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Abstract

Firstly, we show that the NEUMANN ordinals can be defined and understood in set theory
without fixing a special theory of sets and classes such as NEUMANN–BERNAYS–GÖDEL,
MORSE–KELLEY, or QUINE’s ML, and without any axioms, but the Axiom of Extensional-
ity. Especially, no axioms of choice, foundation, infinity,subset, or power are required.
Secondly, for general monotonic functors we present KNASTER–TARSKI andwell-ordered
fixpoint construction. For set-continuous monotonic class operatorswe present least and
greatest fixpoint construction in set theory. Foralgebraic class operatorsthere is a special
of construction of the elements of the least fixpoint with labeled well-founded rooted graphs.
As special monotonic class operators we discussclosure operatorsand their relation tocom-
plete lattices, as well asalgebraic closure operatorsand their relation toalgebraic lattices.
Finally, we show how to construct two monotonic closure operators from a monotonic func-
tor, namely theleast-fixpointand thegreatest-fixpointoperator.
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1 Urelements, Sets, and Classes

1.1 The Elementary Signature

The objects of class theory are partitioned intoclassesandurelements. The classes are again
partitioned intosetsandproper classes.

These partitions develop out of the binary element predicate “ ∈ ” and the singulary pred-
icate symbol of urelementship “U( )”, which make up the wholeelementary(i.e. non-defined)
signature of class theory, besides the pair constructor “( , )”, which may be reduced to classes
or urelements in some class theories, but which should always be included for conceptual reasons
anyway.

Following[Tarski, 1986], we do not consider the binary predicate ofprimitive equality“ = ”
as a part of any signature, but of our logic language already.

1.2 Class Comprehension

It is convenient to add a class constructor{ x | A }, which binds a variablex for a formulaA
and, roughly speaking, is intended to construct “the class of all x such thatA” as a result of this
description and comprehension.

In Requirement 1.1, we assume the axiom scheme ofclasscomprehension which is common
to the class theories of MORSE–KELLEY (MK) and QUINE’s ML (ML). 1 It differs from the one
of NEUMANN–BERNAYS–GÖDEL (NBG) only insofar as it admits binding of unrestricted class
variables in the formulaA. As there are no proper classes but only sets in the set theories of
ZERMELO–FRAENKEL (ZF) (similar to NBG and MK) and QUINE’s NF (NF) (similar to ML),
ZF and NF do not have any class comprehension schemes.

Requirement 1.1 (Axiom of Class Comprehension)
For each formulaA, each variablex, and each termt, we require: then we require:

t ∈ { x | A } iff A{x 7→t} ∧ ∃Z. (t∈Z).

In § 1.6, we will show that we can eliminate the class constructorfrom all formulas, so that we
do not have to add it to the symbols of our elementary signature.

We can now already use the class constructor to define the following:

∅ := { y | y 6= y } “empty set”
V := { y | y = y } “universal class”
S := { y | ¬ U(y) } “class of all sets”

{X} := { y | y = X } “singleton set ofX”
R := { x | x 6∈x } “RUSSELL class”

X∩Y := { x | x∈X ∧ x∈ Y } “union of X andY ”
X∪Y := { x | x∈X ∨ x∈ Y } “intersection ofX andY ”
X\Y := { x | x∈X ∧ x 6∈ Y } “complement ofY w.r.t. X”

dom(R) := { x | ∃y. ((x, y)∈R) } “domain ofR ”
ran(R) := { y | ∃x. ((x, y)∈R) } “range ofR ”

field(R) := dom(R) ∪ ran(R) “field of R ”
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Corollary 1.2 ∃Z. (t∈Z) iff t∈V.

Corollary 1.3 For each formulaA, each variablex, and each termt, we have:

t ∈ { x | A } iff A{x 7→t} ∧ t∈V.

For t being not an object variable but a term with precisely the newvariablesx1, . . . , xn, the no-
tation “{ t | A }” abbreviates{ y | ∃x1, . . . , xn. (y=t ∧ A) }, for a new variabley. Similarly,
“{ t ∈ B | A }” abbreviates{ y | ∃x1, . . . , xn. (y=t ∧ y ∈B ∧ A) }. We now can define the
following:

id := { (x, x) | x = x } “identity function”
X×Y := { (x, y) | x∈X ∧ x∈Y } “Cartesian product ofX andY ”

R−1 := { (y, x) | (x, y)∈R } “reverse relation ofR ”
R ◦ S := { (x, z) | ∃y. ((x, y)∈R ∧ (y, z)∈S) } “concatenation ofR andS”

X↿R := { (x, y)∈R | x∈X } “restriction ofR to X”
R↾Y := { (x, y)∈R | y ∈Y } “range-restriction ofR to Y ”
〈X〉R := { y | ∃x∈X. ((x, y)∈R) } “image ofX underR ”

= ran(X↿R)
R〈Y 〉 := { x | ∃y ∈Y. (x, y)∈R } “reverse-image ofY underR ”

= dom(R↾Y )
R(x) := εy. ((x, y)∈R) “functional application”

The precise definition of functional application is not really important here because we will
write “R(x)” only if ∃z. ∀y. (y = z ⇔ (x, y)∈R). The reason for a concrete definition is
that we need it for explaining stratifiedness, cf. Definition1.30. The reason for choosing a de-
scriptive term is that we want to avoid overspecification. And the reason for choosing HILBERT’s
ε-operator instead of PEANO’s (inverted)ι-operator is because we thinkι-operators to be obso-
lete, cf.[Wirth, 2008]. Only to be self-contained here, we assume the following axiom scheme
for theε:

Requirement 1.4 (ε-Formula)
For each formulaA, each variablex, and each termt, we require:

A{x 7→t} ⇒ A{x 7→ εx.A}.
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1.3 Urelements

For very good reasons,2 we have chosen urelements to be an elementary concept in our class
theory. And we denote the singulary predicate of being an urelement by the symbol “U( )” of
our elementary signature of class theory; cf.§1.1.

In the literature, urelements are sometimes called “atoms”. This, however, is misleading
because urelements do not have to be atomic. For example, a pair of two sets may well be an
urelement.

To the contrary, the German prefix “ur” indicates exactly3 the proper intention behind ur-
elements: Urelements areneither constructedby the set constructor{ x | A } nor derived
by comprehension (cf. Requirement 1.5). Instead,urelementsare possibly given as additional
elements(i.e. no proper classes) ofunknown origin.

As the most basic intention related to urelements is to be different from classes, we capture
this intention with the following axiom scheme:

Requirement 1.5 (Axiom of Urelements)
For each formulaA and each variablex, we require ¬U({ x | A }).

For discussion of equality in§ 1.4, we also need the following relation symbol:

Definition 1.6 (Equality of Urelements “ =U ”)
X =U Y if X = Y ∧ U(X) ∧ U(Y ).
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1.4 Subclass and Extensionality

Definition 1.7 (Subclass, ‘⊆’, ‘⊇’)
X ⊆ Y if ¬U(X) ∧ ¬U(Y ) ∧ ∀x. (x∈X ⇒ x∈Y ).
Y ⊇ X if X⊆Y .
X ( Y if X⊆Y ∧ X 6= Y .

As corollaries of Requirement 1.5 and Definition 1.7 we get:

Corollary 1.8 ∅ ⊆ S ⊆ V.

Corollary 1.9
The following three statements are logically equivalent:¬U(X); ∅ ⊆ X; X ⊆ V.

Definition 1.7 makes⊆ reflexive on non-urelements (i.e. classes) and transitive.We will assume
antisymmetry of⊆ as an axiom, cf. Requirement 1.10. Thus, the subclass relation⊆ will be a
reflexive ordering on classes.

Requirement 1.10 (Axiom of Extensionality)
∀X,Y. (X ⊆ Y ∧ X ⊇ Y ⇒ X = Y ).

Lemma 1.11

X = Y ⇔ if
(

U(X)
∨ U(Y )

)

then X =U Y else ∀x.

(

x∈X
⇔ x∈ Y

)

fi.

Remark 1.12 If we assume “ =U ” to be an elementary symbol of our language, then we
can read Lemma 1.11 as a definition and use it to remove all occurrences of “= ”, which then
can be treated as a defined symbol.

