? lj � HT(mj ? HT(fj) ? lj) = HT(mj ? fj ? lj)51and hen
e HT(m ? mj ? HT(fj) ? lj ? l) = HT(m ? HT(mj ? fj ? lj) ? l) = HT(m ?mj ? fj ? lj ? l) � HT(fj). Now in 
ase m?mj; lj ? l 2 M(FK) we are done as then(mj ? m) ? fj ? (lj ? l) is a redu
tive standard representation in terms of F .Hen
e let us assume m ? mj = Pk1i=1 ~mi, lj ? l = Pk01i0=1 ~li0, ~mi; ~li0 2 M(FK). LetT(fj) = ft1; : : : ; twg with t1 � ti, 2 � i � w, i.e. t1 = HT(fj). As HT(mj ?HT(fj) ? lj) � HT(fj) � tp, 2 � p � w, again by De�nition 4.4.7 we 
an 
on
ludeHT(mj ? HT(fj) ? lj) � mj ? tp ? lj � HT(mj ? tp ? lj), and mj ? HT(fj) ? lj �Pwp=2mj ? tp ? lj. Then for ea
h si, 2 � i � l there exists tq 2 T(f1) su
h that51Noti
e that mj?HT(fj)?lj 
an be a polynomial and hen
e we 
annot 
on
lude mj ?HT(fj)?lj = HT(mj ? HT(fj) ? lj).
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tion Ringssi 2 supp(mj ?tq ? lj). Sin
e HT(p) � si and even HT(p) � mj ?tq ? lj we �nd thateither HT(m?p ? l) � HT(m? (mj ? tq ? lj) ? l) = HT((m?mj) ? tq ? (lj ? l)) in 
aseHT(mj ? tq ? lj) = HT(mj ? fj ? lj) or HT(m? p ? l) � HT(m? (mj ? tq ? lj) ? l) =HT((m ? mj) ? tq ? (lj ? l)). Hen
e we 
an 
onlude ~mi ? fj ? ~li0 � HT(m ? p ? l),1 � i � k1, 1 � i0 � k01 and for at least one su
h multiple we get HT( ~mi?f1?~li0) =HT(m? mj ? fj ? lj ? l) � HT(fj).It remains to analyze the situation for the fun
tion (Pni=k+1m ? (mi ? fi ? li) ? l.Again we �nd that for all terms s in themi?fi?li, k+1 � i � n, we have HT(p) � sand we get HT(m?p?l) � HT(m?s?l). Hen
e all polynomial multiples of the fi inthe representationPni=k+1((Pkij=1 ~mij) ? fi ? (Pk0ij=1 ~lij)), where m?mi =Pkij=1 ~mij,li ? l =Pk0ij=1 ~lij, are bounded by HT(m ? p ? l). q.e.d.Noti
e that this lemma no longer holds in 
ase we only require HT(m?HT(p)?l) =HT(m ? p ? l) � HT(p), as then HT(p) � s no longer implies HT(m ? p ? l) �HT(m? s ? l).Our standard representations from De�nition 4.4.8 are 
losely related to a re-du
tion relation based on the divisibility of terms as de�ned in the 
ontext ofredu
tive restri
tions of orderings on page 135.De�nition 4.4.17Let f; p be two non-zero polynomials in FK. We say f redu
es p to q at amonomial � � t in one step, denoted by p�!f q, if there exist m; l 2 M(FK)su
h that1. t 2 supp(p) and p(t) = �,2. HT(m? HT(f) ? l) = HT(m? f ? l) = t � HT(f),3. HM(m? f ? l) = � � t, and4. q = p �m ? f ? l.We write p�!f if there is a polynomial q as de�ned above and p is then 
alledredu
ible by f . Further, we 
an de�ne ��! ; +�! and n�! as usual. Redu
tionby a set F � FKnfog is denoted by p�!F q and abbreviates p�!f q for somef 2 F . �Due to the fa
t that the 
oeÆ
ients lie in a �eld, again if for some terms w1; w2 2T we have HT(w1 ? f ? w2) = HT(w1 ? HT(f) ? w2) = t � HT(f) this impliesredu
ibility at the monomial � � t.Lemma 4.4.18Let F be a set of polynomials in FKnfog.



4.4 Ideals and Standard Representations 1431. For p; q 2 FK we have that p�!F q implies p � q, in parti
ular HT(p) �HT(q).2. �!F is Noetherian.Proof :1. Assuming that the redu
tion step takes pla
e at a monomial � � t, by De�ni-tion 4.4.17 we know HM(m1?f ?m2) = � � t whi
h yields p � p�m1 ?f ?m2sin
e HM(m1 ? f ? m2) � RED(m1 ? f ? m2).2. This follows dire
tly from 1. as the ordering � on T is well-founded (
om-pare Lemma 4.2.3). q.e.d.The next lemma shows how redu
tion sequen
es and redu
tive standard repre-sentations are related.Lemma 4.4.19Let F be a set of polynomials in FK and p a non-zero polynomial in FK. Thenp ��!F o implies that p has a redu
tive standard representation in terms of F .Proof :This follows dire
tly by adding up the polynomials used in the redu
tion stepso

urring in the redu
tion sequen
e p ��!F o. q.e.d.If p ��!F q, then p has a redu
tive standard representation in terms of F [ fqg,espe
ially p� q has one in terms of F .As stated before an analogon to the Translation Lemma holds.Lemma 4.4.20Let F be a set of polynomials in FK and p; q; h polynomials in FK.1. Let p � q�!F h. Then there exist p0; q0 2 FK su
h that p ��!F p0 andq ��!F q0 and h = p0 � q0.2. Let o be a normal form of p�q with respe
t to F . Then there exists g 2 FKsu
h that p ��!F g and q ��!F g.
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tion RingsProof :1. Let p � q�!F h at the monomial � � t, i.e., h = p � q �m ? f ? l for somem; l 2 M(FK) su
h that HT(m ? HT(f) ? l) = HT(m ? f ? l) = t � HT(f)and HM(m ? f ? l) = � � t. We have to distinguish three 
ases:(a) t 2 supp(p) and t 2 supp(q): Then we 
an eliminate the o

uren
e of tin the respe
tive polynomials by redu
tion and get p�!f p��1 � (m?f ? l) = p0, q�!f q� �2 � (m? f ? l) = q0, where �1 �HC(m? f ? l) and�2 �HC(m?f ? l) are the 
oeÆ
ients of t in p respe
tively q. Moreover,�1 � HC(m ? f ? l)� �2 � HC(m ? f ? l) = � and hen
e �1 � �2 = 1, asHC(m? f ? l) = �. This gives us p0� q0 = p��1 � (m? f ? l)� q+ �2 �(m ? f ? l) = p� q � (�1 � �2) � (m? f ? l) = p� q �m ? f ? l = h.(b) t 2 supp(p) and t 62 supp(q): Then we 
an eliminate the term t in thepolynomial p by right redu
tion and get p�!f p�m?f ?l = p0, q = q0,and, therefore, p0 � q0 = p�m ? f ? l � q = h.(
) t 2 supp(q) and t 62 supp(p): Then we 
an eliminate the term t in thepolynomial q by right redu
tion and get q�!f q+m?f ?l = q0, p = p0,and, therefore, p0 � q0 = p� (q +m ? f ? l) = h.2. We show our 
laim by indu
tion on k, where p� q k�!F o. In the base 
asek = 0 there is nothing to show as then p = q. Hen
e, let p�q�!F h k�!F o.Then by 1. there are polynomials p0; q0 2 FK su
h that p ��!F p0 andq ��!F q0 and h = p0 � q0. Now the indu
tion hypothesis for p0 � q0 k�!F oyields the existen
e of a polynomial g 2 FK su
h that p ��!F g and q ��!F g.q.e.d.The essential part of the proof is that redu
ibility as de�ned in De�nition 4.4.17is 
onne
ted to stable divisors of terms and not to 
oeÆ
ients. We will later seethat for fun
tion rings over redu
tion rings, when the 
oeÆ
ient is also involvedin the redu
tion step, this lemma no longer holds.Next we state the de�nition of Gr�obner bases based on the redu
tion relation.De�nition 4.4.21A subset G of FK is 
alled a Gr�obner basis (with respe
t to the redu
tionrelation �! ) of the ideal i = ideal(G), if � !G = �i and �!G is 
on
uent.Remember the free group ring in Example 4.2.18 where the polynomial b+� liesin the ideal generated by the polynomial a+ �. Then of 
ourse b+ � also lies in



4.4 Ideals and Standard Representations 145the ideal generated by a + �. Unlike in the 
ase of polynomial rings over �eldswhere for any set of polynomials F we have � !bF = �ideal(F ), here we haveb + � �ideal(fa+�g) 0 but b + � 6 � !a+� 0. Hen
e the �rst 
ondition of De�nition4.4.21 is again ne

essary.Now by Lemma 4.4.20 and Theorem 3.1.5 weak Gr�obner bases are Gr�obner basesand 
an be 
hara
terized as follows:Corollary 4.4.22Let G be a set of polynomials in FKnfog. G is a (weak) Gr�obner basis of ideal(G)if and only if for every g 2 ideal(G) we have g ��!G o.Finally we 
an 
hara
terize Gr�obner bases similar to Theorem 2.3.11.Theorem 4.4.23Let F be a set of polynomials in FKnfog. Then F is a Gr�obner basis of ideal(G)if and only if1. for all f in F and for all m; l in M(FK) we have m ? f ? l ��!F o, and2. for all p and q in F and every tuple (t; u1; u2; v1; v2) in C(p; q)and the respe
tive s-polynomial spol(p; q; t; u1; u2; v1; v2) we havespol(p; q; t; u1; u2; v1; v2) ��!F o.We will later on prove a stronger version of this theorem.The importan
e of Gr�obner bases in the 
lassi
al 
ase stems from the fa
t that weonly have to 
he
k a �nite set of s-polynomials for F in order to de
ide, whether Fis a Gr�obner basis. Hen
e, we are interested in lo
alizing the test sets in Theorem4.4.23 { if possible to �nite ones.De�nition 4.4.24A set of polynomials F � FKnfog is 
alled weakly saturated, if for all mono-mials m; l in M(FK) and every polynomial f 2 F we have m ? f ? l ��!F o. �This of 
ourse implies that for a weakly saturated set F and any m; l 2 M(FK),f 2 F the multiple m ? f ? l has a redu
tive standard representation in terms ofF .Noti
e that sin
e the 
oeÆ
ient domain is a �eld we 
ould restri
t ourselves tomultiples with elements of T . However, as we will later on allow redu
tion ringsas 
oeÆ
ient domains, we present this more general de�nition.



146 Chapter 4 - Fun
tion RingsDe�nition 4.4.25Let F be a set of polynomials in FKnf0g. A set SAT(F ) � fm ? f ? l j f 2F;m; l 2 M(FK)g is 
alled a stable saturator for F if for any f 2 F , m; l 2M(FK) there exist s 2 SAT(F ), m0; l0 2 M(FK) su
h that m ? f ? l = m0 ? s ? l0,HT(m? f ? l) = HT(m0 ? HT(s) ? l0) � HT(s).Corollary 4.4.26Let SAT(F ) be a stable saturator of a set F � FK. Then for any f 2 F ,m; l 2 M(FK) there exists s 2 SAT(F ) su
h that m ? f ? l�!s o.Lemma 4.4.27Let F be a set of polynomials in FKnf0g. If for all s 2 SAT(F ) we have s ��!F o,then for every m, l in M(FK) and every polynomial f in F the multiplem? f ? lhas a redu
tive standard representation in terms of F .Proof :This follows immediately from Lemma 4.4.16 and Lemma 4.4.19. q.e.d.De�nition 4.4.28Let p and q be two non-zero polynomials in FK. Then a subset C �fspol(p; q; t; u1; u2; v1; v2) j (t; u1; u2; v1; v2) 2 Cs(p; q)g is 
alled a stable lo
aliza-tion for the 
riti
al situations if for every s-polynomial spol(p; q; t; u1; u2; v1; v2)related to a tuple (t; u1; u2; v1; v2) in Cs(p; q) there exists a polynomial h 2 C andmonomials � � w1; 1 �w2 2 M(FK) su
h that1. HT(h) � HT(spol(p; q; t; u1; u2; v1; v2)),2. HT(w1 ? h ? w2) = HT(w1 ? HT(h) ? w2) = HT(spol(p; q; t; u1; u2; v1; v2)),3. spol(p; q; t; u1; u2; v1; v2) = (� � w1) ? h ? w2. �The idea behind this de�nition is to redu
e the number of s-polynomials, whi
hhave to be 
onsidered when 
he
king for the Gr�obner basis property.Corollary 4.4.29Let C � fspol(p; q; t; u1; u2; v1; v2) j (t; u1; u2; v1; v2) 2 Cs(p; q)g bea stable lo
alization for two polynomials p; q 2 FK. Then for anys-polynomial spol(p; q; t; u1; u2; v1; v2) there exists h 2 C su
h thatspol(p; q; t; u1; u2; v1; v2)�!h o.



4.4 Ideals and Standard Representations 147Lemma 4.4.30Let F be a set of polynomials in FKnf0g. If for all h in a stable lo
alizationC � fspol(p; q; t; u1; u2; v1; v2) j (t; u1; u2; v1; v2) 2 Cs(p; q)g, we have h ��!F o,then for every (t; u1; u2; v1; v2) in Cs(p; q) the s-polynomial spol(p; q; t; u1; u2; v1; v2)has a redu
tive standard representation in terms of F .Proof :This follows immediately from Lemma 4.4.16 and Lemma 4.4.19. q.e.d.Theorem 4.4.31Let F be a set of polynomials in FKnf0g. Then F is a Gr�obner basis if and onlyif 1. for all s in SAT(F ) we have s ��!F o, and2. for all p and q in F , and every polynomial h in a stable lo
alization C �fspol(p; q; t; u1; u2; v1; v2) j (t; u1; u2; v1; v2) 2 C(p; q)g, we have h ��!F o.Proof :In 
ase F is a Gr�obner basis by Lemma 4.4.22 all elements of ideal(F ) mustredu
e to zero by F . Sin
e the polynomials in the saturator and the respe
tivelo
alizations of the s-polynomials all belong to the ideal generated by F we aredone.The 
onverse will be proven by showing that every element in ideal(F ) has aredu
tive standard representation in terms of F . Now, let g =Pnj=1(�j �wj)?fj?zjbe an arbitrary representation of a non-zero polynomial g 2 ideal(F ) su
h that�j 2 K� ; fj 2 F , and wj; zj 2 T .By the de�nition of the stable saturator for every multiple wj ? fj ? zj in thissum we have some s 2 SAT(F ), m; l 2 M(FK) su
h that wj ? fj ? zj = m ? s ? land HT(wj ? fj ? zj) = HT(m ? s ? l) = HT(m ? HT(s) ? l) � HT(s). Sin
e wehave s ��!F o, by Lemma 4.4.16 we 
an 
on
lude that ea
h wj ? fj ? zj has aredu
tive standard representation in terms of F . Therefore, we 
an assume thatHT(wj ? HT(fj) ? zj) = HT(wj ? fj ? zj) � HT(fj) holds.Depending on this representation of g and the well-founded total ordering � onT we de�ne t = max�fHT(wj ? fj ? zj) j 1 � j � ng and K as the number ofpolynomials wj ? fj ? zj with head term t.Without loss of generality we 
an assume that the polynomial multiples withhead term t are just (�1 � w1) ? f1 ? z1; : : : ; (�K � wK) ? fK ? zK. We pro
eed byindu
tion on (t;K), where (t0;K 0) < (t;K) if and only if t0 � t or (t0 = t and
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tion RingsK 0 < K)52.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and by ourassumption our representation is already of the required form.Hen
e let us assumeK > 1, then for the two not ne
essarily di�erent polynomialsf1; f2 in the 
orresponding representation we have t = HT(w1 ? HT(f1) ? z1) =HT(w1 ? f1 ? z1) = HT(w2 ? f2 ? z2) = HT(w2 ? HT(f2) ? z2) and t � HT(f1), t �HT(f2). Then the tuple (t; w1; w2; z1; z2) is in C(f1; f2) and we have a polynomialh in a stable lo
alization C � fspol(f1; f2; t; w1; w2; z1; z2) j (t; w1; w2; z1; z2) 2C(f1; f2)g and � �w; 1 �z 2 M(FK) su
h that spol(f1; f2; t; w1; w2; z1; z2) = HC(w1?f1 ? z1)�1 � w1 ? f1 ? z1 � HC(w2 ? f2 ? z2)�1 � w2 ? f2 ? z2 = (� � w) ? h ? z andHT(spol(f1; f2; t; w1; w2; z1; z2) = HT(w ? h ? z) = HT(w ? HT(h) ? z) � HT(h).We will now 
hange our representation of g by using the additional informationon this situation in su
h a way that for the new representation of g we eitherhave a smaller maximal term or the o

urren
es of the term t are de
reasedby at least 1. Let us assume the s-polynomial is not o53. By our assumption,h ��!F o and by Lemma 4.4.19 h has a redu
tive standard representation in termsof F . Then by Lemma 4.4.16 the multiple (� � w) ? h ? z again has a rightredu
tive standard representation in terms of F , say Pni=1mi ? hi ? li, wherehi 2 F , and mi; li 2 M(FK) and all terms o

urring in this sum are bounded byt � HT((� � w) ? h ? z). This gives us:(�1 � w1) ? f1 ? z1 + (�2 � w2) ? f2 ? z2= (�1 � w1) ? f1 ? z1 + (�02 � �1 � w1) ? f1 ? z1 � (�02 � �1 � w1) ? f1 ? z1| {z }=0+(�02 � �2| {z }=�2 �w2) ? f2 ? z2= ((�1 + �02 � �1) � w1) ? f1 ? z1 � �02 � ((�1 � w1) ? f1 ? z1 � (�2 �w2) ? f2 ? z2)| {z }= (��w)?h?z= ((�1 + �02 � �1) � w1) ? f1 ? z1 � �02 � ( nXi=1 mi ? hi ? li) (4.7)where �1 = HC(w1 ? f1 ? z1)�1, �2 = HC(w2 ? f2 ? z2)�1 and �02 � �2 = �2. Bysubstituting (4.7) in our representation of g the representation be
omes smaller.q.e.d.Obviously this theorem states a 
riterion for when a set is a Gr�obner basis. Asin the 
ase of 
ompletion pro
edures su
h as the Knuth-Bendix pro
edure or52Note that this ordering is well-founded sin
e � is well-founded on T and K 2 N.53In 
ase h = o, just substitute the empty sum for the right redu
tive representation of h inthe equations below.
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hberger's algorithm, elements from these test sets whi
h do not redu
e tozero 
an be added to the set being tested, to gradually des
ribe a not ne
essarily�nite Gr�obner basis. Of 
ourse in order to get a 
omputable 
ompletion pro
edure
ertain assumptions on the test sets have to be made, e.g. they should themselvesbe re
ursively enumerable, and normal forms with respe
t to �nite sets have to be
omputable. The examples from page 97 
an also be studied with respe
t to two-sided ideals. For polynomial rings, skew-polynomial rings 
ommutative monoidrings and 
ommutative respe
tively poly-
y
li
 group rings �nite Gr�obner bases
an be 
omputed in the respe
tive setting.4.4.2 Fun
tion Rings over Redu
tion RingsThe situation be
omes more 
ompli
ated if R is not a �eld.Let R be a non-
ommutative ring with a redu
tion relation =)B asso
iated withsubsets B � R as des
ribed in Se
tion 3.1.When following the path of linking spe
ial standard representations and redu
tionrelations we get the same results as in Se
tion 4.2.2, i.e., su
h representationsnaturally arise from the respe
tive redu
tion relations. Hen
e we pro
eed bystudying a spe
ial redu
tion relation whi
h subsumes the two redu
tion relationspresented for one-sided ideals in fun
tion rings over redu
tion rings. As beforefor our ordering >R on R we require: for �; � 2 R, � >R � if and only if thereexists a �nite set B � R su
h that � +=)B �. This ordering will ensure that theredu
tion relation on F is terminating. The redu
tion relation on R 
an be usedto de�ne various redu
tion relations on the fun
tion ring. Here we want to presenta redu
tion relation whi
h in some sense is based on the \divisibility" of the termto be redu
ed by the head term of the polynomial used for redu
tion.De�nition 4.4.32Let f; p be two non-zero polynomials in F . We say f redu
es p to q at amonomial � � t in one step, denoted by p�!f q, if there exist monomialsm; l 2 M(F) su
h that1. t 2 supp(p) and p(t) = �,2. HT(m ? HT(f) ? l) = HT(m ? f ? l) = t � HT(f),3. � =)HC(m?f?l) �, with54 � = Pki=1 
i � HC(m ? f ? l) � Æi + � for some�; 
i; Æi 2 R, 1 � i � k, and4. q = p �Pki=1 
i �m? f ? l � Æi.54Remember that by Axiom (A2) for redu
tion rings � =)
 � implies � � � 2 ideal(
) andhen
e � =Pki=1 
i � 
 � Æi + �, 
i; Æi 2 R.



150 Chapter 4 - Fun
tion RingsWe write p�!f if there is a polynomial q as de�ned above and p is then 
alledredu
ible by f . Further, we 
an de�ne ��! ; +�! and n�! as usual. Redu
tionby a set F � Fnfog is denoted by p�!F q and abbreviates p�!f q for somef 2 F . �By spe
ializing item 3. of this de�nition to3: � =)HC(m?f?l) su
h that � = HC(m ? f ? l)we get an analogon to De�nition 4.2.43. Similarly, spe
ializing 3. to3: � =)HC(m?f?l) � su
h that HC(m? f ? l) + �gives us an analogon to De�nition 4.2.53.Reviewing Example 4.2.54 we �nd that the redu
tion relation is not terminatingwhen using in�nite sets of polynomials for redu
tion. But for �nite sets we getthe following analogon of Lemma 4.2.55.Lemma 4.4.33Let F be a �nite set of polynomials in Fnfog.1. For p; q 2 F , p�!F q implies p � q, in parti
ular HT(p) � HT(q).2. �!F is Noetherian.Proof :1. Assuming that the redu
tion step takes pla
e at a monomial � � t, by De�-nition 4.4.32 we know HM(p�Pki=1 
i �m1 ? f ?m2 � Æi) = � � t whi
h yieldsp � p �Pki=1 
i �m1 ? f ? m2 � Æi sin
e � >R �.2. This follows from 1. and Axiom (A1) as long as only �nite sets of polyno-mials are involved. q.e.d.As for the one-sided 
ase a Translation Lemma does not hold for this redu
tionrelation. Hen
e we have to distinguish between weak Gr�obner bases and Gr�obnerbases.De�nition 4.4.34A set F � Fnfog is 
alled a weak Gr�obner basis of ideal(F ) if for all g 2 ideal(F )we have g ��!F o. �



4.4 Ideals and Standard Representations 151Now as for one-sided weak Gr�obner bases, weak Gr�obner bases allow spe
ialrepresentations of the polynomials in the ideal they generate.Corollary 4.4.35Let F be a set of polynomials in F and g a non-zero polynomial in ideal(F ) su
hthat g ��!F o. Then g has a representation of the formg = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(F); n 2 Nsu
h that HT(g) = HT(mi ?HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi) for 1 � i � k,and HT(g) � HT(mi ? fi ? li) for all k + 1 � i � n.Proof :We show our 
laim by indu
tion on n where g n�!F o. If n = 0 we are done.Else let g 1�!F g1 n�!F o. In 
ase the redu
tion step takes pla
e at the headmonomial, there exists a polynomial f 2 F and monomialm; l 2 M(F) su
h thatHT(m ? HT(f) ? l) = HT(m ? f ? l) = HT(g) � HT(f) and HC(g) =)HC(m?f?l) �with HC(g) =)HC(m?f?l) � with HC(g) = � + Pki=1 
i � HC(m ? f ? l) � Æi forsome 
i; Æi 2 R, 1 � i � k. Moreover the indu
tion hypothesis then is applied tog1 = g�Pki=1 
i �m?f ?l �Æi. If the redu
tion step takes pla
e at a monomial withterm smaller HT(g) for the respe
tive monomial multiplem?f ?l we immediatelyget HT(g) � HT(m ? f ? l) and we 
an apply our indu
tion hypothesis to theresulting polynomial g1. In both 
ases we 
an arrange the monomial multiplesm ? f ? l arising from the redu
tion steps in su
h a way that gives us th desiredrepresentation. q.e.d.As in Theorem 4.4.15 we 
an 
hara
terize weak Gr�obner bases using g- and m-polynomials instead of s-polynomials.De�nition 4.4.36Let P = fp1; : : : ; pkg be a multiset of (not ne
essarily di�erent) polynomials inF and t an element in T su
h that there are u1; : : : ; uk; v1; : : : ; vk 2 T withHT(ui ? pi ? vi) = HT(ui ? HT(pi) ? vi) = t, for all 1 � i � k. Further let
i = HC(ui ? pi ? vi) for 1 � i � k.Let G be a (weak) Gr�obner basis of f
1; : : : ; 
kg with respe
t to =) in R and� = kXi=1 niXj=1 �i;j � 
i � Æi;jfor � 2 G, �i;j; Æi;j 2 R, 1 � i � k, and 1 � j � ni. Then we de�ne theg-polynomials (Gr�obner polynomials) 
orresponding to p1; : : : ; pk and t by



152 Chapter 4 - Fun
tion Ringssetting g� = kXi=1 niXj=1 �i;j � ui ? pi ? vi � Æi;j:Noti
e that HM(g�) = � � t.We de�ne them-polynomials (module polynomials) 
orresponding to P andt as those h = kXi=1 niXj=1 �i;j � ui ? pi ? vi � Æi;jwhere Pki=1Pnij=1 �i;j � 
i � Æi;j = 0. Noti
e that HT(h) � t. �Noti
e that while we allow the multipli
ation of two terms to have in
uen
e onthe 
oeÆ
ients of the result55 we require that t � � = � � t.Given a set of polynomials F , the set of 
orresponding g- and m-polynomials isagain de�ned for all possible multisets of polynomials in F and appropriate termst as spe
i�ed by De�nition 4.4.36. Noti
e that given a �nite set of polynomialsthe 
orresponding sets of g- and m-polynomials in general will be in�nite.We 
an use g- and m-polynomials to 
hara
terize spe
ial bases in fun
tion ringsover redu
tion rings satisfying Axiom (A4) in 
ase we add an additional 
onditionas before.Theorem 4.4.37Let F be a �nite set of polynomials in Fnfog where the redu
tion ring satis�es(A4). Then F is a weak Gr�obner basis if and only if1. for all f in F and for all m; l in M(F) we have m ? f ? l ��!F o, and2. all g- and all m-polynomials 
orresponding to F as spe
i�ed in De�nition4.4.36 redu
e to zero using F .Proof :In 
ase F is a weak Gr�obner basis, sin
e the multiples m ? f ? l as well as therespe
tive g- and m-polynomials are all elements of ideal(F ) they must redu
e tozero using F .The 
onverse will be proven by showing that every element in ideal(F ) is redu
ibleby F . Then as g 2 ideal(F ) and g�!F g0 implies g0 2 ideal(F ) we have g ��!F o.Noti
e that this only holds in 
ase the redu
tion relation �!F is Noetherian.This follows as by our assumption F is �nite.Let g 2 ideal(F ) have a representation in terms of F of the following form: g =Pnj=1mj ?fj ?lj, fj 2 F and mj; lj 2 M(F). Depending on this representation of g55Skew-polynomial rings are a 
lassi
al example, see Se
tion 4.2.1.



4.4 Ideals and Standard Representations 153and the well-founded total ordering � on T we de�ne t = max�fHT(mj ?fj ? lj) j1 � j � ng and K as the number of polynomials mj ? fj ? lj with head term t.We show our 
laim by indu
tion on (t;K), where (t0;K 0) < (t;K) if and only ift0 � t or (t0 = t and K 0 < K).Sin
e by our �rst assumption every multiple mj ? fj ? lj in this sum redu
es tozero using F and hen
e has a representation as des
ribed in Corollary 4.4.35 we
an assume that HT(mj ?HT(fj)? lj) = HT(mj ?fj ? lj) � HT(fj) holds. Withoutloss of generality we 
an assume that the polynomial multiples with head term tare just m1 ? f1 ? l1; : : : ;mK ? fK ? lK.Obviously, t � HT(g) = HT(m1 ? HT(f1) ? l1) � HT(f1) must hold. If K = 1this gives us t = HT(g) and even HM(g) = HM(m1 ? f1 ? l1), implying that g isredu
ible at HM(g) by f1.Hen
e let us assume K > 1.First letPKj=1HM(mj?fj?lj) = o. Then there is a m-polynomial h, 
orrespondingto the polynomials f1; : : : ; fK and the term t su
h that PKj=1 lj ? fj ? mj = h.We will now 
hange our representation of g by using the additional informationon this m-polynomial in su
h a way that for the new representation of g we havea smaller maximal term. Let us assume the m-polynomial is not o56. By ourassumption, h is redu
ible to zero using F and hen
e has a representation withrespe
t to F as des
ribed in Corollary 4.4.35, sayPni=1 ~mi ? ~fi ? ~li, where ~fi 2 F ,~mi; ~li 2 M(F) and all terms o

urring in the sum are bounded by t � HT(h).Hen
e repla
ing the sum PKj=1mj ? fj ? lj by Pni=1 ~mi ? ~fi ? ~li gives us a smallerrepresentation of g.Hen
e let us assumePKj=1 HM(mj ? fj ? lj) 6= 0. Then we have HT(m1 ? f1 ? l1 +: : :+mK ? fK ? lK) = t = HT(g), HC(g) = HC(m1 ? f1 ? l1+ : : :+mK ? fK ? lK) 2idealr(fHC(m1 ? f1 ? l1); : : : ;HC(mK ? fK ? lK)g) and even HM(m1 ? f1 ? l1+ : : :+mK ? fK ? lK) = HM(g). Hen
e HC(g) is =)-redu
ible by �, � 2 G, G<a (weak)right Gr�obner basis of idealr(fHC(m1 ? f1 ? l1); : : : ;HC(mK ? fK ? lK)g) in R withrespe
t to the redu
tion relation =). Let g� be the respe
tive g-polynomial
orresponding to �. Then we know that g� ��!F o. Moreover, we know that thehead monomial of g� is redu
ible by some polynomial f 2 F and we assumeHT(g�) = HT(m ? HT(f) ? l) = HT(m ? f ? l) � HT(f) and HC(g�) =)HC(m?f?l).Then, as HC(g) is =)-redu
ible by HC(g�), HC(g�) is =)-redu
ible to zero and(A4) holds, the head monomial of g is also redu
ible by some f 0 2 F and we aredone. q.e.d.Of 
ourse this theorem is still true for in�nite F if we 
an show that for therespe
tive fun
tion ring the redu
tion relation is terminating.56In 
ase h = o, just substitute the empty sum for the redu
tive representation of h in theequations below.



154 Chapter 4 - Fun
tion RingsNow the question arises when the 
riti
al situations in this 
hara
terization 
anbe lo
alized to subsets of the respe
tive sets. Reviewing the Proof of Theorem4.4.31 we �nd that Lemma 4.4.16 is 
entral as it des
ribes when multiples ofpolynomials whi
h have a redu
tive standard representation in terms of some setF again have su
h a representation. As before, this does not hold for fun
tionrings over redu
tion rings in general. We have stated that it is not natural to linkright redu
tion as de�ned in De�nition 4.4.32 to spe
ial standard representations.Hen
e, to give lo
alizations of Theorem 4.4.37 another property for F is suÆ
ient:De�nition 4.4.38A set C � S � F is 
alled a stable lo
alization of S if for every g 2 S thereexists f 2 C su
h that g�!f o. �In 
ase F and �! allow su
h stable lo
alizations, we 
an rephrase Theorem4.4.37 as follows:Theorem 4.4.39Let F be a �nite set of polynomials in Fnfog where the redu
tion ring satis�es(A4). Then F is a weak Gr�obner basis of ideal(F ) if and only if1. for all s in a stable lo
alization of fm? f ? l j f 2 F ;m; l 2 M(F)g we haves ��!F o, and2. for all h in a stable lo
alization of the g- and m-polynomials 
orrespondingto F as spe
i�ed in De�nition 4.4.36 we have h ��!F o.We have stated that for arbitrary redu
tion relations in F it is not natural to linkthem to spe
ial standard representations. Still, when proving Theorem 4.4.39, wewill �nd that in order to 
hange the representation of an arbitrary ideal element,De�nition 4.4.38 is not enough to ensure redu
ibility. However, we 
an substitutethe 
riti
al situation using an analogon of Lemma 4.4.16, whi
h while not re-lated to redu
ibility in this 
ase will still be suÆ
ient to make the representationsmaller.Lemma 4.4.40Let F � Fnfog and f , p non-zero polynomials in F . If p�!f o and f ��!F o,then p has a standard representation of the formp = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(F); n 2 Nsu
h that HT(p) = HT(mi ?HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi) for 1 � i � kand HT(p) � HT(mi ? fi ? li) for all k + 1 � i � n.