Proof of Lemma 1.11

U(X) ∧ U(Y ): In this case,X = Y is logically equivalent toX =U Y according to Defini-
tion 1.6.

U(X) ∧ ¬U(Y ): In this case, X =U Y is logically equivalent to false according to Defini-
tion 1.6. Moreover, in this case,X = Y implies U(X) ∧ ¬U(X), which

implies false. The other direction is trivial:Ex falso quodlibet!

¬U(X) ∧ U(Y ): This case is symmetric to the previous one.

¬U(X) ∧ ¬U(Y ): In this case,X = Y trivially implies ∀x. (x∈X ⇔ x∈Y ). On the other
hand, in the latter case we getX ⊆ Y and X ⊇ Y by Definition 1.7, and

then X = Y by Requirement 1.10. Q.e.d. (Lemma 1.11)
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Definition 1.13 (Power Class, Meet Class)
P(X) := { z | z ⊆ X } “power class ofX”
b(X) := { z | ¬ U(z) ∧ ¬U(X) ∧ z ∩X 6= ∅ } “meet class ofX”

The symbol “b” is chosen for the meet class as in[Forster, 1995]. The reason for this is that “b”
looks a little bit like an upside-down “P” and the two are dual as follows:

Corollary 1.14 P(X) = { z | ¬ U(z) ∧ ¬U(X) ∧ ∀y ∈ z. (y ∈X) }
b(X) = { z | ¬ U(z) ∧ ¬U(X) ∧ ∃y ∈ z. (y ∈X) }

1.5 Sets and Classes

Definition 1.15 ([Proper] Class, Set)
X is aclass if ¬U(X). X is aproper classif X is a class but not a set.
x is aset if x∈S.

Not all classes can be sets: the RUSSELL classR is the famous example. We have

R∈R ⇔ R 6∈R ∧ R∈V,
and thus:

Corollary 1.16 ∀Z. (R 6∈Z) ∧ R 6∈V ∧ R 6∈R ∧ ¬U(R).

←−−−−−−U( )−−−−−−→←−−−−−−−−−−−−−−−−− is a class−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−− ∈ V−−−−−−−−−−−−−−−−→←−− is a proper class−−→

←−−−−−−−−− ∈ S−−−−−−−−−→ R

Different class theories compete in gettingV as big as possible. For example, in NF and ML we
have V ∈V. In NBG and in MK, however, a definable subclass of a set is always a set, which
implies V 6∈ V.

Lemma 1.17 P(V) = S.

Proof of Lemma 1.17
The following are logically equivalent: x ∈ P(V); x ⊆ V ∧ x∈V (by Corollary 1.3 and
Definition 1.13); ¬U(x) ∧ x∈V (by Corollary 1.9); x ∈ S (by Corollary 1.3).
By Requirement 1.5, we have¬U(P(V)) and ¬U(S).
Thus, an application of Lemma 1.11 completes the proof. Q.e.d. (Lemma 1.17)

As corollaries of Definition 1.15 as well as Corollary 1.9, Corollary 1.8, and Lemma 1.17, respec-
tively, we get:

Corollary 1.18 X ⊆ V iff X is a class.

Corollary 1.19 X 6∈ V ∧ ¬U(X) iff X is a proper class.

Corollary 1.20 x∈P(V) iff x is a set.
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1.6 Expansion of the Class Constructor

In § 1.1 we did not list the class constructor{ x | A } among the basic symbols of the signature
of class theory. Thus, there must be a procedure to eliminateit from all formulas. And as
formulas may be parts of terms (due to the class constructor and HILBERT’s ε-operator), it is
wise to eliminate it locally from all atomic predicates.

After a preprocessing phase, in which all symbols defined directly or indirectly in terms of the
class constructor must be recursively replaced with their definitions, this elimination procedure
applies the following rewrite steps:

Nested within a term: Replace all

atomic predicatesP [{ x | A }] where
the class constructor{ x | A } occurs as an argument of the pair constructor

with
∃Z. (Z = { x | A } ∧ P [Z])

for a new variableZ. For example, replace

(u, (v, { x | A })) ∈ w
with

∃Z. (Z = { x | A } ∧ (u, (v, Z)) ∈ w).

To the left of ∈: Replace all∈-atoms of the form

{ x | A } ∈ t
with

∃Z. (Z = { x | A } ∧ Z ∈ t)
for a new variableZ.

On both sides of=: Replace all=-atoms of the form

{ x | A } = { y | B }
with

∀z. (z ∈ { x | A } ⇔ z ∈ { y | B })

for a new variablez. This an equivalence transformation by Lemma 1.11 and Require-
ment 1.5.

On a single side of=: Replace all=-atoms of the forms

{ x | A } = t or t = { x | A }, wheret is not a class constructor,
with

¬U(t) ∧ ∀z. (z ∈ { x | A } ⇔ z ∈ t)

for a new variablez. This an equivalence transformation by Lemma 1.11, Requirement 1.5,
and Definition 1.6.

Urelements: Replace all atoms of the form

U({ x | A })
with

false.

This is an equivalence transformation according to Requirement 1.5.
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To the right of ∈: Replace all∈-atoms of the form

t ∈ { x | A } where the variablex does not occur in the termt
with

∃x. (x = t ∧ A ∧ ∃Z. (x∈Z))

for a new variableZ. This is an equivalence transformation by Requirement 1.1.The
quantification on the variablex is to avoid an increase of the number of occurrences of the
term t — and especially of the formulas thatt may contain — which might occur for the
alternative of substitutingt for x. In case thatx does occur int — to apply the replacement
nevertheless — we have to rename the bound variablex in { x | A } in advance.

Now any of these steps reduces the following measure w.r.t. the well-ordering which lexicograph-
ically combines the well-ordering of the natural numbers thrice:

1. Number of the occurrences of a class constructors at non-top-levels of terms or directly to
the left of∈.

2. Number of the occurrences of=.

3. Number of the occurrences of class constructors.

Thus, all these steps together form a strongly terminating rewrite system in which all formulas
containing class constructors are reducible.
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1.7 Standard Axioms of Set Theory

While the class theories of QUINE’s ML and NEUMANN–BERNAYS–GÖDEL are pro and contra
“V ∈V ”, i.e. pro and contra the universal class being a set, they agree on the axioms here, just
as MORSE–KELLEY, ZERMELO–FRAENKEL, and QUINE’s NF.

Requirement 1.21 (Axiom of the Empty Set and the Singleton Set)
∀X. ({X} ∈ S).

The title of Requirement 1.21 should become obvious from thefollowing corollary of Corollary 1.16:

Corollary 1.22 {R} = ∅.

Requirement 1.23 (Axiom of the Ordered Pair)

∀x1, y1.





(x1, y1)∈V

⇔

(

x1 ∈V
∧ y1 ∈V

)



 ∧ ∀x1, x2, y1, y2 ∈V.





(x1, y1) = (x2, y2)

⇔

(

x1 = x2

∧ y1 = y2

)



.

Requirement 1.24 (Axiom of Simple Operations)
∀x, y ∈S. (x∪y, x∩y, x\y, x↿id, x×y, dom(x), x−1, x◦y ∈ S).

Corollary 1.25 ∀x, y ∈S. (id↾x, ran(x), field(x), x↾y, y↿x, 〈y〉x, x〈y〉 ∈ S).

Note that the identity function “id” is not a set in ZF, NBG, and MK, but a set indeed in NF
and ML. Moreover, note that, for conceptual reasons, we do not state ∀x∈S. (P(x) ∈ S) as
an axiom here, although this is valid in all of ZF, NBG, MK, NF,and ML, but only in Defini-
tion 1.26 as a special axiom.

1.8 Rarely Needed Special Axioms of Set Theory

In rare occurrences, we will need the Power-Set Axiom, the Axiom of Collection (a strong form
of the Axiom of Replacement, cf. e.g.[Aczel, 1988]) or the Principle of Dependent Choice (a
weak form of the Axiom of Choice, cf.[Rubin & Rubin, 1985; Howard & Rubin, 1998]).

Definition 1.26 (Power-Set Axiom)
∀x ∈ S.

(

P(x) ∈ S
)

.

Definition 1.27 (Axiom of Collection,[Jech, 2006, p. 65])
TheAxiom of Collectionis the following axiom scheme, where the variablesX,Y must not occur
in the formulaA:

∀X ∈ S. ∃Y ∈ S. ∀x∈X.
(

∃y. A ⇒ ∃y ∈Y. A
)
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1.9 The Critical Axiom of MK : Separation

The following axiom scheme is standard with ZF, NBG, and MK. It is critical insofar as it is
inconsistent with the Axiom of Set Comprehension of QUINE’s ML (cf. Definition 1.29), because
the latter axiom impliesV to be set and then the former axiom impliesR to be a set as well.

Definition 1.28 (Axiom of Separation)
If A is a formula,x is a variable, andt is a term, then

t∈S ⇒ { x∈ t | A } ∈ S.

1.10 The Critical Axiom of ML : Stratified Set Comprehension

For the very few parts of this text which strongly rely on QUINE’s ML and QUINE’s NF, we have
to state ML’s axiom scheme ofset comprehension (cf.[Quine, 1981, p.159]), which — of
course — is stricter than the one ofclasscomprehension of Requirement 1.1. Moreover, while
the latter one is common to ML and NBG, the former one is only part of ML and — after
removing the restrictions to sets (i.e. elementship) — alsoof NF.

Definition 1.29 (Set Comprehension Axiom ofQUINE’s ML )
Let B be a stratified formula which contains no other free variables butx,w1, . . . , wn.
Let A result fromB by restricting all bound variables to membership, i.e. by replacing any
subformula of the forms∀z. C, ∃z. C, &c. with ∀z ∈V. C, ∃z ∈V. C, &c..
Then theset comprehension axiom scheme ofQUINE’s ML says that:

w1, . . . , wn ∈ V ⇒ { x | A } ∈ S.

Note that, in Definition 1.29, we may replace some of the “z ∈V ” with “ z ∈S ” because this
just means “z ∈V ∧ ¬U(z) ”.

Definition 1.30 (Stratification, Stratifiedness)

N is an integer-substituted formulaif there is a formulaA such thatN results fromA by
substituting all variables, bound as well as free ones, at all places, with integer numbers.
S is astratification if S is can be rewritten to an integer-substituted formulaS ′ where for each
atomA occurring inS ′ there is some integer numbern such thatA is of one of the following
atom patterns:

Urelement Predicate: U(n).

Element Predicate: n ∈ (n+1).

Primitive Equality Predicate: n= n.
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The rewriting may apply any rule of the following rewrite system from left to right:

Well-Typed Pair: (n, n)→ n.

HILBERT’s ε: εn. S ′′ → n if S ′′ is a stratification.

A formulaA is stratified if for B resulting fromA by expanding all defined symbols, including
the class constructor according the procedure of§1.6, and then renaming bound variables such
that each bound variable is bound only once and does not occurfree, there is a substitutionσ from
variables to integers, such that the application ofσ to B, replacing both free and bound variables,
at all places, is a stratification.

As expanding defined symbols is not always confluent in a strict sense, in Definition 1.30 we have
to check all possible expansions in principle. The intention, however, is that it does not matter,
which expansion we take. Moreover, expansion easily results in formulas of a size which hu-
mans cannot handle. Thus, instead of actually executing theexpansion, we prefer to extend the
confluent and strongly terminating rewrite system to handledefinitions of terms and to extend the
patterns to handle definitions of predicates:

Lemma 1.31 If we extend the atom patterns and the rewrite system of Definition 1.30 as follows
and do not enforce the definitional expansion of the respective symbols, this does not change the
notion of stratifiedness:

Subclass Predicate: n ⊆ n.

Functional Application: (n+1)(n)→ n.

Class Constructor: { n | S ′′ } → (n+1) if S ′′ is a stratification.

Simple Operations: n∩n → n
n∪n → n
n\n → n
n×n → n
n◦n → n

dom(n) → n
ran(n) → n

field(n) → n

n↿n → n
n↾n → n
〈n〉n → n
n〈n〉 → n

Power and Meet Class: P(n) → (n+1) b(n) → (n+1)

Proof of Lemma 1.31

As we will possibly change the whole definition of stratification in the further development, and
as proper proofs would be very involved, we just sketch the proofs here.

Subclass Predicate:Substitute the new variablex of Definition 1.7 with(n−1).

Functional Application:Consider the functional applicationf(x). According to the definition
of functional application in§ 1.2, f(x) expands toεy. ((x, y)∈ f).

Thus, the following are logically equivalent: there is somen ∈ N such that the definitional
expansion off(x) instantiated according toσ ⊎ {y 7→n} can be rewritten with the old rewrite
system tom; there is somen ∈ N such that(εy. ((x, y)∈ f))(σ ⊎ {y 7→n}) can be rewritten
with the old rewrite system tom; there is somen ∈ N such that((x, y)∈ f)(σ ⊎ {y 7→n}) is
a stratification andm = n; ((x, y)∈ f)(σ ⊎ {y 7→m}) is a stratification; fσ = m+1 and
xσ = m; (f(x))σ can be rewritten with the new rewrite system tom.
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Class Constructor:Here we have to consider all the expansions of§ 1.6. We assume exactly the
notation of the respective cases in§ 1.6.

“Nested within a term” or “To the left of∈”: As, in the definitional expansion,Z = { x | A }
is added for a new variableZ, in case that the in-

stantiated expansion is a stratification,{ x | A }σ must rewrite toZσ, andP [Z]σ must be a
stratification. This is equivalent to the stratification without definitional expansion because{ x |
A } now replacesZ in P [Z]. Note that the right-hand side of the new rewrite rule does not matter
in this case. What matters is only the addition of a new rule with the given left-hand side.

“On both sides of=” or “On a single side of=”: Trivial.

Urelements:Trivial.

To the right of∈: Assume that(t ∈ { x | A }) has passed definitional expansion with the ex-
ception of the given class constructor. Then the following are logically equi-

valent: there is annZ ∈ N such that, in the old rewrite system, definitional expansionof the
class constructor in(t ∈ { x | A }) instantiated according toσ ⊎ {Z 7→nZ} is a stratification;
there is annZ ∈ N such that, in the old rewrite system,

(

∃x. (x = t ∧ A ∧ ∃Z. (x∈Z))
)

(σ ⊎ {Z 7→nZ})
is a stratification; there is annZ ∈ N such that, in the old rewrite system,tσ rewrites toxσ,
andAσ is a stratification, andnZ = xσ+1; in the old rewrite system,tσ rewrites toxσ,
andAσ is a stratification; (t ∈ { x | A })σ is a stratification in the new rewrite system.

Q.e.d. (Lemma 1.31)

Example 1.32 (Stratifiedness, positive)
“f(g(x, y)) ⊆ g(f(x), y) ” is stratified according to the substitution

{x 7→n, y 7→n, f 7→(n+1), g 7→(n+1)},

the application of which results first in (n+1)((n+1)(n, n)) ⊆ (n+1)((n+1)(n), n) ,
then in (n+1)((n+1)(n)) ⊆ (n+1)(n, n) ,
then in (n+1)(n) ⊆ (n+1)(n) ,
and finally in n ⊆ n .

Example 1.33 (Stratifiedness, negative)

• “x 6∈ x” is not stratified, so that the RUSSELL class may still be a proper class.

• Moreover, “x /∈ f(x)” is not stratified, so that Cantor’s 2nd diagonalization may produce a
proper class.

• Finally, “α is full” (cf. Definition 3.7) is not stratified because its definiens
“∀x. ((x∈α)⇒ (x ⊆ α))”

is not stratified: Indeed, if we substitutex with n, to satisfy the atom pattern for “x ⊆ α”
of Lemma 1.31, we have to substituteα with n as well, resulting in

“∀n. ((n∈n)⇒ (n ⊆ n))”
containing the forbidden atom patternn∈n, not permitted for a stratification according to
Definition 1.30.



16

2 Basic Notions and Notation

Let ‘N’ denote the set of natural numbers and ‘≺’ the ordering onN.

Let N+ := { n∈N | 0 6= n }.

We use ‘⊎’ for the union of disjoint classes.

Thefinite power-class operatoris defined asPN(X) := { x | x ⊆ X ∧ |x| ∈N }.