4.4 Ideals and Standard Representations 155Proof :If p�!f o then p = Psj=1 
j �m0 ? f ? l0 � Æj with m0; l0 2 M(F), 
j; Æj 2 R, andHT(p) = HT(m?HT(f)? l) = HT(m?f ?l) � HT(f). Similarly f ��!F o implies57f = Pni=1mi ? fi ? li; fi 2 F;mi; li 2 M(F); n 2 N su
h that HT(f) = HT(mi ?HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi), 1 � i � k, and HT(f) � HT(mi ? fi ? li)for all k + 1 � i � n.We show our 
laim for all multiples with 
j � m0 and l0 � Æj for 1 � j � s.Let m = 
j ? m0 and l = l0 � Æj and let us analyze m ? mi ? fi ? li ? l withHT(mi ? fi ? li) = HT(f), 1 � i � k. Let T(mi ? fi ? li) = fsi1; : : : ; siwig withsi1 � sij, 2 � j � wi, i.e. si1 = HT(mi ? fi ? li) = HT(p). Hen
e m ? HT(p) ? l =m ? si1 ? l � HT(p) = si1 and as si1 � sij, 2 � j � wi, by De�nition 4.4.7 we 
an
on
lude HT(m ? HT(p) ? l) = HT(m ? si1 ? l) � m ? sij ? l � HT(m ? sij ? l) for2 � j � wi. This implies HT(m ? HT(mi ? fi ? li) ? l) = HT(m ? mi ? fi ? li ? l)Hen
e we get HT(m ? f ? l)= HT(m ? HT(f) ? l)= HT(m ? HT(mi ? fi ? li) ? l); as HT(p) = HT(mi ? fi ? li)= HT(m ?mi ? fi ? li ? l)and sin
e HT(m?f ?l) � HT(f) � HT(fi) we 
an 
on
lude HT(m?mi?fi?li?l) �HT(fi). It remains to show that m ? (mi ? fi ? li) ? l = (m ? mi) ? fi ? (li ? l) hasrepresentations of the desired form in terms of F . First we show that HT((m ?mi ?HT(fi) ? li ? l) � HT(fi). We know mi ?HT(fi) ? li � HT(mi ?HT(fi) ? li) =HT(mi?fi ?li) and hen
e HT(m?mi?HT(fi)?li?l) = HT(m?HT(mi?fi ?li)?l) =HT(m ? mi ? fi ? li ? l) � HT(fi).Now in 
ase m ?mi; li ? l 2 M(F) we are done as then (m ?mi) ? fi ? (li ? l) is arepresentation of the desired form.Hen
e let us assume m ? mi = Pkij=1 ~mij,li ? l = Pk0ij0=1 ~lij ~mij; ~lij0 2 M(F). LetT(fi) = fti1; : : : ; tiwg with ti1 � tij, 2 � j � w, i.e. ti1 = HT(fi). As HT(mi?HT(fi)?li) � HT(fi) � tj, 2 � j � w, again by De�nition 4.4.7 we 
an 
on
lude thatHT(mi?HT(fi)?li) � mi?tij ?li � HT(mi?tij ?li), 2 � j � l, and mi?HT(fi)?li �Pwj=2mi ? tij ? li. Then for ea
h sij, 2 � j � wi, there exists tij0 2 T(fi) su
h thatsij 2 supp(mi?tij0 ?li). Sin
e HT(f) � sij and even HT(f) � mi?tij0 ?li we �nd thateither HT(m?f ? l) � HT(m? (mi ? tij0 ? li)? l) = HT((m?mi)? tij0 ? (li ? l)) in 
aseHT(mi?tij0?li) = HT(mi?f1?li) or HT(m?f?l) � m?(mi?tij0?li)?l = (m?mi)?tij0?(li?l). Hen
e we 
an 
on
lude ~mij ?fi ?~lij0 � HT(m?f ?l), 1 � j � ki, 1 � j0 � Kiand for at least one ~mij, ~lij0 we get HT( ~mij?fi?~lij0) = HT(m?mi?fi?li?l) � HT(fi).It remains to analyze the situation for the fun
tions (Pni=k+1m? (mi ? fi ? li) ? l.57Noti
e that in this representation we write the produ
ts of the form 
 �m respe
tively l � Æarising in the redu
tion steps as simple monomials.
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tion RingsAgain we �nd that for all terms s in the mi ? fi ? li, k + 1 � i � n, we haveHT(f) � s and we get HT(m ? f ? l) � HT(m ? s ? l). Hen
e all polynomialmultiples of the fi in the representationPni=k+1(Pkij=1 ~mij) ? fi ? (PKij=1 ~lij0), wherem ?mi =Pkij=1 ~mij, li ? l =PKij=1 ~lij0, are bounded by HT(m? f ? l). q.e.d.Proof Theorem 4.4.39:The proof is basi
ally the same as for Theorem 4.4.37. Due to Lemma 4.4.40 we
an substitute the multiples mj ? fj ? lj by appropriate representations without
hanging (t;K). Hen
e, we only have to ensure that despite testing less polyno-mials we are able to apply our indu
tion hypothesis. Taking the notations fromthe proof of Theorem 4.4.37, let us �rst 
he
k the situation for m-polynomials.Let PKj=1 HM(mj ? fj ? lj) = o. Then by De�nition 4.4.36 there exists a modulepolynomial h = PKj=1mj ? fj ? lj and by our assumption there is a polynomialh0 in the stable lo
alization su
h that h�!h0 o. Moreover, h0 ��!F o. Then byLemma 4.4.40 the m-polynomial h has a standard representations bounded byt. Hen
e we 
an 
hange the representation of g by substituting h by its repre-sentation giving us a smaller representation and by our indu
tion hypothesis g isredu
ible by F and we are done.It remains to study the 
ase where PKj=1 HM(mj ? fj ? lj) 6= 0. Then wehave HT(PKj=1mj ? fj ? lj) = t = HT(g), HC(g) = HC(PKj=1mj ? fj ? lj) 2ideal(fHC(m1 ? f1 ? l1); : : : ;HC(mK ? fK ? lK)g) and even HM(PKj=1mj ? fj ? lj) =HM(g). Hen
e HC(g) is =)-redu
ible by �, � 2 G, G a (weak) Gr�obner basis ofideal(fHC(m1 ? f1 ? l1); : : : ;HC(mK ? fK ? lK)g) in R with respe
t to the redu
tionrelation =). Let g� be the respe
tive g-polynomial 
orresponding to �. Then weknow that g��!g0� o for some g0� in the stable lo
alization and g0� ��!F o. More-over, we know that the head monomial of g0� is redu
ible by some polynomialf 2 F and we assume HT(g�) = HT(m ? HT(f) ? l) = HT(m ? f ? l) � HT(f)and HC(g�) =)HC(m?f?l). Then, as HC(g) is =)-redu
ible by HC(g�), HC(g�)is =)-redu
ible by HC(g0�), HC(g0�) is =)-redu
ible to zero and (A4) holds, thehead monomial of g is also redu
ible by some f 0 2 F and we are done. q.e.d.Again, if for in�nite F we 
an assure that the redu
tion relation is Noetherian,the proof still holds.4.4.3 Fun
tion Rings over the IntegersIn the previous se
tion we have seen that for the redu
tion relation for F based onthe abstra
t notion of the redu
tion relation =)R there is not enough information



4.4 Ideals and Standard Representations 157on the redu
tion step involving the 
oeÆ
ient and hen
e we 
annot prove ananalogon of the Translation Lemma.As in the 
ase of studying one-sided ideals, when studying spe
ial redu
tionrings where we have more information on the spe
i�
 redu
tion relation =)Rthe situation often 
an be improved. Again we go into the details for the 
asethat R is the ring of the integersZ. The redu
tion relation presented in De�nition4.4.32 then 
an be reformulated for this spe
ial 
ase as follows:De�nition 4.4.41Let p, f be two non-zero polynomials in FZ. We say f redu
es p to q at � � t inone step, i.e. p�!f q, if there exist u; v 2 T(FZ) su
h that1. t 2 supp(p) and p(t) = �,2. HT(u ? HT(f) ? v) = HT(u ? f ? v) = t � HT(f),3. � �ZHC(u ? f ? v) > 0 and � =)HC(u?f?v) Æ where � = HC(u ? f ? v) � �+ Æwith �; Æ 2 Z, 0 � Æ < HC(u ? f ? v), and4. q = p � u ? f ? v � �.We write p�!f if there is a polynomial q as de�ned above and p is then 
alledredu
ible by f . Further, we 
an de�ne ��! ; +�! and n�! as usual. Redu
tionby a set F � Fnfog is denoted by p�!F q and abbreviates p�!f q for somef 2 F . �As before, for this redu
tion relation we 
an still have t 2 supp(q). The importantpart in showing termination now is that if we still have t 2 supp(q) then its
oeÆ
ient will be smaller a

ording to our ordering 
hosen forZ(
ompare Se
tion4.2.3) and sin
e this ordering is well-founded we are done. Due to the additionalinformation on the 
oeÆ
ents, again we do not have to restri
t ourselves to �nitesets of polynomials in order to ensure termination.Corollary 4.4.42Let F be a set of polynomials in FZnfog.1. For p; q 2 FZ, p�!F q implies p � q, in parti
ular HT(p) � HT(q).2. �!F is Noetherian.Similarly, the additional information we have on the 
oeÆ
ients before and afterthe redu
tion step now enables us to prove an analogon of the Translation Lemmafor fun
tion rings over the integers. The �rst and se
ond part of the lemma areonly needed to prove the essential third part.
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tion RingsLemma 4.4.43Let F be a set of polynomials in FZand p; q; h polynomials in FZ.1. Let p � q�!F h su
h that the redu
tion step takes pla
e at the monomial� � t and we additionally have t 62 supp(h). Then there exist p0; q0 2 FZsu
hthat p ��!F p0 and q ��!F q0 and h = p0 � q0.2. Let o be the unique normal form of p with respe
t to F and t = HT(p).Then there exists a polynomial f 2 F su
h that p�!f p0 and t 62 supp(p0).3. Let o be the unique normal form of p � q with respe
t to F . Then thereexists g 2 FZsu
h that p ��!F g and q ��!F g.Proof :1. Let p� q�!F h at the monomial � � t, i.e., h = p� q�u ? f ? v �� for someu; v 2 T(FZ); � 2Zsu
h that HT(u?HT(f)?v) = HT(u?f ?v) = t � HT(f)and HC(u ? f ? v) > 0. Remember that � is the 
oeÆ
ient of t in p � q.Then as t 62 supp(h) we know � = HC(u ? f ? v) � �. Let �1 respe
tively �2be the 
oeÆ
ients of t in p respe
tively q and �1 = (HC(u?f ?v) ��) ��1+
1respe
tively �2 = (HC(u?f ?v) ��) ��2+
2 for some �1; �2; 
1; 
2 2Zwhere0 � 
1; 
2 < HC(u ? f ? v) � �. Then � = HC(u ? f ? v) � � = �1 � �2 =(HC(u ? f ? v) � �) � (�1 � �2) + (
1 � 
2), and as 
1 � 
2 is no multiple ofHC(u ? f ? v) � � we have 
1 � 
2 = 0 and hen
e �1 � �2 = 1. We have todistinguish two 
ases:(a) �1 6= 0 and �2 6= 0: Then p�!F p�u ? f ? v �� ��1 = p0, q�!F q�u ?f ? v �� ��2 = q0 and p0� q0 = p�u ? f ? v �� ��1� q+u ? f ? v �� ��2 =p � q � u ? f ? v � � � � = h.(b) �1 = 0 and �2 = �1 (the 
ase �2 = 0 and �1 = 1 being symmetri
):Then p0 = p, q�!F q � u ? f ? v � � � �2 = q + u ? f ? v � � = q0 andp0 � q0 = p � q � u ? f ? v � � = h.2. Sin
e p ��!F o, HM(p) = � � t must be F -redu
ible. Let fi 2 F , i 2 Ibe a series of all not ne
essarily di�erent polynomials in F su
h that � � tis redu
ible by them involving terms ui; vi. Then HC(ui ? fi ? vi) > 0.Moreover, let 
 = min�fHC(ui?fi?vi) j i 2 Ig and without loss of generalityHM(u?f?v) = 
�t for some f 2 F , HT(u?HT(f)?v) = HT(u?f?v) � HT(f).We 
laim that for p�!f p� � � u ? f ? v = p0 where � = � � 
 + Æ, �; Æ 2Z,0 � Æ < 
, we have t 62 supp(p0). Suppose HT(p0) = t. Then by ourde�nition of redu
tion we must have 0 < HC(p0) < HC(u ? f ? v). But thenp0 would no longer be F -redu
ible 
ontradi
ting our assumption that o isthe unique normal form of p.
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e o is the unique normal form of p � q by 2. there exists a redu
tionsequen
e p � q�!fi1 h1�!fi2 h2�!fi3 : : : �!fik o su
h that HT(p � q) �HT(h1) � HT(h2) � : : :. We show our 
laim by indu
tion on k, wherep � q k�!F o is su
h a redu
tion sequen
e. In the base 
ase k = 0 thereis nothing to show as then p = q. Hen
e, let p � q�!F h k�!F o. Thenby 1. there are polynomials p0; q0 2 FZsu
h that p ��!F p0 and q ��!F q0and h = p0 � q0. Now the indu
tion hypothesis for p0 � q0 k�!F o yields theexisten
e of a polynomial g 2 FZsu
h that p ��!F g and q ��!F g. q.e.d.Hen
e weak Gr�obner bases are in fa
t Gr�obner bases and 
an hen
e be 
hara
-terized as follows (
ompare De�nition 4.2.10):De�nition 4.4.44A set F � FZnfog is 
alled a (weak) Gr�obner basis of ideal(F ) if for all g 2ideal(F ) we have g ��!F o. �Corollary 4.4.45Let F be a set of polynomials in FZand g a non-zero polynomial in ideal(F ) su
hthat g ��!F o. Then g has a representation of the formg = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(FZ); n 2 Nsu
h that HT(g) = HT(mi ? HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi), 1 � i � k,and HT(g) � HT(mi ? fi ? li) = HT(mi ? HT(fi) ? li) for all k + 1 � i � n.In 
ase o is the unique normal form of g with respe
t to F we even 
an �nd arepresentation where additionally HT(m1 ? f1 ? l1) � HT(m2 ? f2 ? l2) � : : : �HT(mn ? fn ? ln).Proof :We show our 
laim by indu
tion on n where g n�!F o. If n = 0 we are done.Else let g 1�!F g1 n�!F o. In 
ase the redu
tion step takes pla
e at the headmonomial, there exists a polynomial f 2 F and u; v 2 T(FZ); � 2 Zsu
h thatHT(u ? HT(f) ? v) = HT(u ? f ? v) = HT(g) � HT(f) and HC(g) =)HC(u?f?v) Æwith HC(g) = HC(u ? f ? v) � � + Æ for some �; Æ 2 Z, 0 � Æ < HC(u ? f ? v).Moreover the indu
tion hypothesis then is applied to g1 = g � u ? f ? v � �. Ifthe redu
tion step takes pla
e at a monomial with term smaller HT(g) for therespe
tive monomial multiple u?f ?v �� we immediately get HT(g) � u?f ?v ��and we 
an apply our indu
tion hypothesis to the resulting polynomial g1. In
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tion Ringsboth 
ases we 
an arrange the monomial multiples u ? f ? v � � arising from theredu
tion steps in su
h a way that gives us the desired representation. q.e.d.Now Gr�obner bases 
an be 
hara
terized using the 
on
ept of s-polynomials 
om-bined with the te
hnique of saturation whi
h is ne