Let R be a binary relation.R is said to be a relationon A if field(R) ⊆ A. R is irreflexive
if id ∩ R = ∅. R is A-reflexive if A↿id ⊆ R. Speaking of areflexiverelation we refer
to the largestA that is appropriate in the local context. And referring to this A we writeR0 to
ambiguously denoteA↿id. With R1 := R, and Rn+1 := Rn◦R for n ∈ N+, Rm denotes the
m-step relation forR. R is transitive if ∀x, y, z.

(

(x, y)∈R ∧ (y, z)∈R ⇒ (x, z)∈R
)

.
The transitive closureof R is R+ :=

⋃

n∈N+
Rn. Thereflexive & transitive closureof R is

R∗ :=
⋃

n∈N
Rn.

Furthermore, we use ‘∅’ to denote the empty set as well as the empty function. Functions are
(right-) unique relations and the meaning of ‘f◦g’ is extensionally given by(f◦g)(x) = g(f(x)).
Theclass of total functions fromA to B is denoted asA → B. Theclass of (possibly) partial
functions fromA to B is denoted asA  B. Both → and  associate to the right, i.e.
A B → C readsA (B → C).
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2.1 Suprema and Infima

Definition 2.1 (Dual, Upper Bound, Supremum)

Let≤ be a binary relation (onA). Let P be a singulary predicate (onA).

Thedual of≤ is its reverse relation denoted by≥.

s is an≤-upper bound ofP if

∀x. (P (x)⇒ x≤s) (UB≤(P, s))

s is an≤-supremum ofP if s is the least upper bound, i.e. an upper bound that is alower bound
(= dual of upper bound) of the upper bounds; formally:

UB≤(P, s) (sup 1)

and UB≥(λu. UB≤(P, u), s); (sup 2)

or more explicitly:
∀x. (P (x)⇒ x≤s) (sup 1′)

and ∀x.
(

∀u. (P (u)⇒ u≤x)⇒ s≤x
)

. (sup 2′)

We denote such a supremums with sup≤
P (x) x, or simply with supP (x) x.

An infimum is the dual of a supremum,inf≤ = sup≥; more explicitly: s is an≤-infimum ofP
if

UB≥(P, s) (inf 1)

and UB≤(λu. UB≥(P, u), s). (inf 2)

For a classX, we write sup≤ X for sup≤
x∈X x.

Lemma 2.2 (Existence of Suprema = Existence of Infima)
If ≤ is a binary relation (onA) where any singulary predicate (onA) has a≤-supremum
(in A), then any predicateP (on A) has an≤-infimum (inA), namely any≤-supremum ofλy.
UB≥(P, y) is an≤-infimum ofP ; i.e., roughly speaking, we can always take

inf≤
P (x) x := sup≤

UB≥(P,y)
y.

Proof of Lemma 2.2
As the second property(inf 2) of an≤-infimum of P is identical to the first property(sup 1) of
an≤-supremum ofλy. UB≥(P, y), namely (sup 1){P 7→ λy. UB≥(P, y)}, it suffices to show
that the second property of the supremum, namely(sup 2){P 7→λy. UB≥(P, y)}, implies the
first property of the infimum, i.e.

UB≥(λu. UB≤(λy. UB≥(P, y), u), s) ⇒ UB≥(P, s),
which is hardly comprehensible to humans, but most easily proved automatically.4 Maybe hu-
mans would understand the following proof: “The class of upper bounds of the lower bounds
of P is a super-class of the extension ofP . Thus, any lower bound of the upper bounds of the
lower bounds ofP is a lower bound ofP .” Q.e.d. (Lemma 2.2)
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2.2 Well-Founded Orderings

Definition 2.3 ([S-] Well-Founded, Total, Ordering)
Let < be a binary relation. As always, let>, thedual of<, be defined bya>b if b<a.
< is [S-] well-founded if for any classQ (⊆ field(<)) with Q 6= ∅ [andQ∈S], we have

∃m∈Q. ∀w∈Q. ¬(w<m).
< is total if < is total onfield(<). < is total on A if ∀a, b∈A. (a<b ∨ a>b ∨ a= b).
< is anordering[onA] if < is an irreflexive and transitive relation [onA].

Note that, in the literature, an ordering is sometimes called “strict partial ordering” and a total
ordering is often called alinear ordering.

Lemma 2.4 ([Wirth, 2004, Lemma 2.1])
For a binary relationR [with R+ ∈ S ], we have the following logical equivalence:
R is [S-] well-founded iffR+ is an [S-] well-founded ordering.

Proof of Lemma 2.4

The backward implication is trivial becauseR+-minimality in a classQ implies R-minimality
in Q due to R ⊆ R+.

For the forward implication, sinceR+ is clearly transitive, it suffices to show that it is
[S-] well-founded, because then it is irreflexive. Thus, suppose that there is some classQ with
[Q∈S and] ∀a∈Q. ∃a′ ∈Q. a′R+a. We have to show thatQ must be empty.

Set B := 〈Q〉R∗.

[As B = Q ∪ 〈Q〉R+, we get B ∈S by Requirement 1.24 and Corollary 1.25.]

Claim 1: For anyb ∈ B, there is someb′ ∈ B with b′ R b.

Proof of Claim 1: Let us assumeb ∈ B. Then, by definition ofB and the property ofQ, there
are somea, a′ ∈ Q with a′ R+ a R∗ b. Thus, a′ R+ b. Thus, there is someb′ with a′ R∗ b′ R b.

Q.e.d. (Claim 1)

By Claim 1 and the assumption thatR is [S-] well-founded, we getB = ∅.
Then, we also haveQ = ∅ due to Q ⊆ B. Q.e.d. (Lemma 2.4)

Although the following lemma will have only one direct application in this paper (namely in the
Proof of Lemma 3.31), this application is crucial.

Lemma 2.5
If < is an[S-] well-founded relation and
if f : field(<)→ field(<) satisfies ∀a, b.

(

a < b ⇒ f(a) < f(b)
)

;
then we have

∀a. ¬(f(a) < a)

[provided that either we assume the Set Comprehension Axiom of ML and <, f ∈ S, or else we
assume the Axiom of Separation andfield(<) ∈ S.]
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Proof of Lemma 2.5

Set Q := { a | f(a) < a }.

[On the one hand, if we assume the Set Comprehension Axiom of ML (cf. Definition 1.29) and
<, f ∈ S, then we haveQ∈S. On the other hand, if we assume the Axiom of Separation
(cf. Definition 1.28) andfield(<) ∈ S, then due toQ ⊆ field(<), we haveQ∈S as well.]

Assume thatQ 6= ∅. Then, as< is [S-] well-founded, there is somem ∈ Q with ∀w∈Q.
¬(w < m). But then f(m) < m. Then f(f(m)) < f(m). Thus, f(m) ∈ Q, contradicting
f(m) < m. Q.e.d. (Lemma 2.5)

Lemma 2.6 Letf be a function. Let<0 be an ordering ondom(f). Let<1 be an ordering on
ran(f). If ∀a, b∈ dom(f).

(

a <0 b ⇔ f(a) <1 f(b)
)

, then

∀b ∈ dom(f).
(

〈<0〈{b}〉〉f = <1〈{f(b)}〉
)

.

Proof of Lemma 2.6 The “⊆”-direction is trivial. To show the “⊇”-direction, assumeb ∈
dom(f) and c<1f(b). As <1 is an ordering onran(f), there is somea ∈ field(<0) with
f(a) = c. From f(a)<1f(b), we get a<0b. Then c = f(a) ∈ 〈<0〈{b}〉〉f , as was to be shown.

Q.e.d. (Lemma 2.6)

Definition 2.7 ([Ordering of a] [Well-Founded] Quasi-Ordering)
Let A be a class.
Let. be a binary relation. As always, let&, thedual of., be defined bya&b if b.a.
. is aquasi-ordering onA if . is anA-reflexive and transitive relation onA.
Theordering< of a quasi-ordering. is.\&.
. is an [S-] well-founded quasi-orderingif . is a quasi-ordering and< is [S-] well-founded.

Corollary 2.8 The ordering of a quasi-ordering is an ordering.