essary in order to des
ribethe whole ideal 
ongruen
e by the redu
tion relation.De�nition 4.4.46Let p1; p2 be polynomials in FZ. If there are respe
tive terms t; u1; u2; v1; v2 2 Tsu
h that HT(ui?HT(pi)?vi) = HT(ui?pi?vi) = t � HT(pi) letHC(ui?pi?vi) = 
i.Assuming 
1 � 
2 > 058, there are �; Æ 2Zsu
h that 
1 = 
2 ��+Æ and 0 � Æ < 
2and we get the following s-polynomialspol(p1; p2; t; u1; u2; v1; v2) = u2 ? p2 ? v2 � � � u1 ? p1 ? v1:The set SPOL(fp1; p2g) then is the set of all su
h s-polynomials 
orresponding top1 and p2. �Again these sets in general are not �nite.Theorem 4.4.47Let F be a set of polynomials in FZnfog. Then F is a Gr�obner basis if and onlyif 1. for all f in F and for all m; l in M(FZ) we have m? f ? l ��!F o, and2. all s-polynomials 
orresponding to F as spe
i�ed in De�nition 4.4.46 redu
eto o using F .Proof :In 
ase F is a Gr�obner basis, sin
e these polynomials are all elements of ideal(F )they must redu
e to zero using F .The 
onverse will be proven by showing that every element in ideal(F ) is redu
ibleby F . Then as g 2 ideal(F ) and g�!F g0 implies g0 2 ideal(F ) we have g ��!F o.Noti
e that this is suÆ
ient as the redu
tion relation �!F is Noetherian.Let g 2 ideal(F ) have a representation in terms of F of the following form:g = Pnj=1 vj ? fj ? wj � �j su
h that fj 2 F , vj; wj 2 T and �j 2 Z. Dependingon this representation of g and the well-founded total ordering � on T we de�net = max�fHT(vj ? fj ? wj) j 1 � j � mg, K as the number of polynomials fj ? wjwith head term t, and M = ffHC(vj ? fj ? wj) j HT(vj ? fj ? wj) = tgg a multiset58Noti
e that 
i > 0 
an always be a
hieved by studying the situation for �pi in 
ase wehave HC(ui ? pi ? vi) < 0.
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laim by indu
tion on (t;M), where (t0;M 0) < (t;M) if andonly if t0 � t or (t0 = t and M 0 �M).Sin
e by our �rst assumption every multiple vj ?fj ?wj in this sum redu
es to zerousing F and hen
e has a representation as spe
i�ed in Corollary 4.4.45, we 
anassume that HT(vj ? HT(fj) ? wj) = HT(vj ? fj ? wj) � HT(fj) holds. Moreover,without loss of generality we 
an assume that the polynomial multiples withhead term t are just v1 ?f1 ?w1; : : : ; vK ?fK ?wK and additionally we 
an assumeHC(vj ? fj ? wj) > 059.Obviously, t � HT(g) must hold. If K = 1 this gives us t = HT(g) and evenHM(g) = HM(v1 ? f1 ? w1 ��1), implying that g is right redu
ible at HM(g) by f1.Hen
e let us assume K > 1.Without loss of generality we 
an assume that HC(v1?f1?w1) � HC(v2?f2?w2) > 0and there are �; � 2Zsu
h that HC(v2?f2?w2)��+� = HC(v1?f1?w1) and HC(v2?f2?w2) > � � 0. Sin
e t = HT(v1?f1?w1) = HT(v2?f2?w2) by De�nition 4.4.46we have an s-polynomial spol(f1; f2; t; v1; v2; w1; w2) = v2 ?f2 ?w2 ���v1 ?f1 ?w1.If spol(f1; f2; t; v1; v2; w1; w2) 6= o60 then spol(f1; f2; t; v1; v2; w1; w2) ��!F o impliesspol(f1; f2; t; v1; v2; w1; w2) =Pki=1mi ? hi ? li, hi 2 F , mi; li 2 M(FZ) where thissum is a representation in the sense of Corollary 4.4.45 with terms bounded byHT(spol(f1; f2; t; v1; v2; w1; w2)) � t. This gives usv1 ? f1 ? w1 � �1 + v2 ? f2 ? w2 � �2 (4.8)= v1 ? f1 ? w1 � �1 + v2 ? f2 ? w2 � �1 � �� v2 ? f2 ? w2 � �1 � �| {z }=o +v2 ? f2 ? w2 � �2= v2 ? f2 ? w2 � (�1 � � + �2)� (v2 ? f2 ? w2 � �� v1 ? f1 ? w1)| {z }=spol(f1;f2;t;v1;v2;w1;w2) ��1= v2 ? f2 ? w2 � (�1 � � + �2)� ( kXi=1 mi ? hi ? li) � �1and substituting this in the representation of g we get a new rep-resentation with t0 = max�fHT(vj ? fj ? wj);HT(mj ? hj ? lj) jfj; hj appearing in the new representation g, and M 0 = ffHC(vj ? fj ?wj);HC(mj ? hj ? lj) j HT(vj ? fj ? wj) = HT(mj ? hj ? lj) = t0gg and eithert0 � t and we have a smaller representation for g or in 
ase t0 = t we have todistinguish two 
ases:1. �1 � �+ �2 = 0.ThenM 0 = (M �ffHC(v1?f1 ?w1);HC(v2?f2 ?w2)gg)[ffHC(mj ?hj ? lj) j59This 
an easily be a
hieved by adding �f to F for all f 2 F and using vj ?(�fj)?wj �(��j)in 
ase HC(vj ? fj ? wj) < 0.60In 
ase spol(f1; f2; t; v1; v2; w1; w2) = o the proof is similar. We just have to subsitute o inthe equations below whi
h immediately gives us a smaller representation of g.
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tion RingsHT(mj ? hj ? lj) = tgg. As those polynomials hj with HT(mj ? hj ? lj) = tare used to redu
e the monomial � � t = HM(spol(f1; f2; t; v1; v2; w1; w2)) weknow that for them we have 0 < HC(mj ? hj ? lj) � � < HC(v2 ? f2 ? w2) �HC(v1 ? f1 ? w1) and hen
e M 0 � M and we have a smaller representationfor g.2. �1 � �+ �2 6= 0.ThenM 0 = (M�ffHC(v1?f1?w1)gg)[ffHC(mj?hj ?lj) j HT(mj?hj ?lj) =tgg. Again M 0 �M and we have a smaller representation for g.Noti
e that the 
ase t0 = t and M 0 �M 
annot o

ur in�nitely often but has toresult in either t0 < t or will lead to t0 = t and K = 1 and hen
e to redu
ibilityby �!F . q.e.d.Now the question arises when the 
riti
al situations in this 
hara
terization 
anbe lo
alized to subsets of the respe
tive sets as in Theorem 4.4.31. Reviewing theProof of Theorem 4.4.31 we �nd that Lemma 4.4.16 is 
entral as it des
ribes whenmultiples of polynomials whi
h have a redu
tive standard representation in termsof some set F again have su
h a representation. As we have seen before, this willnot hold for fun
tion rings over redu
tion rings in general. As in Se
tion 4.4.2,to give lo
alizations of Theorem 4.4.47 the 
on
ept of stable subsets is suÆ
ient:De�nition 4.4.48A set C � S � FZis 
alled a stable lo
alization of S if for every g 2 S thereexists f 2 C su
h that g�!f o. �In 
ase FZand �! allow su
h stable lo
alizations, we 
an rephrase Theorem4.4.47 as follows:Theorem 4.4.49Let F be a set of polynomials in FZnfog. Then F is a Gr�obner basis of ideal(F )if and only if1. for all s in a stable lo
alization of fm ? f ? l j f 2 FZ;m; l 2 M(FZ)g wehave s ��!F o, and2. for all h in a stable lo
alization of the s-polynomials 
orresponding to F asspe
i�ed in De�nition 4.4.46 we have h ��!F o.When proving Theorem 4.4.49, we 
an substitute the 
riti
al situation using ananalogon of Lemma 4.4.16, whi
h will be suÆ
ient to make the representationused in the proof smaller. It is a dire
t 
onsequen
e of Lemma 4.4.40.



4.4 Ideals and Standard Representations 163Corollary 4.4.50Let F � FZnfog and f , p non-zero polynomials in FZ. If p�!f o and f ��!F o,then p has a representation of the formp = nXi=1 mi ? fi ? li; fi 2 F;mi; li 2 M(FZ); n 2 Nsu
h that HT(p) = HT(mi ?HT(fi) ? li) = HT(mi ? fi ? li) � HT(fi) for 1 � i � kand HT(p) � HT(mi ? fi ? li) for all k + 1 � i � n.Proof Theorem 4.4.49:The proof is basi
ally the same as for Theorem 4.4.47. Due to Corollary 4.4.50 we
an substitute the multiples vj ?fj ?wj by appropriate representations. Hen
e, weonly have to ensure that despite testing less polynomials we are able to apply ourindu
tion hypothesis. Taking the notations from the proof of Theorem 4.4.47, letus 
he
k the situation for K > 1.Without loss of generality we 
an assume that HC(v1?f1?w1) � HC(v2?f2?w2) > 0and there are �; � 2 Zsu
h that HC(v2 ? f2 ? w2) � � + � = HC(v1 ? f1 ? w1) andHC(v2?f2?w2) > � � 0. Sin
e t = HT(v1?f1?w1) = HT(v2?f2?w2) by De�nition4.4.46 we have an s-polynomial h in the stable lo
alization of SPOL(f1; f2) su
hthat v2?f2?w2 ���v1?f1?w1�!h o. If h 6= o61 then by Corollary 4.4.50 h ��!F oimplies v2 ? f2 ? w2 � � � v1 ? f1 ? w1 = Pki=1mi ? hi ? li, hi 2 F , mi; li 2 M(FZ)where this sum is a representation in the sense of Corollary 4.4.45 with termsbounded by HT(m ? h ? l) � t. This gives usv1 ? f1 ? w1 � �1 + v2 ? f2 ? w2 � �2 (4.9)= v1 ? f1 ? w1 � �1 + v2 ? f2 ? w2 � �1 � �� v2 ? f2 ? w2 � �1 � �| {z }=o +v2 ? f2 ? w2 � �2= v2 ? f2 ? w2 � (�1 � � + �2)� (v2 ? f2 ? w2 � �� v1 ? f1 ? w1) � �1= v2 ? f2 ? w2 � (�1 � � + �2)� ( kXi=1 mi ? hi ? li) � �1and substituting this in the representation of g we get a new rep-resentation with t0 = max�fHT(vj ? fj ? wj);HT(mj ? hj ? lj) jfj; hj appearing in the new representation g, and M 0 = ffHC(vj ? fj ?wj);HC(mj ? hj ? lj) j HT(vj ? fj ? wj) = HT(mj ? hj ? lj) = t0gg and eithert0 � t or (t0 = t andM 0 �M) and in both 
ases we have a smaller representationfor g. Noti
e that the 
ase t0 = t and M 0 � M 
annot o

ur in�nitely oftenbut has to result in either t0 < t or will lead to t0 = t and K = 1 and hen
e to61In 
ase h = o the proof is similar. We just have to subsitute o in the equations below whi
himmediately gives us a smaller representation of g.



164 Chapter 4 - Fun
tion Ringsredu
ibility by �!F . q.e.d.4.5 Two-sided ModulesGiven a fun
tion ring F with unit 1 and a natural number k, let Fk =f(f1; : : : ; fk) j fi 2 Fg be the set of all ve
tors of length k with 
oordinates in F .Obviously Fk is an additive 
ommutative group with respe
t to ordinary ve
toraddition. Moreover, Fk is su
h an F-module with respe
t to the s
alar multipli-
ation f ?(f1; : : : ; fk) = (f ?f1; : : : ; f ?fk) and (f1; : : : ; fk)?f = (f1?f; : : : ; fk ?f).Additionally Fk is 
alled free as it has a basis62. One su
h basis is the set ofunit ve
tors e1 = (1; o; : : : ; o); e2 = (o;1; o; : : : ; o); : : : ; ek = (o; : : : ; o;1). Usingthis basis the elements of Fk 
an be written uniquely as f = Pki=1 fi ? ei wheref = (f1; : : : ; fk).De�nition 4.5.1A subset of Fk whi
h is again an F -module is 
alled a submodule of Fk.As before any ideal of F is an F -module and even a submodule of the F -moduleF1. Provided a set of ve
tors S = ff1; : : : ; fsg the set fPsi=1Pnij=1 gij ? fi ? hij jgij ; hij 2 Fg is a submodule of Fk. This set is denoted as hSi and S is 
alled agenerating set.Theorem 4.5.2Let F be Noetherian. Then every submodule of Fk is �nitely generated.Proof :Let S be a submodule of Fk. Again we show our 
laim by indu
tion on k. Fork = 1 we �nd that S is in fa
t an ideal in F and hen
e by our hypothesis �nitelygenerated. For k > 1 let us look at the set I = ff1 j (f1; : : : ; fk) 2 Sg. Thenagain I is an ideal in F and hen
e �nitely generated. Let fg1; : : : ; gs j gi 2 Fg bea generating set of I. Choose g1; : : : ;gs 2 S su
h that the �rst 
oordinate of giis gi. Note that the set f(f2; : : : ; fk) j (o; f2; : : : ; fk) 2 Sg is a submodule of Fk�1and hen
e �nitely generated by some set f(ni2; : : : ; nik); 1 � i � wg. Then the setfg1; : : : ;gsg [ fni = (o; ni2; : : : ; nik) j 1 � i � wg is a generating set for S. To seethis assumem = (m1; : : : ;mk) 2 S. Then m1 =Psi=1Pnij=1 hij ? gi ? hij 0 for some62Here the term basis is used in the meaning of being a linearly independent set of generatingve
tors.



4.5 Two-sided Modules 165hij; hij 0 2 F and m0 = m�Psi=1Pnij=1 hij ? gi ? hij 0 2 S with �rst 
oordinate o.Hen
e m0 =Pwi=1Pmij=1 lij ? ni ? lij 0 for some lij; lij0 2 F giving rise tom =m0+ sXi=1 niXj=1 hij ? gi ? hij 0 = wXi=1 miXj=1 lij ? ni ? lij 0 + sXi=1 niXj=1 hij ? gi ? hij 0:q.e.d.Fk is 
alled Noetherian if and only if all its submodules are �nitely generated.If F is a redu
tion ring Se
tion 4.5 outlines how the existen
e of Gr�obner basesfor submodules 
an be shown.Now given a submodule S of Fk, we 
an de�ne Fk=S = ff + S j f 2 Fkg. Thenwith addition de�ned as (f+S)+(g+S) = (f+g)+S the set Fk=S is an abeliangroup and 
an be turned into an F -module by the a
tion g?(f+S)?h = g?f?h+Sfor g; h 2 F . Fk=S is 
alled the quotient module of Fk by S.As usual this quotient 
an be related to homomorphisms. The results 
arry overfrom 
ommutative module theory as 
an be found in [AL94℄. Re
all that for twoF -modulesM and N , a fun
tion � :M �! N is an F -module homomorphismif �(f + g) = �(f) + �(g) for all f ;g 2 Mand �(g ? f ? h) = g ? �(f) ? h for all f 2 M; g; h 2 F :The homomorphism is 
alled an isomorphism if � is one to one and we writeM �= N . Let S = ker(�) = ff 2 M j �(f) = 0g. Then S is a submoduleof M and �(M) is a submodule of N . Sin
e all are abelian groups we knowM=S �= �(M) under the mapping M=S �! �(M) with f + S 7! �(f) whi
his in fa
t an isomorphism. All submodules of the quotientM=S are of the formL=S where L is a submodule ofM 
ontaining S.Unfortunately, 
ontrary to the one-sided 
ase we 
an no longer show that every�nitely generated F -moduleM is isomorphi
 to some quotient of Fk. LetM bea �nitely generated F -module with generating set f1; : : : fk 2 M. Consider themapping � : Fk �!M de�ned by �(g1; : : : ; gk) =Pki=1 gi ? fi forM. The imageof the F -module homomorphis is no longerM.
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Chapter 5Appli
ations of Gr�obner BasesIn this 
hapter we outline how the 
on
ept of Gr�obner bases 
an be used to de-s
ribe algebrai
 questions and when solutions 
an be a
hieved. We will des
ribethe problems in the following mannerProblemGiven: A des
ription of the algebrai
 setting of the problem.Problem: A des
ription of the problem itself.Pro
eeding: A des
ription of how the problem 
an be analyzed usingGr�obner bases.In a �rst step we do not require �niteness or 
omputability of the operations,espe
ially of a Gr�obner basis. Sin
e an ideal itself is always a Gr�obner basisitself, the assumption \Let G be a respe
tive Gr�obner basis" always holds andmeans a Gr�obner basis of the ideal generated by G.In 
ase a Gr�obner basis is 
omputable (though not ne
essarily �nite) and thenormal form 
omputation for a polynomial with respe
t to a �nite set is e�e
-tive, our so-
alled pro
eedings give rise to pro
edures whi
h 
an then be used totreat the problem in a 
onstru
tive manner. If additionally the Gr�obner basis
omputation terminates, these pro
edures terminate as well and the instan
e ofthe problem is de
idable. In 
ase Gr�obner basis 
omputation always terminatesfor a 
hosen setting the whole problem is de
idable in this setting.Of 
ourse \termination" here is meant in a theoreti
al sense while as we knowpra
ti
al \termination" is already often not a
hievable for the Gr�obner basis
omputation in the ordinary polynomial ring due to 
omplexity issues although�nite Gr�obner bases always exist.The terminology extends to one-sided ideals and we note those problems, wherethe one-sided 
ase also makes sense.