Definition 2.9 ([Ordering of a] [Well-Founded] Reflexive Ordering)
Let A be a class.
Let≤ be a binary relation. As always, let≥, thedual of≤, be defined bya≥b if b≤a.
≤ is areflexive ordering onA if ≤ is an anti-symmetric quasi-ordering onA.
≤ is anti-symmetricif ∀x, y. (x≤y ∧ x≥y⇒ x=y).
Theordering< of a reflexive ordering≤ is the ordering of the quasi-ordering≤.
≤ is an [S-] well-founded reflexive orderingif ≤ is an [S-] well-founded quasi-ordering and a
reflexive ordering.

Corollary 2.10 The ordering< of a reflexive ordering≤ onA is exactly≤ \(A↿id).

Corollary 2.11 If < is an ordering onA, then < ∪ A↿id is a reflexive ordering onA.

Corollary 2.12 Let≤ be a reflexive ordering onA. Let< be the ordering of≤. Then:
< is total onA iff ≤ is total [onA].

Corollary 2.13
The dual of an[reflexive] [quasi-] ordering (onA) is an[reflexive] [quasi-] ordering (onA).



20

2.3 Order-Isomorphisms

Definition 2.14 ([S-] Order-Isomorphism)
≤0 and≤1 are [S-] order-isomorphicif there is an [S-] order-isomorphismf ::≤0→≤1.
f ::≤0→≤1 is an [S-] order-isomorphismif ≤0,≤1 are reflexive orderings and
f : field(≤0)→ field(≤1) is a bijection with [f,≤0,≤1 ∈S and]

∀a, b. (a ≤0 b ⇔ f(a) ≤1 f(b)).

As a corollary of Requirement 1.24 and Corollary 1.25 we get:

Corollary 2.15
The property of being[S-] order-isomorphic is an equivalence on the reflexive orderings ≤
[with field(≤) ∈ S]; i.e. it is reflexive (due to(field(≤)↿id)::≤→≤), symmetric, and transitive.

Corollary 2.16

Let≤0,≤1 be reflexive orderings. Let<i being the ordering of≤i (i∈{0, 1}).
Let f : field(≤0)→ field(≤1) be a bijection.

Now the following two items are logically equivalent:

1. f ::≤0→≤1 is anorder-isomorphism.

2. ∀a, b. (a <0 b ⇔ f(a) <1 f(b)).

Moreover, if≤0 is total, then already the following is logically equivalent:

3. ∀a, b. (a <0 b ⇒ f(a) <1 f(b)).

As the concept of an ordering is simpler than the concept of a reflexive ordering, but somehow
equivalent according to Corollaries 2.10 and 2.11, the following question may arise from Co-
rollary 2.16: Why do we not use orderings instead of reflexiveorderings in Definition 2.14 ? The
answer is simple: If we tookfield(<i) instead offield(≤i), we could not refer anymore to those
elements offield(≤i) that are not connected with other elements via<i. And the possibility of
such a reference will become important in§ 3.1.

Lemma 2.17
If f ::≤0→≤1 is an order-isomorphism, then the following three are logically equivalent:

(i) f ::≤0→≤1 is anS-order-isomorphism.

(ii) f,≤0 ∈S.

(iii) f,≤1 ∈S.

Proof of Lemma 2.17
We have≤1 = f−1 ◦≤0 ◦ f and ≤0 = f ◦≤1 ◦ f−1. Thus, everything is clear from the Axiom
of Simple Operations (cf. Requirement 1.24). Q.e.d. (Lemma 2.17)
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2.4 Initial Segments

Definition 2.18 (Initial Segment)
Let≤ be a reflexive ordering. Let< be the ordering of≤.
≤′ is an (proper)initial segment of≤ if there is ana ∈ field(≤) such that≤′ is the initial
segment of≤ belowa.
The initial segment of≤ belowa is A↿≤↾A for A := <〈{a}〉, and we denote it by⌊≤⌋a.

Lemma 2.19 Let ⌊≤⌋a be an initial segment of a reflexive ordering≤ on A. Then⌊≤⌋a is a
reflexive ordering on a proper subclass ofA. Moreover, if≤∈S, then ⌊≤⌋a ∈S.

Proof of Lemma 2.19 If ⌊≤⌋a is an initial segment of≤ ∈ S, then a∈ field(≤). By the
Axiom of the Singleton Set (cf. Requirement 1.21), we have{a}∈S. By Corollary 1.25,
we have field(≤)∈S, and then by the Axiom of Simple Operations (cf. Requirement1.24)
(field(≤)↿id)∈S, and then, by Corollary 2.10,< = ≤\(field(≤)↿id) ∈ S. Then, still by the
Axiom of Simple Operations and Corollary 1.25,A := <〈{a}〉 ∈ S, and ⌊≤⌋a = A↿≤ ↾A ∈ S.

Q.e.d. (Lemma 2.19)

Lemma 2.20 Let f ::≤0→≤1 be an order-isomorphism.
Let <i be the ordering of≤i (i∈{0, 1}).
Then ∀b ∈ field(≤0).

(

〈<0〈{b}〉〉f = <1〈{f(b)}〉
)

.

Proof of Lemma 2.20 By Corollary 2.16, we get∀a, b. (a <0 b ⇔ f(a) <1 f(b)). Then, by
Lemma 2.6, we get∀b ∈ dom(f).

(

〈<0〈{b}〉〉f = <1〈{f(b)}〉
)

. Q.e.d. (Lemma 2.20)

Lemma 2.21 If f1::≤0→⌊≤1⌋a1
andf2::≤1→≤2 are [S-] order-isomorphisms,

then(f1◦f2)::≤0→⌊≤2⌋f2(a1) is an[S-] order-isomorphism as well.

Proof of Lemma 2.21
By Lemma 2.20 it is obvious thatf ′

2::⌊≤1⌋a1
→⌊≤2⌋f2(a1) is an order-isomorphism forf ′

2 :=

field(⌊≤1⌋a1
)↿f2. As f1 ◦ f2 = f1 ◦ f ′

2, we know that(f1◦f2)::≤0→⌊≤2⌋f2(a1) is an order-
isomorphism by Corollary 2.15 [and also anS-order-isomorphism by the Axiom of Simple Op-
erations (cf. Requirement 1.24) and Lemma 2.17]. Q.e.d. (Lemma 2.21)
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2.5 Order-Types

Definition 2.22 (Order-Type “OT (≤, X)”)
Let X be any class. Let≤ be a reflexive ordering.
The theorder-type of≤ overX is

OT (≤, X) :=

{

≤′ ≤′ is S-order-isomorphic to≤
∧ field(≤′) ⊆ X

}

.

As a corollary of Corollaries 1.25 and 2.15 we get:

Corollary 2.23
If ≤ ∈ S is a reflexive ordering withfield(≤) ⊆ X, then ≤ ∈ OT (≤, X).

The following lemma will find its applications in§ 3.5, especially in Corollary 3.37 and Lem-
ma 3.43.

Lemma 2.24 If X ∈ S and if ≤ ∈ S is a reflexive ordering, then

OT (≤, X) ∈ S,

provided that we assume either the Set Comprehension Axiom of ML , or else both the Power-Set
Axiom and the Axiom of Separation.

Proof of Lemma 2.24

According to Definition 2.14,≤′ and≤ areS-order-isomorphic if ≤′,≤ ∈ S are reflexive
orderings and

∃f ∈S.









dom(f) = field(≤′)
∧ ran(f) = field(≤)

∧ ∀(a′, a), (b′, b)∈ f.

(

(a′ = b′ ⇔ a = b)
∧ (a′ ≤′ b′ ⇔ a ≤ b)

)









.

In case we assume the Set Comprehension Axiom of ML (cf. Definition 1.29), we just have
to show that the defining statement of Definition 2.22 is stratified and equivalent to the version
where all quantifiers are restricted to elementship. Stratification is easy: Just setf,≤′,≤, X to
the same integer number.f,≤′,≤, X are explicitly restricted to elementship. And we have
field(≤′), field(≤) ∈ S by Corollary 1.25. The bound variables introduced by definitional ex-
pansion are all restricted to elementship infield(≤′) or field(≤), either directly or as an element
of a pair inf , ≤′, or≤, which is equivalent due to the Axiom of the Ordered Pair (cf.Require-
ment 1.23).

In case we assume the Power-Set Axiom (cf. Definition 1.26) and the Axiom of Separation
(cf. Definition 1.28), we have to find at ∈ S such thatOT (≤, X) ⊆ t. However,t := P(X×X)
will do: On the one hand, according to the Axiom of Simple Operations (cf. Requirement 1.24)
and the assumed Axiom of Power-Set,t is a set. On the other hand, fromfield(≤′) ⊆ X we
indeed getOT (≤, X) ⊆ t, by the Axiom of the Ordered Pair (cf. Requirement 1.23).

Q.e.d. (Lemma 2.24)
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3 Well-Orderings

3.1 The Most Basic Concept of Well-Ordering

Definition 3.1 ([Irreflexive ] [S-] Well-Ordering)

< is anirreflexive[S-] well-ordering onA if < is an ordering onA and
for every classQ ⊆ A with Q 6= ∅ [andQ∈S ], we have ∃m∈Q. ∀w∈Q\{m}. (m<w).

≤ is a [S-] well-ordering onA if ≤ is a reflexive ordering onA and
for every classQ ⊆ A with Q 6= ∅ [andQ∈S ], we have ∃m∈Q. ∀w∈Q. (m≤w).

Note that it is a well-justified standard to define a well-ordering as a reflexive ordering instead of
an (irreflexive) ordering, although the latter is the simpler concept in general. The reason is not
that we save “\{m}”, but that we want to haven+1 well-ordered order-types over a set withn
elements, for eachn ∈ N. (More generally, we want HARTOGS’ Ordinal Theorem to hold;
cf. Theorem 3.46.)

Example 3.2 Let us taken := 2. Considered as reflexive orderings we have the 3 well-
ordered order-types of∅, {(0, 0)}, and {(0, 0), (0, 1), (1, 1)}. We want to represent
these 3 order-types by the 3ordinals 0 (or ∅), 1 (or {0}), and 2 (or {0, 1}). Con-
sidered as irreflexive well-orderings, however, we get onlythe 2 well-ordered order-types of
∅ and {(0, 1)}, because the operation of taking the ordering of a reflexive ordering maps both
∅ and {(0, 0)} to the same element∅.

Moreover, note that the reference of an irreflexive well-ordering to a fieldA is necessary because∅
is an irreflexive well-ordering on∅ and on{0}, but not on{0, 1}.

Regarding “∀w∈Q\{m}. (m<w)” in the definition of an irreflexive well-ordering, the restric-
tion of “Q ⊆ A” is necessary. Note that the restriction of “Q ⊆ field(<)” is irrelevant, how-
ever, in the definition of well-foundedness (cf. Definition 2.3), because eachm ∈ Q \ field(<)
satisfies∀w∈Q. ¬(w<m) trivially.

All in all — regarding well-orderings — reflexive orderings are more convenient than (irreflexive)
orderings.
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Lemma 3.3 Let <,≤, andR be binary relations.

1. The following are logically equivalent:

(a) ≤ is an[S-] well-ordering onA.

(b) ≤ is a total and[S-] well-founded reflexive ordering onA.

(c) ≤ is an anti-symmetric relation onA and for every classQ ⊆ A
with Q 6= ∅ [andQ∈S ], we have ∃m∈Q. ∀w∈Q. (m≤w).

2. The following are logically equivalent:

(a) < is an irreflexive[S-] well-ordering onA.

(b) < is a transitive relation onA which is total onA and [S-] well-founded.

3. The following are logically equivalent:

(a) R ∪ A↿id is an[S-] well-ordering onA

(b) R \ (A↿id) is an irreflexive[S-] well-ordering onA.

4. If ≤ is a reflexive ordering onA and < is the ordering of≤, then we have:
≤ is an[S-] well-ordering onA iff < is an irreflexive[S-] well-ordering onA.

Note that, for a well-ordering, in addition to∃m∈Q. ∀w∈Q. (m≤w), anti-symmetry must be
required because{(0, 0), (0, 1), (1, 0), (1, 1)} is transitive and reflexive, but not a well-ordering.
Reflexivity and transitivity, however, are redundant, as shown in Item (1c) of Lemma 3.3.

For an irreflexive well-ordering, however, in addition to∃m∈Q. ∀w∈Q\{m}. (m<w),
irreflexivity must be required because{(0, 0), (0, 1), (1, 0), (1, 1)} is transitive, but not an
irreflexive well-ordering, and transitivity must be required because{(0, 1), (1, 0)} is irreflexive,
but not an irreflexive well-ordering. For this reason, Lemma3.3 has no Item (2c) analogous to
Item (1c).

Proof of Lemma 3.3

“(1a)⇒(1b)”: Let≤ be an [S-] well-ordering onA. Then≤ is a reflexive ordering onA. More-
over, for anyQ ⊆ field(≤) with Q 6= ∅ [andQ∈S ], there is somem ∈ Q such

that ∀w∈Q. (m≤w). Let < be the ordering of≤. Let us show that< is [S-] well-founded. If
there were somev ∈ Q with v<m, then v ∈Q\{m}, as< is irreflexive. But thenv≤m≤v
contradicts anti-symmetry of≤. To show that≤ is total, supposea, b ∈ field(≤). SettingQ to
{a, b}, we get a≤b ∨ b≤a [by the Axiom of the Singleton Set (cf. Requirement 1.21) andthe
Axiom of Simple Operations (cf. Requirement 1.24)].

“(1b)⇒(1c)”: Let ≤ be a total and [S-] well-founded reflexive ordering onA. Let < be the
ordering of≤. Then, for anyQ with Q 6= ∅, [Q∈S], and Q ⊆ A, there is some

m ∈ Q such that∀w∈Q. ¬(w<m). We have to showm≤w for eachw ∈ Q. For deriving a
contradiction, suppose¬(m≤w) for somew ∈ Q. Then, as≤ is A-reflexive, we havem 6= w.
Then, as≤ is total andA-reflexive, we havem≥w. Then, as¬(m≤w), we have m>w,
contradicting∀w∈Q. ¬(w<m).

“(1c)⇒(1a)”: SettingQ to the respective singleton set, we get that≤ isA-reflexive [by the Axiom
of Singleton Set (cf. Requirement 1.21)]. Thenfield(≤) = A. All we have left
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to show is transitivity. Thus, let us assumea≤b≤c. Set Q := {a, b, c} [which is a set
by the Axiom of the Singleton Set (cf. Requirement 1.21) and the Axiom of Simple Operations
(cf. Requirement 1.24)]. Then, we get anm ∈ Q such that∀w∈Q. (m≤w). If m = a, then
we get a≤c as required. Ifm = b, then we get b≤a and by anti-symmetrya= b, i.e.
again the requireda≤c. Finally, if m = c, we getc≤a and by anti-symmetrya= c, and by
A-reflexivity again the requireda≤c.

“(2a)⇒(2b)”: Let < be an irreflexive [S-] well-ordering onA. Then< is an ordering onA, i.e.
an irreflexive and transitive relation onA. Moreover, for anyQ ⊆ A with Q 6= ∅

[andQ∈S], there is somem ∈ Q such that∀w∈Q\{m}. (m<w).
Let us show that< is [S-] well-founded. If there were somev ∈ Q with v<m, then v∈Q\{m},
as< is irreflexive. Thus,v<m<v, which contradicts< being an ordering.
To show that< is total onA, supposea, b ∈ A. SettingQ to {a, b} [which is a set by the Axiom
of the Singleton Set (cf. Requirement 1.21) and the Axiom of Simple Operations (cf. Require-
ment 1.24)], we geta<b ∨ b<a ∨ a= b.

“(2b)⇒(2a)”: Let < be a transitive relation onA which is total onA and [S-] well-founded.
Then, for anyQ ⊆ A with Q 6= ∅ [andQ∈S], there is somem ∈ Q such that

∀w∈Q. ¬(w<m).
SettingQ to the respective singleton set [by the Axiom of Singleton Set (cf. Requirement 1.21)],
we see that< is irreflexive, i.e. an ordering.
As < is total onA, we have∀w∈Q\{m}. (m<w). Thus, ∀w∈Q. (m≤w).