168 Chapter 5 - Appli
ations of Gr�obner BasesWe will also note when weak Gr�obner bases are suÆ
ient for the solution of aproblem.5.1 Natural Appli
ationsThe most obvious problem related to Gr�obner bases is the ideal membershipproblem. Chara
terizing Gr�obner bases with respe
t to a redu
tion relation usesthe important fa
t that an element belonging to the ideal will redu
e to zero usingthe Gr�obner basis.Ideal Membership ProblemGiven: A set F � F and an element f 2 F .Problem: f 2 ideal(F )?Pro
eeding: 1. Let G be a Gr�obner basis of ideal(F ).2. If f ��!G o, then f 2 ideal(F ).Hen
e Gr�obner bases give a semi-answer to this question in 
ase they are 
om-putable and the normal form 
omputation is e�e
tive. To give a negative an-swer the Gr�obner basis 
omputation must either terminate or one must expli
itlyprove, e.g. using properties of the enumerated Gr�obner basis, that the elementwill never redu
e to zero.These results 
arry over to one-sided ideals using the appropriate one-sidedGr�obner bases.Moreover, weak Gr�obner bases are suÆ
ient to solve the problem.A normal form 
omputation always gives rise to a spe
ial representation in termsof the polynomials used for redu
tion and in 
ase the normal form is zero su
hrepresentations are spe
ial standard representations. We give two instan
es ofthis problem.Representation Problem 1Given: A Gr�obner basis G � F and an element f 2 ideal(G).Problem: Give a representation of f in terms of G.Pro
eeding: Redu
ing f to o using G yields su
h a representation.In 
ase the normal form 
omputation is e�e
tive, we 
an 
olle
t the polynomialsand multiples used in the redu
tion pro
ess and 
ombine them to the desiredrepresentation. Noti
e that sin
e we know that the element is in the ideal, it isenough to additionally require that the Gr�obner basis is re
ursively enumerableas a set.
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ations 169The result 
arries over to one-sided ideals using the appropriate one-sided Gr�obnerbases.Again, weak Gr�obner bases are suÆ
ient to solve the problem.Often the ideal is not presented in terms of a Gr�obner basis. Then additionalinformation is ne
essary whi
h in the 
omputational 
ase is related to 
olle
tingthe history of polynomials 
reated during 
ompletion. Noti
e that the pro
eedingsin this 
ase require some equivalent to Lemma 4.4.16 to hold and hen
e theproblem is restri
ted to fun
tion rings over �elds.Representation Problem 2Given: A set F � FK and an element f 2 ideal(F ).Problem: Give a representation of f in terms of F .Pro
eeding: 1. Let G be a Gr�obner basis of ideal(F ).2. Let g =Pkgi=1mi ? fi ? ~mi be representations of the elementsg 2 G in terms of F .3. Let f =Pkj=1 ni ? gi ? ~ni be a representation of f in terms ofG.4. The sums in 2. and 3. yield a representation of f in terms ofF .In 
ase the Gr�obner basis is 
omputable by a 
ompletion pro
edure the pro
edurehas to keep tra
k of the history of polynomials by storing their representationsin terms of F . If the 
ompletion stops we 
an redu
e f to zero and substitutethe representations of the polynomials used by their \history representation".If the Gr�obner basis is only re
ursively enumerable both pro
esses have to beinterwoven and to 
ontinue until the normal form 
omputation for f rea
hes o.The result 
arries over to one-sided ideals using the appropriate one-sided Gr�obnerbases.Moreover, weak Gr�obner bases are suÆ
ient to solve the problem.Other problems are related to the 
omparison of ideals. For example given twoideals one 
an ask whether one is in
luded in the other.Ideal In
lusion ProblemGiven: Two sets F1; F2 � F .Problem: ideal(F1) � ideal(F2)?Pro
eeding: 1. Let G be a Gr�obner basis of ideal(F2) .2. If F1 ��!G o, then ideal(F1) � ideal(F2).



170 Chapter 5 - Appli
ations of Gr�obner BasesIn 
ase the Gr�obner basis is 
omputable and the normal form 
omputation ise�e
tive this yields a semi-de
ision pro
edure for the problem. If additionally theGr�obner basis 
omputation terminates for F1 or we 
an prove that some elementof the set F1 does not belong to ideal(F2), e.g. by deriving knowledge from theenumerated Gr�obner basis, we 
an also give a negative answer.The result 
arries over to one-sided ideals using the appropriate one-sided Gr�obnerbases.Weak Gr�obner bases are suÆ
ient to solve the problem.Applying the in
lusion problem in both dire
tions we get a 
hara
terization forequality of ideals.Ideal Equality ProblemGiven: Two sets F1; F2 � F .Problem: ideal(F1) = ideal(F2)?Pro
eeding: 1. Let G1, G2 be Gr�obner bases of ideal(F1) respe
tivelyideal(F2).2. If F1 ��!G2 o, then ideal(F1) � ideal(F2).3. If F2 ��!G1 o, then ideal(F2) � ideal(F1).4. If 2. and 3. both hold, then ideal(F1) = ideal(F2).Again, Gr�obner bases at least give a semi-answer in 
ase they are 
omputable andthe normal form pro
edure is e�e
tive. We 
an 
on�rm whether two generatingsets are bases of one ideal. Of 
ourse, in 
ase the 
omputed Gr�obner bases are�nite, we 
an also give a negative answer. However, if the Gr�obner bases are not�nite, a negative answer is only possible, if we 
an prove either F1 6� ideal(F2) orF2 6� ideal(F1).The result 
arries over to one-sided ideals using the appropriate one-sided Gr�obnerbases.Again, weak Gr�obner bases are suÆ
ient to solve the problem.In 
ase F 
ontains a unit say 1, we 
an ask whether an ideal is equal to the trivialideal in F generated by the unit.Ideal Triviality Problem 1Given: A set F � F .Problem: ideal(F ) = ideal(f1g)?Pro
eeding: 1. Let G be a respe
tive Gr�obner basis.2. If 1 ��!G o, then ideal(F ) = ideal(f1g).
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ations 171Again Gr�obner bases give a semi-answer in 
ase they 
an be 
omputed. If theGr�obner basis is additionally �nite or we 
an prove that 1 62 ideal(F ), then we
an also 
on�rm ideal(F ) 6= ideal(f1g).Sin
e ideal(f1g) = F one 
an also rephrase the question for rings without a unit.Ideal Triviality Problem 2Given: A set F � F .Problem: ideal(F ) = F?Pro
eeding: 1. Let G be a Gr�obner basis of ideal(F ).2. If for every t 2 T , t ��!G o, then ideal(F ) = F .Of 
ourse now we have the problem that the test set T in general will not be�nite. Hen
e a Gr�obner basis 
an give a semi-answer in 
ase we 
an restri
t thistest set to a �nite subset. If the Gr�obner basis is additionally �nite or we 
anprove that t 6 ��!G o for some t in the �nite sub test set of T , then we 
an also
on�rm ideal(F ) 6= F .Both of these result 
arry over to one-sided ideals using the appropriate one-sidedGr�obner bases.As before, weak Gr�obner bases are suÆ
ient to solve the problem.Ideal Union ProblemGiven: Two sets F1; F2 � F and an element f 2 F .Problem: f 2 ideal(F1) [ ideal(F2)?Pro
eeding: 1. Let G1, G2 be Gr�obner bases of ideal(F1) respe
tivelyideal(F2).2. If f ��!G1 o, then f 2 ideal(F1) [ ideal(F2).3. If f ��!G2 o, then f 2 ideal(F1) [ ideal(F2).Noti
e that ideal(F1) [ ideal(F2) 6= ideal(F1 [ F2). Moreover G1 [G2 is neither aGr�obner basis of ideal(F1) [ ideal(F2), whi
h in general is no ideal itself, nor ofideal(F1 [ F2).Again, weak Gr�obner bases are suÆ
ient to solve the problem.The ideal generated by the set F1 [ F2 is 
alled the sum of the two ideals.De�nition 5.1.1For two ideals i; j � F the sum is de�ned as the seti + j = ff � g j f 2 i; g 2 jg:
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ations of Gr�obner BasesAs in the 
ase of 
ommutative polynomials one 
an show the following theorem.Theorem 5.1.2For two ideals i; j � F the sum i + j is again an ideal. In fa
t, it is the smallestideal 
ontaining both, i and j. If F and G are the respe
tive generating sets for iand j, then F [ G is a generating set for i + j.Proof : First we 
he
k that the sum is indeed an ideal:1. as o � o = o we get o 2 i+ j,2. for h1; h2 2 i + j we have that there are f1; f2 2 i and g1; g2 2 j su
h thath1 = f1 � g1 and h2 = f2 � g2. Then h1 � h2 = (f1 � g1) � (f2 � g2) =(f1 � f2) � (g1 � g2) 2 i + j, and3. for h1 2 i + j, h2 2 F we have that there are f 2 i and g 2 j su
h thath1 = f � g. Then h1 ? h2 = (f � g) ? h2 = f ? h2 � g ? h2 2 i + j as well ash2 ? h1 = h2 ? (f � g) = h2 ? f � h2 ? g 2 i + j.Sin
e any ideal 
ontaining i and j 
ontains i+j, this is the smallest ideal 
ontainingthem. It is easy to see that F [G is a generating set for the sum. q.e.d.Of 
ourse F[G in general will not be a Gr�obner basis. This be
omes immediately
lear when looking at the following 
orollary.Corollary 5.1.3For F � F we have ideal(F ) = [f2F ideal(f):But we have already seen that for fun
tion rings a polynomial in general is noGr�obner basis of the ideal or one-sided ideal it generates.Ideal Sum ProblemGiven: Two sets F1; F2 � F and an element f 2 F .Problem: f 2 ideal(F1) + ideal(F2)?Pro
eeding: 1. Let G be a Gr�obner basis of ideal(F1 [ F2).2. If f ��!G o, then f 2 ideal(F1) + ideal(F2).Both of these result 
arry over to one-sided ideals using the appropriate one-sidedGr�obner bases.As before, weak Gr�obner bases are suÆ
ient to solve the problem.Similar to sums for 
ommutative fun
tion rings we 
an de�ne produ
ts of ideals.
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ations 173De�nition 5.1.4For two ideals i; j in a 
ommutative fun
tion ring F the produ
t is de�ned asthe set hi ? ji = ideal(ffi ? gi j fi 2 i; gi 2 jg): �Theorem 5.1.5For two ideals i; j in a 
ommutative fun
tion ring F the produ
t hi ? ji is againan ideal. If F and G are the respe
tive generating sets for i and j, then F ? G =ff ? g j f 2 F; g 2 Gg is a generating set for i ? j.Proof : First we 
he
k that the produ
t is indeed an ideal:1. as o 2 i and o 2 j we get o 2 i ? j,2. for f; g 2 i ? j we have f � g 2 i ? j by our de�nition, and3. for f 2 i ? j, h 2 F we have that there are fi 2 i and gi 2 j su
h thatf =Pki=1 fi ?gi and then f ?h = (Pki=1 fi ?gi)?h =Pki=1 fi ? (gi ?h) 2 i? j.It is obvious that ideal(F ? G) � hi ? ji as F ? G � i ? j. On the other handevery polynomial in hi ? ji 
an be written as a sum of produ
ts ~f ? ~g where~f =Pni=1 hi ? fi 2 i, fi 2 F , hi 2 F and ~g =Pmj=1 gj ? ~hj , gj 2 G, ~hj 2 F . Hen
eevery su
h produ
t ~f ? ~g is again of the desired form. q.e.d.Ideal Produ
t ProblemGiven: Two subsets F1; F2 of a 
ommutative fun
tion ring F and anelement f 2 F .Problem: f 2 hideal(F1) ? ideal(F2)i?Pro
eeding: 1. Let G be a Gr�obner basis of ideal(F1 ? F2).2. If f ��!G o, then f 2 hideal(F1) ? ideal(F2)i.Again, weak Gr�obner bases are suÆ
ient to solve the problem.We 
lose this se
tion by showing how Gr�obner bases 
an help to dete
t the exis-ten
e of inverse elements in F in 
ase F has a unit say 1.De�nition 5.1.6Let F be a fun
tion ring with unit 1 and f 2 F . An element g 2 F is 
alled aright inverse of f in F if f ? g = 1. Similarly g is 
alled a left inverse of f inF if g ? f = 1. �



174 Chapter 5 - Appli
ations of Gr�obner BasesInverse Element ProblemGiven: An element f 2 F .Problem: Does f have a right or left inverse in F?Pro
eeding: 1. Let Gr be a respe
tive right Gr�obner basis of idealr(f).2. If 1 ��!rGr o, then f has a right inverse.1'. Let G` be a respe
tive left Gr�obner basis of ideal`(f).2'. If 1 ��!rG` o, then f has a left inverse.To see that this is 
orre
t we give the following argument for the right inverse
ase: It is 
lear that f has a right inverse in F if and only if idealr(ffg) = Fsin
e f ? g � 1 = o for some g 2 F if and only if 1 2 idealr(ffg). So, in orderto de
ide whether f has a right inverse in F one has to distinguish the followingtwo 
ases provided we have a right Gr�obner basis Gr of idealr(ffg): If 1 6 ��!rGr othen f has no right inverse. If 1 ��!rGr o then we know 1 2 idealr(ffg), i.e. thereexist h 2 F su
h that 1 = f ? h and hen
e h is a right inverse of f in F .A symmetri
 argument holds for the 
ase of left inverses.Of 
ourse in 
ase F is 
ommutative, left inverses and right inverses 
oin
ide in
ase they exist and we 
an use the fa
t that f ? g� 1 = g ? f � 1 = o if and onlyif 1 2 ideal(ffg).Again, weak Gr�obner bases are suÆ
ient to solve the problem.It is also possible to ask for the existen
e of left and right inverses for elementsof the quotient rings des
ribed in the next se
tion.5.2 Quotient RingsLet F be a subset of F generating an ideal i = ideal(F ). The 
anoni
al homo-morphism from F onto F=i is de�ned asf 7�! [f ℄iwith [f ℄i = f+ i denoting the 
ongruen
e 
lass of f modulo i. The ring operationsare given by [f ℄i + [g℄i = [f + g℄i;[f ℄i � [g℄i = [f ? g℄i:A natural question now is whether two elements of F are in fa
t in the same
ongruen
e 
lass modulo i.
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e ProblemGiven: A set F � F and two elements f; g 2 F .Problem: f = g in F=ideal(F )?Pro
eeding: 1. Let G be a Gr�obner basis of ideal(F ).2. If f � g ��!G o, then f = g in F=ideal(F ).Hen
e if G is a Gr�obner basis for whi
h normal form 
omputation is e�e
tive, the
ongruen
e problem is solvable.Usually one element of the 
ongruen
e 
lass is identi�ed as its representative andsin
e normal forms with respe
t to Gr�obner bases are unique, they 
an be 
hosenas su
h representatives.Noti
e that for weak Gr�obner bases unique representations for the quotient 
anno longer be determined by redu
tion (review Example 3.1.1).Unique Representatives ProblemGiven: A set F � F and an element f 2 F .Problem: Determine a unique representative for f in F=ideal(F ).Pro
eeding: 1. Let G be a respe
tive Gr�obner basis.2. The normal form of f with respe
t to G is a unique represen-tative.Provided a Gr�obner basis of i together with an e�e
tive normal form algorithmwe 
an spe
ify unique representatives by[f ℄i := normal form(f;G);and de�ne addition and multipli
ation in the quotient by[f ℄i + [g℄i := normal form(f + g;G);[f ℄i � [g℄i := normal form(f ? g;G):Similar to the 
ase of polynomial rings for a fun
tion ring over a �eld K we 
anshow that this stru
ture is a K-ve
tor spa
e with a spe
ial basis.Lemma 5.2.1For any ideal i � FK the following hold:1. FK=i is a K-ve
tor spa
e.2. The set B = f[t℄i j t 2 T g is a ve
tor spa
e basis and we 
an 
hose[t℄i = moni
(normal form(t;G)) for G being a Gr�obner basis of i.