“(3a)⇒(3b)”: Let us assume that≤ := R ∪ A↿id is an [S-] well-ordering onA. Then,
by Corollary 2.10, R \ (A↿id) is exactly the ordering< of ≤. By (1b),

< is [S-] well-founded. By (2), it suffices to show that< is total onA. But this is the case
by Corollary 2.12, because≤ is total by (1b).

“(3b)⇐(3a)”: Let us assume that< := R\(A↿id) is an irreflexive [S-] well-ordering onA. By
Corollary 2.11, ≤ := R ∪ A↿id is a reflexive ordering onA. By (2), < is total

and [S-] well-founded. Thus, by Corollary 2.12,≤ is a total and [S-] well-founded reflexive
ordering onA, i.e. (1b) holds. Thus, (1a) holds as well.

(4): By (3) and Corollaries 2.10 and 2.11. Q.e.d. (Lemma 3.3)

Corollary 3.4 (min)
Let≤ be an[S-] well-ordering. Let< be the ordering of≤.
For anyQ ⊆ field(≤) with Q 6= ∅ [andQ∈S],
there is a uniquem ∈ Q with ∀w∈Q. (m≤w),
and we denote thism by min≤ Q or by min< Q.



26

Definition 3.5 (≤-SuccessorS≤, Limit Point)
Let≤ be an [S-] well-ordering. Let< be the ordering of≤. Let a, b ∈ field(≤).
[Assume either the Set Comprehension Axiom of ML and< ∈ S, or else the Axiom of
Separation andran(<) ∈ S.]
If ∃c. (a<c), then the≤-successor ofa is S≤(a) := min≤ { c | a<c }.
b is anon-limit≤-point if there is somea ∈ A such thatb = S≤(a).
b is a limit ≤-point if b is not a non-limit≤-point.

Lemma 3.6 (≤-Predecessor)
Let≤ be an[S-] well-ordering onA.
[Assume either the Set Comprehension Axiom ofML and < ∈ S, or else the Axiom of Separa-
tion and ran(<) ∈ S.]
Then, for every non-limit≤-point b ∈ A, there is a uniquea ∈ A such thatb = S≤(a).
Thisa is called the≤-predecessor ofb.

Proof of Lemma 3.6
Suppose thatS≤(a) = S≤(a′). We have to showa= a′. Let < be the ordering of≤. As < is
total by Lemma 3.3, due to symmetry ina anda′, it suffices to refutea<a′. But in the latter case
we haveS≤(a) ≤ a′ < S≤(a′), which contradictsS≤(a) = S≤(a′). Q.e.d. (Lemma 3.6)
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3.2 NEUMANN Ordinals

The implementation of ordinal numbers resulting from the following definition is essentially due
to JOHN VON NEUMANN (1903–1957).

Definition 3.7 (Fullness,∈α, NEUMANN Ordinal)
α is full if ¬U(α) ∧ ∀x∈α. (x ⊆ α).
The relation∈α is given as{ (x, y) | α∋ x∈ y ∈α }.
α is an [S-] NEUMANN ordinal if α is full and∈α is an irreflexive [S-] well-ordering onα.

Corollary 3.8 If α is a NEUMANN ordinal, thenα is anS-NEUMANN ordinal as well.

The converse of Corollary 3.8 seems to require some extra presuppositions, but it is too early to
discuss this question now; cf. Lemma 3.18.

In the literature, “transitive class” is sometimes used instead of “full”, but we want to reserve
that name for its standard meaning referring to binary relations.

Note that the class of [S-] NEUMANN ordinals cannot be defined via thesetcomprehension
scheme of QUINE’s NF or QUINE’s ML (cf. Definition 1.29) because neither the notion of full-
ness (cf. Example 1.33) nor the relation∈α are stratified, cf. e.g.[Holmes, 1998]. And indeed,
the class of [S-] NEUMANN ordinals cannot be a set, cf. Corollary 3.25.

We will show here that the NEUMANN ordinals can be defined and understood without fixing
a special theory of sets and classes such as ZF, NBG, MK, or QUINE’s ML, and without any
axioms, but the standard axioms of§1.7. Especially, no axioms of choice, foundation, infinity,
set comprehension, separation, subset, or power-set are required.

Corollary 3.9 If α is an[S-] NEUMANN ordinal, then α /∈ α.

Corollary 3.10 ∅ is an[S-] NEUMANN ordinal.

Corollary 3.11
If α andβ are [S-] NEUMANN ordinals, thenα∩β is an[S-] NEUMANN ordinal as well.

Corollary 3.12
If β ∈α and α is full, then ∀γ. (γ ∈ β ⇔ γ ∈α β).

Lemma 3.13 If β ∈α andα is an[S-] NEUMANN ordinal,
then β = ∈α〈{β}〉 is an[S-] NEUMANN ordinal, too.

Proof of Lemma 3.13
As α is full and β ∈α, we haveβ ⊆ α.
β = ∈α〈{β}〉 already follows from Corollary 3.12 and Requirement 1.10.
Then ∈β = β↿∈α↾β. Thus, as∈α is an irreflexive [S-] well-ordering onα, ∈β is an irreflexive
[S-] well-ordering onβ.
It now suffices to show thatβ is full, and for this (asβ ⊆ α implies¬U(β)), it suffices to show
η ∈ β for η∈ ξ ∈ β. Thus, let us suppose the latter. Asα is full, we have firstη ∈ ξ ∈α, and
then alsoη ∈α. Thus, we haveη ∈α ξ ∈α β. As∈α is transitive, we haveη ∈α β, i.e. η ∈ β,
as was to be shown. Q.e.d. (Lemma 3.13)
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Lemma 3.14 If α is an[S-] NEUMANN ordinal,
then α ∪ {α} is an[S-] NEUMANN ordinal, too.

Be warned that in case ofα /∈ V, we haveα ∪ {α} = α.

Proof of Lemma 3.14

Let α be a [S-] NEUMANN ordinal.

In case of α 6∈ S, we haveα ∪ {α} = α and the lemma is trivial. Thus, in the following, we
may assumeα ∈ S.

α ∪ {α} is full: If x ∈ α∪ {α}, then x ∈ α or x = α. As α is full, this meansx ⊆ α in both
cases.

∈α∪{α} is irreflexive: Supposeβ ∈α∪{α} β. In case ofβ ∈α, we get β ∈α β, contradicting
that∈α is an irreflexive ordering. Otherwise, in case ofβ = α, we get

α∈α, contradicting Corollary 3.9.

∈α∪{α} is transitive: Supposeη ∈α∪{α} ξ ∈α∪{α} β. In case of β ∈α, asα is full, we have
η ∈α ξ ∈α β and then, as∈α is transitive, η ∈α β, i.e. η ∈α∪{α} β.

Otherwise, in case ofβ = α, asα is full, we haveη∈α = β, and thenη ∈α∪{α} β, again.

∈α∪{α} is an irreflexive [S-] well-ordering onα ∪ {α}: SupposeQ ⊆ α∪{α} with Q 6= ∅ [and
Q∈S]. In case of Q = {α}, we have

min∈α∪{α}
Q = α. Otherwise, we setQ′ := Q∩α. Then ∅ 6= Q′ ⊆ α. [Moreover, fromα∈S,

we get Q′ ∈S due to the Axiom of Simple Operations (cf. Requirement 1.24).] As α is an [S-]
NEUMANN ordinal, we havemin∈α

Q′ ∈ α by Corollary 3.4, i.e.min∈α∪{α}
Q = min∈α

Q′.
Q.e.d. (Lemma 3.14)

Lemma 3.15 If α is an[S-] NEUMANN ordinal, β is full, and β ( α [andα\β ∈S ],
then β = min∈α

(α\β) ∈ α.

I do not know how to showβ ∈α for anS-NEUMANN ordinalα and a fullβ ( α, unlessα\β is
required to be a set.

Proof of Lemma 3.15

Due to β ( α, we haveα\β 6= ∅. Thus, min∈α
(α\β) uniquely exists by Corollary 3.4.

By Requirement 1.10, it now suffices to show the following two:

β ⊆ min∈α
(α\β): Suppose η ∈ β. As η, min∈α

(α\β) ∈ α, and∈α is total on α
by Lemma 3.3, to showη ∈ min∈α

(α\β), it suffices to refute both
η = min∈α

(α\β) and min∈α
(α\β) ∈ η. But in the first case trivially and in the second

case asβ is full, we would havemin∈α
(α\β) ∈ β, contradictingmin∈α

(α\β) ∈ α\β.