176 Chapter 5 - Appli
ations of Gr�obner BasesProof :1. We have to show that the following properties hold for V = FK=i:(a) There exists a mapping K � V �! V , (�; [f ℄i) 7�! � � [f ℄i 
alledmultipli
ation with s
alars.(b) (� � �) � [f ℄i = � � (� � [f ℄i) for all �; � 2 K, [f ℄i 2 V .(
) � � ([f ℄i + [g℄i) = � � [f ℄i + � � [g℄i for all � 2 K, [f ℄i; [g℄i 2 V .(d) (� + �) � [f ℄i = � � [f ℄i + � � [f ℄i for all �; � 2 K, [f ℄i 2 V .(e) 1 � [f ℄i = [f ℄i for all [f ℄i 2 V .It is easy to show that this follows from the natural de�nition� � [f ℄i := [� � f ℄ifor � 2 K, [f ℄i 2 V .2. It follows immediately that B generates the quotient FK=i. So it remainsto show that this basis is free in the sense that o 
annot be represented as anon-trivial linear 
ombination of elements in B. Let G be a Gr�obner basisof i. Then we 
an 
hoose the elements of B as the normal forms of theelements in T with respe
t to G. Sin
e for a polynomial in normal form allits terms are also in normal form we 
an 
on
lude that these normal formsare elements of M(FK) and sin
e K is a �eld we 
an make them moni
. Thisleaves us with a basis f~t = moni
(normal form(t;G)) j t 2 T g . Now let usassume that B is not free, i.e. there exists k 2 N minimal with �i 2 Knf0gand [ti℄i 2 B, 1 � i � k su
h that Pki �i � [ti℄i = o. Sin
e then we also getnormal form(Pki �i � ~ti; G) = o and all ~ti are di�erent and in normal form,all �i must equal 0 
ontradi
ting our assumption. q.e.d.If we 
an 
ompute normal forms for the quotient elements, we 
an give a multi-pli
ation table for the quotient in terms of the ve
tor spa
e basis by[ti℄i � [tj℄i = [ti ? tj℄i = normal form(ti Æ tj; G):Noti
e that for a fun
tion ring over a redu
tion ring the set B = f[t℄i j t 2 T galso is a generating set where we 
an 
hose [t℄i = normal form(t;G). But we 
anno longer 
hoose the representatives to be a subset of T . This is due to the fa
tthat if a monomial � � t is redu
ible by some polynomial g this does not implythat some other monomial � � t or even the term t is redu
ible by g. For example



5.2 Quotient Rings 177let R =Z, T = fa; �g and a ? a = 2 � a, � ? � = �, a ? � = � ? a = a. Then 2 � a isredu
ible by a while of 
ourse a isn't.In 
ase FK 
ontains a unit say 1 we 
an ask whether an element of FK=i isinvertible.De�nition 5.2.2Let f 2 FK. An element g 2 FK is 
alled a right inverse of f in FK=i iff ?g = 1 mod i. Similarly g is 
alled a left inverse of f in FK=i if g?f = 1 mod i.�In 
ase FK is 
ommutative, right and left inverses 
oin
ide if they exist and we
an ta
kle the problem by using the fa
t that f has an inverse in i if and onlyif f ? g � 1 2 i if and only if 1 2 i + ideal(ffg). Hen
e, if we have a Gr�obnerbasis G of the ideal i+ ideal(ffg) the existen
e of an inverse of f is equivalent to1 ��!G o.Even, weak Gr�obner bases are suÆ
ient to solve the problem.For the non-
ommutative 
ase we introdu
e a new non-
ommuting tag variablez by lifting the multipli
ation z ? z = z, z ? t = zt and t ? z = tz for t 2 T andextending T to zT = fzit1zt2z : : : ztkzj j k 2 N; i; j 2 f0; 1g; ti 2 T g. The orderon this enlarged set of terms is indu
ed by 
ombining a syllable ordering withrespe
t to z with the original ordering on T . By F zTK we denote the fun
tion ringover zT .This te
hnique of using a tag variable now allows to study the right ideal generatedby f in FK=i, where i = ideal(F ) for some set F � FK, by studying the idealgenerated by F [ fz ? fg in F zTK be
ause of the following fa
t:Lemma 5.2.3Let F � FK and f 2 FK. Then idealFzTK (F [ fz ? fg) has a Gr�obner basis of theform G [ fz ? pi j i 2 I; pi 2 FKg with G � FK. In fa
t the set fpi j i 2 Ig thenis a right Gr�obner basis of idealFK =ir (ffg).Proof :Let G � FK be a Gr�obner basis of idealFK (F ). Then obviously idealFzTK (F [ fz ?fg) = idealFzTK (G[fz ?fg). Theorem 4.4.31 spe
i�es a 
riterion to 
he
k whethera set is a Gr�obner basis and gives rise to test sets for a 
ompletion pro
edure.Noti
e that due to the ordering on zT whi
h uses the tag variable to indu
esyllables, we 
an state the following important result:If for a polynomial q 2 FK the multiple z ? q has a standard represen-tation, then so has every multiple u ? (z ? q) ? z ? v for u; v 2 zT .



178 Chapter 5 - Appli
ations of Gr�obner BasesMoreover, sin
e G is already a Gr�obner basis, no 
riti
al situation for polynomialsin G have to be 
onsidered.Then a 
ompletion of G [ fz ? fg 
an be obtained as follows:In a �rst step only three kinds of 
riti
al situations have to be 
onsidered:1. s-polynomials of the form zu ? g ? v� z ? f ? w where u; v; w 2 T su
h thatHT(zu ? g ? v) = HT(z ? f ? w),2. s-polynomials of the form z ? f ? u � z ? f ? v where u; v 2 T su
h thatHT(z ? f ? u) = HT(z ? f ? v), and3. polynomials of the form z?f?u where u 2 T su
h that HT(f?u) 6= HT(f)?u.Sin
e normal forms of polynomials of the form z ? p, p 2 FK, with respe
t tosubsets of FK [ z ? FK are again elements of z ? FK [ fog, we 
an assume thatfrom then on we are 
ompleting a set G[fz ? qi j qi 2 FKg and again three kindsof 
riti
al situations have to be 
onsidered:1. s-polynomials of the form zu ? g ? v� z ? qi ? w where u; v; w 2 T su
h thatHT(zu ? g ? v) = HT(z ? qi ? w),2. s-polynomials of the form z ? qi ? u � z ? qj ? v where u; v 2 T su
h thatHT(z ? qi ? u) = HT(z ? qj ? v), and3. polynomials of the form z ? pi ? u where u 2 T su
h that HT(pi ? u) 6=HT(pi) ? u.Normal forms again are elements of z ? FK [ fog. Hen
e a Gr�obner basis of theform G [ fz ? pi j i 2 I; pi 2 FKg with G � FK must exist.It remains to show that the set fpi j i 2 Ig is in fa
t a right Gr�obner basis ofidealFK =ir (ffg). This follows immediately if we re
all the history of the polynomialspi. In the �rst step they arise as a normal form with respe
t to G [ fz ? fg of apolynomial either of the form zu ? g ? v� z ? f ? w, z ? f ? u� z ? f ? v or z ? f ? u,hen
e belonging to idealFK =ir (ffg). In the iteration step, the new pn arises as anormal form with respe
t to G [ fz ? pi j i 2 Ioldg of a polynomial either of theform zu ? g ? v � z ? pi ? w, z ? pi ? u� z ? pj ? v or z ? pi ? u, hen
e belonging toidealFK =ir (fpi j i 2 Ioldg) = idealFK =ir (ffg). q.e.d.Sin
e we require FK to have a unit (otherwise looking for inverse elements makesno sense), F zTK then will 
ontain z.



5.3 Elimination Theory 179Inverse Element ProblemGiven: An element f 2 FK and a generating set F for i.Problem: Does f have a right or left inverse in FK=i?Pro
eeding: 1. Let G be a Gr�obner basis of idealFzTK (F [ fz ? fg).2. If z ��!G o, then f has a right inverse.1'. Let G be a Gr�obner basis of idealFzTK (F [ ff ? zg).2'. If z ��!G o, then f has a left inverse.To see that this is 
orre
t we give the following argument for the 
ase of rightinverses: It is 
lear that f has a right inverse in FK=i if and only if f ? g � 1 2i for some g 2 FK. On the other hand we get f ? g � 1 2 i if and only ifz?f ?g�z 2 idealFzTK (F )\z?FK: f ?g�1 2 i immediately implies z?(f ?g�1) 2idealFzTK (F )\z ?FK as i � idealFzTK (F ), z 2 zT � F zTK and z ? (f ?g�1) 2 z ?FK.On the other hand, if z ? f ? g � z 2 idealFzTK (F )\ z ?FK � idealFzTK (F ), then wehave a representation z ? f ? g � z =Pki=1 hi ? fi ? ~hi, hi; ~hi 2 F zTK , fi 2 F � FK.For a polynomial p 2 F zTK and some element� 2 K let p[z = �℄ be the polynomialwhi
h arises from p by substituting � for the variable z. Then by substitutingz = 1 we get f?g�1 =Pki=1 hi[z = 1℄?fi?~hi[z = 1℄ with hi[z = 1℄; ~hi[z = 1℄ 2 FKand are done.Now, in order to de
ide whether f has a right inverse in i one has to distinguish thefollowing two 
ases provided we have a Gr�obner basis G of idealFzTK (F [ fz ? fg):If z 6 ��!G o then there exists no g 2 FK su
h that f ? g � 1 2 i and hen
e f hasno right inverse. If z ��!G o then we know z 2 idealFzTK (F [ fz ? fg), and evenz 2 idealFK =ir (fz ? fg) Hen
e there exist mi; ~mi; nj 2 M(F zTK ), fi 2 F su
h thatz = kXi=1 mi ? fi ? ~mi + lXj=1 z ? f ? nj :Now substituting z = 1 gives us that for h =Plj=1 nj we have f ? h = 1( mod i)and we are done.As before, weak Gr�obner bases are suÆ
ient to solve the problem.5.3 Elimination TheoryIn ordinary polynomial rings spe
ial term orderings 
alled elimination orderings
an be used to produ
e Gr�obner bases with useful properties. Many problems,e.g. the ideal interse
tion problem or the subalgebra problem, 
an be solved usingtag variables. The elimination orderings are then used to separate the ordinary
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ations of Gr�obner Basesvariables from these additional tag variables. Something similar 
an be a
hievedfor fun
tion rings.Let Z = fzi j i 2 Ig be a set of new tag variables 
ommuting with terms. Themultipli
ation ? 
an be extended by zi ? zj = zizj, z ? t = zt and t ? z = zt forz; zi; zj 2 Z and t 2 T . The ordering � is lifted to Z�T = fwt j w 2 Z�; t 2 T gby w1t1 � w2t2 if and only if w1 �lex w2 or (w1 = w2 and t1 � t2) for allw1; w2 2 Z�, t1; t2 2 T . Moreover, we require w � t for all w 2 Z�, t 2 T . Thisordering is 
alled an elimination ordering.Up to now we have studied ideals in FT . Now we 
an view FT as a subringof FZ�T and study ideals in both rings. For a generating set F � FT wehave idealFT (F ) � idealFZ�T (F ). This follows immediately sin
e for every f =Pki=1mi ? fi ? ~mi, mi; ~mi 2 M(FT ) this immediately implies mi; ~mi 2 M(FZ�T ).Lemma 5.3.1Let G be a weak Gr�obner basis of an ideal in FZ�T with respe
t to an eliminationordering. Then the following hold:1. idealFZ�T (G) \ FT = idealFT (G \ FT ).2. G \ FT is a weak Gr�obner basis for idealFT (G \ FT ) with respe
t to �.3. If G is a Gr�obner basis, then G\FT is a Gr�obner basis for idealFT (G\FT )with respe
t to �.Proof :1. � idealFZ�T (G) \ FT � idealFT (G \ FT ):Let f 2 idealFZ�T (G) \ FT . By the elimination ordering propertyfor w 2 Z� and t 2 T we have that wt � w � t holds and we getthat HT(f) 2 T if and only if f 2 FT . Sin
e f 2 idealFZ�T (G) weknow that f ��!G o and as all monomials in f are also in FT for ea
hg 2 G used in this redu
tion sequen
e we know HT(g) 2 T and hen
eg 2 FT . Moreover, the redu
tion sequen
e gives us a representationf =Pki=1mi ?fi ? ~mi with fi 2 G\FT and mi; ~mi 2 M(FT ), implyingf 2 idealFT (G \ FT ).� idealFT (G \ FT ) � idealFZ�T (G) \ FT :Let f 2 idealFT (G\FT ). Then f =Pki=1mi?fi ? ~mi with fi 2 G\FTand mi; ~mi 2 M(FT ). Hen
e f 2 idealFT (G) � idealFZ�T (G) andf 2 FT imply f 2 idealFZ�T (G) \ FT .



5.3 Elimination Theory 1812. We show this by proving that for every f 2 idealFT (G \ FT ) we havef ��!G\FT o. Sin
e G is a weak Gr�obner basis of idealFZ�T (G) andidealFT (G \ FT ) � idealFZ�T (G \ FT ) � idealFZ�T (G) we get f ��!G o. Onthe other hand, as every monomial in f is an element of FT , only elementsof G \ FT are appli
able for redu
tion.3. Let G be a Gr�obner basis with respe
t to some redu
tion relation �!. Toshow that G\FT is a Gr�obner basis of idealFT (G\FT ) we pro
eed in twosteps:(a) � !G\FT = �idealFT (G\FT ):� !G\FT � �idealFT (G\FT ) trivially holds as be
ause of Axiom (A2)redu
tion steps stay within the ideal 
ongruen
e. To see the 
onverselet f �ideal(G\FT ) g for f; g 2 FT . Then, as G is a Gr�obner basis andalso f �idealFZ�T (G) g holds, we know f � !G g and as HT(f);HT(g) 2FT , only elements from G \ FT 
an be involved and we are done.(b) �!G\FT is 
on
uent:Let g; g1; g2 2 FT su
h that g�!G\FT g1 and g�!G\FT g2. Then,as �!G is 
on
uent we know that there exists f 2 FZ�T su
h thatg1 ��!G f and g2 ��!G f . Now sin
e HT(g) 2 FT we 
an 
on
lude thatg1; g2; f 2 FT and hen
e all polynomials used for redu
tion in theredu
tion sequen
es lie in G \ FT proving our 
laim. q.e.d.Given an ideal i � FZ�T the set i\FT is again an ideal, now in FT . This followsas 1. o 2 i \ FT sin
e o 2 i and o 2 FT .2. For f; g 2 i\FT we have f + g 2 i as f; g 2 i and f + g 2 FT as f; g 2 FTyielding f + g 2 i \ FT .3. For f 2 i \ FT and h 2 FT we have that f ? h; h ? f 2 i as f 2 i andf ? h; h ? f 2 FT as f; h 2 FT yielding f ? h; h ? f 2 i \ FT .The ideal i \ FT is 
alled the elimination ideal of i with respe
t to Z sin
e theo

urren
es of the tag variables Z are eliminated.De�nition 5.3.2For an ideal i in F the setpi = ff 2 F j there exists m 2 N with fm 2 igis 
alled the radi
al of i. �



182 Chapter 5 - Appli
ations of Gr�obner BasesObviously we always have i � pi. Moreover, if F is 
ommutative the radi
al ofan ideal is again an ideal. This follows as1. o 2 pi sin
e o 2 i,2. For f; g 2 pi we know fm; gn 2 i for some m;n 2 N. Now f + g 2 pi if we
an show that (f+g)q 2 i for some q 2 N. Remember that for q = m+n�1every term in the binomial expansion of (f + g)q has a fa
tor of the formf i ? gj with i+ j = m+ n� 1. As either i � m or j � n we �nd f i ? gj 2 iyielding (f + g)q 2 i and hen
e f + g 2 pi. Noti
e that 
ommutativity isessential in this setting.3. For f 2 pi we know fm 2 i for some m 2 N. Hen
e for h 2 FT we get(f ?h)m = fm ?hm 2 i yielding f ?h 2 pi. Again 
ommutativity is essentialin the proof.Unfortunately this no longer holds for non-
ommutative fun
tion rings. Forexample take T = fa; bg� with 
on
atenation as multipli
ation. Then fori = ideal(fa2g) = fPni=1 �i � uia2vi j n 2 N; �i 2 Q; ui; vi 2 T g we get a 2 pi.But for b 2 F there exists no m 2 N su
h that (ab)m 2 i and hen
e pi is no ideal.In the 
ommutative polynomial ring the question whether some polynomial f liesin the radi
al of some ideal generated by a set F 
an be answered by introdu
inga tag variable z and 
omputing a Gr�obner basis of the ideal generated by the setF [ ffz � 1g. It 
an be shown that if a 
ommutative fun
tion ring F 
ontains aunit 1 we get a similar result.Theorem 5.3.3Let F � F and f 2 F where F is a 
ommutative fun
tion ring 
ontaining a unit1. Then f 2 pidealFT (F ) if and only if 1 2 idealFfzg�T (F [ fz ? f � 1g) for somenew tag variable z.Proof :If f 2 pidealFT (F ), then fm 2 idealFT (F ) � idealFfzg�T (F [fz ?f �1g) for somem 2 N. But we also have that z ?f �1 2 idealFfzg�T (F [fz ?f �1g). Rememberthat for the tag variable we have t ? z = zt for all t 2 T and hen
e f ? z = z ? fyielding 1 = zm ? fm � (zm ? fm � 1)= zm ? fm| {z }2idealFT (F )� (z ? f � 1) ? (m�1Xi=0 zi ? f i)| {z }idealFfzg�T (F[fz?f�1g)



5.3 Elimination Theory 183and hen
e 1 2 idealFfzg�T (F [ fz ? f � 1g) and we are done.On the other hand, 1 2 idealFfzg�T (F [ fz ? f � 1g) implies 1 = Pki=1mi ? fi ?~mi +Plj=1 nj ? (z ? f � 1) ? ~nj with mi; ~mi; nj; ~nj 2 M(Ffzg�T ). Moreover, sin
efor the tag variable we have z ? t = t ? z = zt for all t 2 T all terms o

urringin Pki=1 gi ? fi ? hi are of the form zjt for some t 2 T , j 2 N. Now, sin
ez ? f � 1 2 idealFfzg�T (F [ fz ? f � 1g), we have zjt ? f j = t ? zj ? f j = t aswell as f j ? zj ? t = zj ? f j ? t = t. Hen
e, the o

urren
es of z in a term zjtwith t 2 T 
an be \
an
elled" by multipli
ation with fm, m � j. Therefore, by
hoosing m 2 N suÆ
iently large to 
an
el all o

urren
es of z in the terms ofPki=1mi ? fi ? ~mi, multiplying the equation with fm from both sides yieldsf2m = kXi=1 (fm ? mi) ? fi ? ( ~mi ? fm)and fm ? mi; ~mi ? fm 2 FT . Hen
e f2m 2 idealFT (F ) and therefore f 2pidealFT (F ). q.e.d.This theorem now enables us to des
ribe the membership problem for radi
als ofideals in terms of Gr�obner bases.Radi
al Membership ProblemGiven: A set F � F and an element f 2 F , F 
ontaining a unit 1.Problem: f 2 pideal(F )?Pro
eeding: 1. Let G be a respe
tive Gr�obner basis of idealFfzg�T (F [fz ?f�1g) for some new tag variable z.2. If 1 ��!G o, then f 2 pideal(F ).If additionally the fun
tion ring is 
ommutative, remember that then pi is anideal and we then des
ribe the equality problem for radi
als of ideals.Noti
e that weak Gr�obner bases are suÆ
ient to solve the problem.Radi
al Equality ProblemGiven: Two sets F1; F2 � F , F 
ommutative 
ontaining a unit.Problem: pideal(F1) = pideal(F2)?Pro
eeding: 1. If for all f 2 F1 we have f 2 pideal(F2), then pideal(F1) �pideal(F2).2. If for all f 2 F2 we have f 2 pideal(F1), then pideal(F2) �pideal(F1).3. If 1. and 2. both hold, then pideal(F1) = pideal(F2).
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ations of Gr�obner BasesCorre
tness 
an be shown as follows: Let us assume that for all f 2 F1 we havef 2 pideal(F2). Then, as F is 
ommutative ideal(F1) � pideal(F2) holds. Nowlet f 2 pideal(F1). Then for some m 2 N we have fm 2 ideal(F1) � pideal(F2)and hen
e pideal(F1) � pideal(F2).If F is not 
ommutative, ideal(F1) � pideal(F2) need not hold. Rememberthe fun
tion ring with T = fa; bg�. Take F1 = fag and F2 = fa2g. Thena 2 pideal(F2) sin
e a2 2 ideal(F2). But while ab 2 ideal(F1) we have ab 62pideal(F2).Radi
als of one-sided ideals 
an be de�ned as well and Theorem 5.3.3 is alsovalid in this setting and 
an be used to state the radi
al membership problem forone-sided ideals.Another problem whi
h 
an be handled using tag variables and elimination order-ings in the 
ommutative polynomial ring is that of ideal interse
tions. Somethingsimilar 
an be done for fun
tion rings 
ontaining a unit.Theorem 5.3.4Let i and j be two ideals in F and z a new tag variable. Theni \ j = idealFfzg�T (z ? i [ (z � 1) ? j) \ Fwhere z ? i = fz ? f j f 2 ig and (z � 1) ? j = f(z � 1) ? f j f 2 jg.Proof :Every polynomial f 2 i \ j 
an be written as f = z ? f � (z � 1) ? f and hen
ef 2 idealFfzg�T (z ? i [ (z � 1) ? j) \ F . On the other hand, f 2 idealFfzg�T (z ? i [(z� 1) ? j)\F implies f =Pki=1mi ? z ? fi ? ~mi+Plj=1 nj ? (z� 1) ? ~fj ? ~nj withfi 2 i, ~fj 2 j and mi; ~mi; nj; ~nj 2 M(Ffzg�T ). Sin
e f 2 FT , substituting z = 1gives us f 2 i and z = 0 gives us f 2 j and hen
e f 2 i \ j. q.e.d.Moreover, 
ombining this result with Lemma 5.3.1 gives us the means to 
hara
-terize a Gr�obner basis of the interse
tion ideal.Interse
tion ProblemGiven: Two sets F1; F2 � F .Problem: Determine a basis of ideal(F1) \ ideal(F2).Pro
eeding: 1. Let G be a Gr�obner basis of idealFfzg�T (z ? i[ (z�1) ? j) withrespe
t to an elimination ordering with z > T .2. Then G \ F is a Gr�obner basis of ideal(F1) \ ideal(F2).These ideas extend to one-sided ideals as well.



5.3 Elimination Theory 185Again, weak Gr�obner bases are suÆ
ient to solve the problem.Of 
ourse Theorem 5.3.4 
an be generalized to interse
tions of more than twoideals.The te
hniques 
an also be applied to treat quotients of ideals in 
ase FK is
ommutative.De�nition 5.3.5For two ideals i and j in a 
ommutative fun
tion ring FK we de�ne the quotientto be the set i=j = fg j g 2 FK with g ? j � igwhere g ? j = fg ? f j f 2 jg. �Lemma 5.3.6Let FK be a 
ommutative fun
tion ring. Let i and j = ideal(F ) be two ideals inFK. Then i=j = \f2F(i=ideal(ffg):Proof : First let g 2 i=j. Then g ? j � i. Sin
e j = ideal(F ) we get g ? f 2 i forall f 2 F . As FK is 
ommutative we 
an 
on
lude g ? ideal(ffg) � i for all f 2 Fand hen
e g 2 i=ideal(ffg) for all f 2 F yielding g 2 Tf2F (i=ideal(ffg).On the other hand, g 2 Tf2F (i=ideal(ffg) implies g 2 i=ideal(ffg) for all f 2 Fand hen
e g ? ideal(ffg) � i for all f 2 F . Sin
e j = ideal(F ) then g ? j � i andhen
e g 2 i=j. q.e.d.Hen
e we 
an des
ribe quotients of ideals in terms of quotients of the spe
ial formi=ideal(ffg). These spe
ial quotients now 
an be des
ribed using ideal interse
tionin 
ase FK 
ontains a unit element 1.Lemma 5.3.7Let FK be a 
ommutative fun
tion ring. Let i be an ideal and f 6= o a polynomialin FK. Then i=ideal(ffg) = (i \ ideal(ffg)) ? f�1where f�1 is an element in FK su
h that f ? f�1 = 1.Proof :First let g 2 i=ideal(ffg). Then g ? ideal(ffg) � i and g ? f 2 i, eveng ? f 2 i \ ideal(ffg). Hen
e g 2 (i \ ideal(ffg)) ? f�1.On the other hand let g 2 (i \ ideal(ffg)) ? f�1. Then g ? f 2 i \ ideal(ffg) � i.Sin
e FK is 
ommutative, this implies g ? ideal(ffg) � i and hen
e g 2
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ations of Gr�obner Basesi=ideal(ffg). q.e.d.Hen
e we 
an study the quotient of i and j = ideal(F ) by studying (i\ideal(ffg))?f�1 for all f 2 F .5.4 Polynomial MappingsIn this se
tion we are interested in K-algebra homomorphisms between the non-
ommutative polynomial ring K[Z� ℄ where Z = fz1; : : : ; zng, and FTK . Let� : K[Z�℄ �! FTKbe a ring homomorphism whi
h is determined by a linear mapping� : zi 7�! fiwith fi 2 FTK , 1 � i � n. Then for a non-
ommutative polynomial g 2 K[Z�℄with g = Pmj=1 �j � wj, wj 2 Z� we get �(g) = Pmj=1 �j � �(wj) where �(wj) =wj[z1 7�! f1; : : : ; zn 7�! fn℄. The kernel of su
h a mapping is de�ned asker(�) = fg 2 K[Z�℄ j �(g) = ogand the image is de�ned asim(�) = ff 2 FTK j there exists g 2 K[Z�℄ su
h that �(g) = fg:Note that im(�) is a subalgebra of FTK .Lemma 5.4.1Let � : K[Z� ℄ �! FTK be a ring homomorphism. Then K[Z�℄=ker(�) �= im(�).Proof :To see this inspe
t the mapping  : K[Z� ℄=ker(�) �! im(�) de�ned by g +ker(�) 7! �(g). Then  is an isomorphism.1.  (g + ker(�)) = o for g 2 ker(�) by the de�nition of ker(�).2.  ((g1+ker(�))+(g2+ker(�))) = �(g1+g2) =  (g1+ker(�))+ (g2+ker(�)).3.  ((g1+ker(�))? (g2+ker(�))) = �(g1 ?g2) =  (g1+ker(�))? (g2+ker(�)),as for g 2 K[Z� ℄ and h 2 ker(�) we have  (g ? h) =  (h ? g) = o.4.  is onto as its image is the image of � and by the de�nition of the latter forea
h f 2 im(�) = im( ) there exists g 2 K[Z�℄ su
h that �(g) = f . Sin
efor all h 2 ker(�) we have �(h) = o then  (g + ker(�)) =  (g) = �(g).



5.4 Polynomial Mappings 1875. Assume that for g1; g2 2 K[Z�℄ we have  (g1 + ker(�)) =  (g2 + ker(�)).Then �(g1) = �(g2) and this immediately implies that g1 � g2 2 ker(�) andhen
e  is also a monomorphism. q.e.d.Now the theory of elimination des
ribed in the previous se
tion 
an be used toprovide a Gr�obner basis for ker(�). Remember that the tag variables 
ommutewith the elements on T . Again we use the fun
tion ring FZ�TK and the fa
tthat K[Z�℄ � FZ�TK by mapping the polynomials to the respe
tive fun
tions inFZ�K � FZ�TK .Theorem 5.4.2Let i = ideal(fz1 � f1; : : : ; zn � fng) � FZ�TK . Then ker(�) = i \ K[Z� ℄.Proof :Let g 2 i \ K[Z�℄ . Then g = Pnj=1 hj ? sj ? h0j with sj 2 fz1 � f1; : : : ; zn � fng,hj; h0j 2 FZ�TK . As �(zj � fj) = o for all 1 � j � n we get �(g) = o and hen
eg 2 ker(�).To see the 
onverse let g 2 ker(�). Then g 2 K[Z�℄ and hen
e g =Pmj=1 �j � wjwhere wj 2 Z�, 1 � j � m. On the other hand we know �(g) = o. Theng = g � �(g)= mXj=1 �j � wj � mXj=1 �j � �(wj)= mXj=1 �j � (wj � �(wj))It remains to show that w��(w) 2 i for all w 2 Z� as this implies g 2 i\K[Z� ℄.This will be done by indu
tion on k = jwj. For k = 1 we get w = zi for some1 � i � n and w � �(w) = zi � fi 2 i. In the indu
tion step let w � a1 : : : ak,ai 2 Z. Then we geta1(a2 : : : ak � �(a2 : : : ak)) + (a1 � �(a1))�(a2 : : : ak)= a1a2 : : : ak � a1�(a2 : : : ak) + a1�(a2 : : : ak)� �(a1)�(a2 : : : ak)= a1a2 : : : ak � �(a1 : : : ak)Then, as ja2 : : : akj = k�1 the indu
tion hypothesis yields a2 : : : ak��(a2 : : : ak) 2i and as of 
ourse a1 � �(a1) 2 i we �nd that a1a2 : : : ak � �(a1 : : : ak) 2 i. q.e.d.Now if G is a (weak) Gr�obner basis of i in FZ�TK with respe
t to an eliminationordering where the elements in Z� are made smaller than those in T , then G \



188 Chapter 5 - Appli
ations of Gr�obner BasesK[Z�℄ is a (weak) Gr�obner basis of the kernel of �. Hen
e, in 
ase �nite su
hbases exist or bases allowing to solve the membership problem, they 
an be usedto treat the following question.Kernel of a Polynomial MappingGiven: A set F = fz1� f1; : : : ; zn� fng � FZ�TK en
oding a mapping� : K[Z� ℄ �! FTK and an element f 2 K[Z�℄.Problem: f 2 ker(�)?Pro
eeding: 1. Let G be a (weak) Gr�obner basis of ideal(fz1�f1; : : : ; zn�fng)with respe
t to an elimination ordering.2. Let G0 = G \ K[Z�℄.3. If f ��!G0 o, then f 2 ker(�).A similar question 
an be asked for the image of a polynomial mapping.Image of a Polynomial MappingGiven: A set F = fz1� f1; : : : ; zn� fng � FZ�TK en
oding a mapping� : K[Z� ℄ �! FTK and an element f 2 FTK .Problem: f 2 im(�)?Pro
eeding: 1. Let G be a Gr�obner basis of ideal(fz1� f1; : : : ; zn� fng) withrespe
t to an elimination ordering.2. If f ��!G h, with h 2 K[Z�℄, then f 2 im(�).The basis for this solution is the following theorem.Theorem 5.4.3Let i = ideal(fz1 � f1; : : : ; zn � fng) � FZ�TK and let G be a Gr�obner basis ofi with respe
t to an elimination ordering where the elements in Z� are smallerthan those in T . Then f 2 FTK lies in the image of � if and only if there existsh 2 K[Z�℄ su
h that f ��!G h. Moreover, f = �(h).Proof :Let f 2 im(�), i.e., f 2 FTK . Then f = �(g) for some g 2 K[Z� ℄. Moreover,f�g = �(g)�g, and similar to the proof of Theorem 5.4.2 we 
an show f�g 2 i.Hen
e, f and g must redu
e to the same normal form h with respe
t to G. Asg 2 K[Z�℄ this implies h 2 K[Z� ℄ and we are done.To see the 
onverse, for f 2 FTK let f ��!G h with h 2 K[Z�℄. Then f �h 2 i andhen
e f � h =Pkj=1 gj ? sj ? g0j with sj 2 fz1 � f1; : : : ; zn � fng, gj ; g0j 2 FTK . As�(sj) = o we get f � �(h) = o and hen
e f = �(h) is in the image of �. q.e.d.
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tion Rings over the Integers 189Obviously the question of whether an element lies in the image of � then 
anbe answered in 
ase we 
an 
ompute a unique normal form of the element withrespe
t to the Gr�obner basis of i = ideal(fz1 � f1; : : : ; zn � fng).Another question is whether the mapping � : K[Z�℄ �! FTK is onto. This is the
ase if for every t 2 T we have t 2 im(�). A simpler solution 
an be found in
ase T � �� for some �nite set of letters � = fa1; : : : ; akg and additionally T issubword 
losed as a subset of ��.Theorem 5.4.4Let i = ideal(fz1 � f1; : : : ; zn � fng) � FZ�TK and let G be a Gr�obner basis ofi with respe
t to an elimination ordering where the elements in Z� are smallerthan those in T . Then f 2 FTK is onto if and only if for ea
h aj 2 �, we haveaj ��!G hj where hj 2 K[Z�℄. Moreover, aj = �(hj).Proof :Remember that � is onto if and only if aj 2 im(�) for 1 � j � k.Let us �rst assume that � is onto, i.e., a1; : : : ; ak 2 im(�). Then by Theorem5.4.3 there exist hj 2 K[Z�℄ su
h that aj ��!G hj, 1 � j � k.To see the 
onverse, again, by Theorem 5.4.3 the existen
e of hj 2 K[Z�℄ su
hthat aj ��!G hj , 1 � j � k now implies a1; : : : ; ak 2 im(�) and we are done.q.e.d.5.5 Systems of One-sided Linear Equations inFun
tion Rings over the IntegersLet FZbe the fun
tion ring over the integers Z as spe
i�ed in Se
tion 4.2.3.Additionally we require that multiplying terms by terms results in terms, i.e., ? :T � T �! T . Then a redu
tion relation 
an be de�ned for FZas follows:De�nition 5.5.1Let p, f be two non-zero polynomials in FZ. We say f redu
es p to q at � � t inone step, i.e. p�!g q, if(a) t = HT(f ? u) = HT(f) ? u for some u 2 T .(b) HC(f) > 0 and � = HC(f) ��+ Æ with �; Æ 2Z, � 6= 0, and 0 � Æ < HC(f).(
) q = p � f ? (� � u).The de�nition of s-polynomials 
an be derived from De�nition 4.2.66.



190 Chapter 5 - Appli
ations of Gr�obner BasesDe�nition 5.5.2Let p1; p2 be two polynomials in FZ. If there are respe
tive terms t; u1; u2 2 Tsu
h that HT(pi) ? ui = HT(pi ? ui) = t � HT(pi) let HC(pi) = 
i.Assuming 
1 � 
2 > 01, there are �; Æ 2Zsu
h that 
1 = 
2 ��+Æ and 0 � Æ < 
2and we get the following s-polynomialspol(p1; p2; t; u1; u2) = � � p2 ? u2 � p1 ? u1:The set SPOL(fp1; p2g) then is the set of all su
h s-polynomials 
orresponding top1 and p2. �Noti
e that two polynomials 
an give rise to in�nitely many s-polynomials. Asubset C of these possible s-polynomials SPOL(p1; p2) is 
alled a stable lo
al-ization if for any possible s-polynomial p 2 SPOL(p1; p2) there exists a spe
ials-polynomial h 2 C su
h that p�!h o.In the following let f1; : : : ; fm 2 FZ. We des
ribe a generating set of solutionsfor the linear one-sided inhomogeneous equation f1 ? X1 + : : :+ fm ? Xm = f0 inthe variables X1; : : : ;Xm provided a �nite 
omputable right Gr�obner basis of theright ideal generated by ff1; : : : ; fmg in FZexists.In order to �nd a generating set of solutions we have to �nd one solution off1 ? X1 + : : :+ fm ? Xm = f0 (5.1)and if possible a �nite set of generators for the solutions of the homogeneousequation f1 ? X1 + : : :+ fm ? Xm = o: (5.2)We pro
eed as follows assuming that we have a �nite right Gr�obner basis of theright ideal generated by ff1; : : : ; fmg:1. Let G = fg1; : : : ; gng be a right Gr�obner basis of the right ideal generated byff1; : : : ; fmg in FZ, and f = (f1; : : : ; fm), g = (g1; : : : ; gn) the 
orrespondingve
tors. There are two linear mappings given by matri
es P 2 Mm�n(FZ),Q 2 Mn�m(FZ) su
h that f � P = g and g �Q = f .2. Equation 5.1 is solvable if and only if f0 2 idealr(ff1; : : : ; fmg). This isequivalent to f0 ��!rG 0 and the redu
tion sequen
e gives rise to a represen-tation f0 =Pni=1 gi ? hi = g � h where h = (h1; : : : ; hn). Then, as f � P = g,we get g � h = (f � P ) � h and P � h is su
h a solution of equation 5.1.3. Let fz1; : : : ; zrg be a generating set for the solutions of the homogeneousequation g1 ? X1 + : : :+ gn ? Xn = 0 (5.3)1Noti
e that 
i > 0 
an always be a
hieved by studying the situation for �pi in 
ase wehave HC(pi) < 0.



5.5 Systems of One-sided Linear Equations in Fun
tion Rings over the Integers 191and let Im be the m � m identity matrix. Further let w1; : : : ;wm be the
olumns of the matrix P �Q� Im. Sin
e f � (P �Q� Im) = f �P �Q� f � Im =g �Q� f = 0 these are solutions of equation 5.2. We 
an even show that theset fP � z1; : : : ; P � zr;w1; : : : ;wmg generates all solutions of equation 5.2:Let q = (q1; : : : ; qm) be an arbitrary solution of equation 5.2. Then Q � qis a solution of equation 5.3 as f = g � Q. Hen
e there are h1; : : : ; hr 2 FZsu
h that Q � q = z1 � h1 + : : :zr � hr. Further we �ndq = P �Q�q�(P �Q�Im)�q = P �z1 �h1+: : : P �zr �hr+w1 �q1+: : :+wm �qmand hen
e q is a right linear 
ombination of elements in fP � z1; : : : ; P �zr;w1; : : : ;wmg.Now the important part is to �nd a generating set for the solutions of the ho-mogeneous equation 5.3. In 
ommutative polynomial rings is was suÆ
ient tolook at spe
ial ve
tors arising from those situations 
ausing s-polynomials. Thesesituations are again important in our setting:For every gi; gj 2 G not ne
essarily di�erent su
h that the stable lo
alizationCi;j � SPOL(gi; gj) for the s-polynomials is not empty and additionally we requirethese sets to be �nite, we 
ompute ve
tors aìj, 1 � ` � jCj as follows:Let t = HT(gi ? u) = HT(gi) ? u = HT(gj) ? v = HT(gj ? v), t � HT(gi), t �HT(gj), be the overlapping term 
orresponding to h` 2 Ci;j. Further let HC(gi) �HC(gj) > 0 and HC(gi) = � � HC(gj) + � for some �; � 2 Z, 0 � � < HC(gj).Then h` = gi ? u� gj ? (� � v) = nXl=1 gl ? hl;where the polynomials hl 2 FZare due to the redu
tion sequen
e h` ��!rG 0.Then aìj = (a1; : : : ; an), where ai = hi � u;aj = hj + � � v;al = hl;l 6= i; j, is a solution of 5.3 as Pnl=1 gl ? hl � gi ? u+ gj ? � � v = 0.If all sets SPOL(gi; gj) are empty for gi; gj 2 G, in the 
ase of ordinary Gr�obnerbases in polynomial rings one 
ould 
on
lude that the homogeneous equation 5.3had no solution. This is no longer true for arbitrary fun
tion rings.Example 5.5.3LetZ[M℄ be a monoid ring whereM is presented by the 
omplete string rewritingsystem � = fa; bg, T = fab �! �g. Then for the homogeneous equation(a+ 1) ? X1 + (b+ 1) ? X2 = 0



192 Chapter 5 - Appli
ations of Gr�obner Baseswe �nd that the set fa + 1; b + 1g is a pre�x Gr�obner basis of the right idealit generates. Moreover neither of the head terms of the polynomials in thisbasis is pre�x of the other and hen
e no s-polynomials with respe
t to pre�xredu
tion exist. Still the equation 
an be solved: (b;�1) is a solution sin
e(a+ 1) ? b� (b+ 1) = b+ 1� (b+ 1) = 0.Hen
e inspe
ting s-polynomials is not suÆ
ient to des
ribe all solutions. Thisphenomenon is due to the fa
t that as seen before in most fun
tion rings s-polynomials are not suÆ
ient for a Gr�obner basis test. Additionally the 
on
eptof saturation has to be in
orporated. In Example 5.5.3 we know that (a+1)?b =1+b, i.e. b+1 2 SAT(a+1). Of 
ourse (a+1)?b�!b+1 0 and hen
e (a+1)?b = b+1gives rise to a solution (b;�1) as required above.More general we 
an express these additional solutions as follows: For everygi 2 G with SAT(gi) a stable saturator for fgig and again we additionally requireit to be �nte, we de�ne ve
tors bi;` = (b1; : : : ; bn) 1 � ` � jSAT(gi)j as follows:For gi ? w` 2 SAT(gi) we know gi ? w` = Pnl=1 gl ? hl as G is a Gr�obner basis.Then bi;` = (b1; : : : ; bn), where bi = hi � w`;bl = hl;l 6= i, is a solution of equation 5.3 as Pnl=1 gl ? hl � gi ? w` = 0.Lemma 5.5.4Let fg1; : : : ; gng be a �nite right Gr�obner basis. For gi; gj let Ci;j be a stablelo
alization of SPOL(gi; gj). The �nitely many ve
tors a`1i;j;bi;`2 , 1 � i; j � n,1 � `1 � jCi;jj, 1 � `2 � jSAT(gi)j form a right generating set for all solutions ofequation 5.3.Proof :Let p = (p1; : : : ; pn) be an arbitrary (non-trivial) solution of equation 5.3, i.e.,Pni=1 gi ? pi = 0. Let Tp = maxfHT(gi ? tpij ) j 1 � i � n; pi = Pnij=1 �pij � tpij g,Kp the number of multiples gi ? tpij with Tp = HT(gi ? tpij ) 6= HT(gi) ? tpij , andMp = ffHC(gi) j HT(gi?tpij ) = Tpgg a multiset inZ. A solution q is 
alled smallerthan p if either Tq � Tp or (Tq = Tp and Kq < Kp) or (Tq = Tp and Kq = Kp andMq �Mp). We will prove our 
laim by indu
tion on Tp, Kp and Mp and have todistinguish two 
ases:1. If there is 1 � i � n, 1 � j � ni su
h that Tp = HT(gi ? tpij ) 6= HT(gi) ? tpij ,then there exists s` 2 SAT(gi) su
h that gi ? tpij = s` ? v for some v 2 T ,HT(s` ? v) = HT(s`) ? v and s` = gi ? w`, w` 2 T . Then we 
an setq = p+ �pij � bi;` ? v withqi = pi + �pij � (hi � w`) ? vql = pl + �pij � hl ? v for l 6= i
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tion Rings over the Integers 193whi
h is again a solution of equation 5.3. It remains to show that it isa smaller one. To see this we have to examine the multiples gl ? tqlj forall 1 � l � n, 1 � j � ml where ql = Pmlj=1 �qlj � tqlj . Remember thatHT(s`) � HT(s` ? v) = HT(s`) ? v = Tp. Moreover, for all terms whljin hl = Pmlj=1 �hlj � whlj we know whlj � HT(s`), as the hl arise from theredu
tion sequen
e gi ?w` ��!pG 0, and hen
e HT(whlj ?v) � HT(s` ?v) = Tp.(a) For l = i we get gi?qi = gi?(pi+�pij �(hi�w`)?v) = gi?pi+�pij �gi?hi?v��pij �gi ?w` ?v and as HT(gi ?tpij ) = HT(gi ?w` ?v) and the resultingmonomials add up to zero we get maxfHT(gi?whij ) j 1 � j � mig � Tp.(b) For l 6= i we get gl ?ql = gl ? (pl+�pij �hl?v) = gl ?pl+�pij �gl?hl ?v andmaxfHT(gi ? whlj ) j 1 � j � mlg � Tp as well as maxfHT(gi ? whlj ) j1 � j � mlg � Tp.Hen
e while still in one of the 
ases we must have Tq = Tp, the elementgi ? tpij is repla
ed by the sum Pnl=1 gl ? hl ? v where the hl arise from theredu
tion sequen
e s` ��!G 0. Let hl =Pklj=1 �hlj � thlj . Sin
e s` is stable, forall elements gl ?thlj involved in the redu
tion of the head term of s` we knowHT(gl ? thlj ? v) = HT(gl) ? thlj ? v = Tp and no other elements result in thisterm. Hen
e Kq < Kp and q is smaller than p.2. Let us now assume there are 1 � i1; i2 � n, 1 � j1 � ni1, 1 � j2 � ni2 su
hthat HT(gi1 ? tpi1j1 ) = HT(gi1) ? tpi1j1 = Tp = HT(gi2) ? tpi2j2 = HT(gi2 ? tpi2j2 ).Moreover, we assume HC(gi1) � HC(gi2) > 0 and HC(gi1) = � �HC(gi2) + �,�; � 2Z, 0 � � < HC(gi2). Let h`2 2 Ci1;i2 su
h that for the 
orrespondings-polynomial p = gi1 ? tpi1j1 � � � gi2 ? tpi2j2 we have p = h`2 ? v and h`2 =gi1 ? u1 � gi2 ? (� � u2). Sin
e we have a ve
tor a`2i1;i2 
orresponding to h`2 ,we 
an de�ne a new solution q = p+ �pi1j1 � ai1;i2 ? v withqi1 = pi1 + �pi1j1 � (hi1 � u1) ? vqi2 = pi2 + �pi1j1 � (hi2 + � � u2) ? vql = pl + �pi1j1 � hl ? v for l 6= i; j:It remains to show that this solution indeed is smaller. To do this weexamine the multiples gl ? tqlj for all 1 � l � n, 1 � j � ml where ql =Pmlj=1 �qlj � tqlj . Let hl =Pklj=1 �hlj � thlj . Sin
e the elements gl ? thlj arise fromthe redu
tion sequen
e h`2 ��!G 0 and the s-polynomial is stable we haveadditional information on how these elements a�e
t the size of the newsolution q. Sin
e HT(gl ? thlj ) = HT(gl) ? thlj � HT(h`2) we 
an 
on
ludeHT(gl ? tqlj ) � HT(h`2) ? v � Tp and we get the following boundaries:(a) For l 6= i1; i2 we get gl ? ql = gl ? pl + �pi1j1 � gl ? hl ? v. This impliesmaxfHT(gl ? tqlj ) j 1 � j � mlg � Tp.



194 Chapter 5 - Appli
ations of Gr�obner Bases(b) For l = i1 we get gi1?qi1 = gi1?pi1+�pi1j1 �gi1?hi1?v��pi1j1 �gi1?u1?v. Sin
e�pi1j1 �HM(gi1) ? tpi1j1 = �pi1j1 �HM(gi1) ? u1 ? v we get maxffHT(gi1 ? tqi1j ) j1 � j � mi1gnfHT(gi1) ? tpi1j1 ;HT(gi1) ? u1 ? vgg � Tp.(
) For l = i2 we get gi2 ?qi2 = gi2 ?pi2+�pi1j1 �gi2 ?hi2 ?v+�pi1j1 �gi2 ?�?u2?v.Again maxfHT(gi1 ? tqi1j ) j 1 � j � mi1g � Tp.Now in 
ase � = 0 we know that the equations are stri
t as then HT(h`2) ?v � Tp holds. Then either Tq � Tp or (Tq = Tp and Kq < Kp). If � 6= 0we have to be more 
arefull and have to show that then Mq � Mp. Forthe elements gl ? thlj arising from redu
ing the head of the s-polynomialwe know that gl ? thlj ? v again has the same head 
oeÆ
ient as gl ? thlj .Now as HC(h`2) = �, by the de�nition of our redu
tion relation we knowthat only gl with HC(gl) � � are appli
able. Hen
e while two elementsHC(gi1);HC(gi2) are removed from the multiset Mp only ones less equal to� < HC(gi2) � HC(gi1) are added and hen
e the multiset be
omes smaller.Hen
e we �nd that in all 
ases above either Tq � Tp or ( Tq = Tp andKq < Kp) or (Tq = Tp, Kq = Kp and Mq � Mp). Therefore, in all 
ases,we 
an rea
h a smaller solution and sin
e our ordering on solutions is well-founded, or 
laim holds. q.e.d.Corollary 5.5.5Let fg1; : : : ; gng be a �nite right Gr�obner basis. For not ne
essarily �nite lo
al-izations Ci;j � SPOL(gi; gj) and SAT(gi) the not ne
essarily �nite set of ve
torsa`1i;j;bi;`2 , 1 � i; j � n, h`1 2 Ci;j, s`2 2 SAT(gi) forms a right generating set forall solutions of equation 5.3.The approa
h extends to systems of linear equations by using Gr�obner bases inright modules. A study of the situation for one-sided equations in integer monidand group rings 
an be found in [Rei00℄.



Chapter 6Con
lusionsThe aim of this work was to give a guide for introdu
ing redu
tion relations andGr�obner basis theory to algebrai
 stru
tures. We 
hose fun
tion rings as theyallow a representation of their elements by formal sums. This gives a natural linkto those algebrai
 stru
tures known in the literature where the Gr�obner basismethod works. At the same time fun
tion rings provide enough 
exibility tosubsume these algebrai
 stru
tures.In the general setting of fun
tion rings we introdu
ed the algebrai
 terms whi
hare vital in Gr�obner basis theory: head monomials, head terms, standard rep-resentations, standard bases, redu
tion relations and of 
ourse (weak) Gr�obnerbases. In
orporating the te
hnique of saturation we 
ould give 
hara
terizationsof Gr�obner bases in terms of 
riti
al situations similar to the original approa
h.We have established the theory �rst for right ideals in fun
tion rings over �eldsas this is the easiest setting. This has been generalized to fun
tion rings overredu
tion rings - a very general setting. Then in order to show how more knowl-edge on the redu
tion relation 
an be used to get deeper results on 
hara
terizingGr�obner bases, we have studied the spe
ial redu
tion ring Z, whi
h is of interestin the literature. The same approa
h has been applied to two-sided ideals infun
tion rings with of 
ourse weaker results but still providing 
hara
terizationsof Gr�obner bases.Important algebrai
 stru
tures where the Gr�obner basis method has been su
-
essfully applied in the literature have been outlined in the setting of fun
tionrings. It has also been shown how spe
ial appli
ations from Gr�obner basis theoryin polynomial rings 
an be lifted to fun
tion rings.What remains to be done is to �nd out if this approa
h 
an be extended tofun
tion rings allowing in�nite formal sums as elements. Su
h an extension wouldallow to subsume the work of Mora et. al. on power series whi
h resulted in thetangent 
one algorithm. These rings are 
overed by graded stru
tures as de�nedby Apel in his habilitation ([Ape98℄), by monomial stru
tures as de�ned by Pes
hin his PhD Thesis ([Pes97℄) and by Mora in \The Eigth variation" (on Gr�obner



196 Chapter 6 - Con
lusionsbases). However, these approa
hes require admissible orderings and hen
e do not
over general monoid rings.
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