β ⊇ min∈α
(α\β): Suppose η ∈ min∈α

(α\β). As α is full, we have η ∈α and
η ∈α min∈α

(α\β). Thus, η /∈ (α\β). Thus, η∈ β.
Q.e.d. (Lemma 3.15)
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Lemma 3.16 If α, β [∈ S ] are [S-] NEUMANN ordinals, thenα ⊆ β or β ⊆ α.

Proof of Lemma 3.16
By Corollary 3.11,α∩β is an [S-] NEUMANN ordinal as well. [Moreover, we haveα∩β ∈S
and α\(α∩β), β\(α∩β) ∈ S by the Axiom of Simple Operations (cf. Requirement 1.24).] As
α ⊇ α∩β ⊆ β, it suffices to refuteα ) α∩β ( β. But then, by Lemma 3.15, we would have
α ∋ α∩β ∈ β, i.e. α∩β ∈ α∩β, contradicting Corollary 3.9. Q.e.d. (Lemma 3.16)

Lemma 3.17 If α, β [∈ S ] are [S-] NEUMANN ordinals,
then exactly one of the following three cases holds:

(i) α = β.

(ii) α ∈ β.

(iii) β ∈ α.

Proof of Lemma 3.17
By Lemma 3.16, we have

α = β ∨ α ( β ∨ β ( α.
[Moreover, we haveα∩β ∈S and α\(α∩β), β\(α∩β) ∈ S by the Axiom of Simple Operations
(cf. Requirement 1.24).] Thus, by Lemma 3.15, we have

α = β ∨ α ∈ β ∨ β ∈ α.
If two of these cases fell together, we would getα∈α or β ∈ β (in case of the two latter cases,
this is implied by fullness), contradicting Corollary 3.9. Q.e.d. (Lemma 3.17)

Lemma 3.18 α is anS-NEUMANN ordinal iff α is a NEUMANN ordinal,
provided that we assume the Axiom of Separation.

Proof of Lemma 3.18
The backward implication is given already by Corollary 3.8.
To show the forward implication, let us assume thatα is anS-NEUMANN ordinal and thatQ ⊆ α
with δ ∈ Q.
All we have to find is someγ ∈ Q such that∀β ∈Q\{γ}. (γ ∈ β). According to Lemmas 3.17
and 3.13, it now suffices to find someγ ∈ Q such that∀β ∈Q. (β 6∈ γ).
Set Q′ := δ ∩Q. Due to the Axiom of Separation (cf. Definition 1.28), we haveQ′ ∈S.
In case ofQ′ = ∅, for anyβ ∈ Q, we haveβ 6∈ δ as was to be shown.
Otherwise, in case ofQ′ 6= ∅, as∈δ is S-well-founded by Lemma 3.3(2), there is someγ ∈ Q′

with ∀β ∈ Q′. (β /∈ γ). Now let us assumeβ ∈ Q and, ad absurdum, β ∈ γ. Then, due to
γ ∈ δ, asδ is full, we haveβ ∈ δ. Thus, β ∈Q′. Thus, β 6∈ γ. Q.e.d. (Lemma 3.18)
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The following proposition is quite trivial as a statement on[S-] NEUMANN ordinals; but as the
respective order-isomorphism cannot exist for huge [S-] FREGEordinals in NF, it is interesting
insofar as it implicitly says that all [S-] NEUMANN ordinals are comparatively “small”.

Lemma 3.19 Letα be an[S-] NEUMANN ordinal. Define∈α := ∈α ∪ α↿id. Define
⊆α :=

{

(B,C) B ⊆ C ∧ ∃β ∈α. (B = ∈α〈{β}〉) ∧ ∃γ ∈α. (C = ∈α〈{γ}〉)
}

.
Now (α↿id)::∈α→⊆α is an order-isomorphism. Moreover, in case ofα∈S, this is anS-order-isomorphism,
provided that we either assume the Set Comprehension Axiom of ML , or else the Axiom of Sepa-
ration.

Proof of Lemma 3.19
By Lemma 3.13, we have⊆α = { (β, γ) | β⊆γ ∧ β, γ ∈α }. Due to Lemma 3.13,
we have ∀β, γ ∈α. (β∈αγ ⇒ β⊆γ). Due to Lemma 3.15 and the Axiom of Simple Opera-
tions (cf. Requirement 1.24), we have∀β, γ ∈α. (β∈αγ ⇐ β⊆γ). Thus, (α↿id)::∈α→⊆α

is an order-isomorphism. Finally, assumeα∈S. By the Axiom of Simple Operations
(cf. Requirement 1.24), we have(α↿id), α×α ∈ S. By Lemma 2.17, it now suffices to
show ⊆α ∈ S. If we assume the Set Comprehension Axiom of ML, we get this from
⊆α = { p | p = (β, γ) ∧ β⊆γ ∧ β, γ ∈α }. If we assume the Axiom of Separation, we get this
from ⊆α ⊆ α×α. Q.e.d. (Lemma 3.19)

3.3 The Proper Class ofNEUMANN Ordinals

Definition 3.20 (O)
Theclass of the[S-] NEUMANN ordinals is given as

[S]O := { α | α is an [S-] NEUMANN ordinal}.

Corollary 3.21 O ⊆ SO.

Corollary 3.22 O = SO, provided that we assume the Axiom of Separation.

Theorem 3.23 [S]O is an[S-] NEUMANN ordinal.

Proof of Theorem 3.23

By Lemma 3.13,[S]O is full.

It remains to show that∈[S]O is an irreflexive [S-] well-ordering on[S]O. By Lemma 3.3(2), it
suffices to show that∈[S]O is total on[S]O, transitive, and [S-] well-founded.

For transitivity, supposeγ ∈[S]O β ∈[S]O α. Then [S]O ∋ γ ∈ β ∈ α ∈ [S]O. Thus, asα is
full, we have γ ∈[S]O α.
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The required totality is given by Lemma 3.17.

Finally, for [S-] well-foundedness, supposeQ ⊆ [S]O with δ ∈ Q [andQ∈S].
All we have to find is someγ ∈ Q such that∀β ∈Q\{γ}. (γ ∈ β). According to Lemmas 3.17
and 3.13, it now suffices to find someγ ∈ Q such that∀β ∈Q. (β 6∈ γ).
Set Q′ := δ ∩Q.
[Due to the Axiom of Simple Operations (cf. Requirement 1.24) we haveQ′ ∈S.]
In case ofQ′ = ∅, for anyβ ∈ Q, we haveβ 6∈ δ as was to be shown.
Otherwise, in case ofQ′ 6= ∅, as∈δ is [S-] well-founded by Lemma 3.3(2), there is someγ ∈ Q′

with ∀β ∈ Q′. (β /∈ γ). Now let us assumeβ ∈ Q and, ad absurdum, β ∈ γ. Then, due to
γ ∈ δ, asδ is full, we haveβ ∈ δ. Thus, β ∈Q′. Thus, β 6∈ γ. Q.e.d. (Theorem 3.23)

As a corollary of Corollary 3.9, we get:

Corollary 3.24 [S]O /∈ [S]O.

Corollary 3.25 [S]O is a proper class, i.e.[S]O /∈ V.

Corollary 3.26 [S]O ∪ {[S]O} = [S]O and there is noΩ with [S]O ∈ Ω.

Definition 3.27 (Limit Ordinal)
α is a limit [S-] NEUMANN ordinal if
α is an [S-] NEUMANN ordinal and¬∃β ∈ [S]O. (α = β ∪ {β}).

Note that we treat∅ as a limit ordinal, which is not quite standard, but most reasonable. Moreover,
note that, in Definition 3.27, it is important to requireβ ∈ V besides thatβ is an [S-] NEUMANN

ordinal, because otherwise any [S-] NEUMANN ordinalα /∈ V wouldnotbe limit ordinal, due to
α = α ∪ {α}.

Lemma 3.28 [S]O is a limit [S-] NEUMANN ordinal.

Proof of Lemma 3.28
Otherwise, due to Theorem 3.23, there would be aβ ∈ [S]O with β ∪ {β} = [S]O. But then
we have β ∈ V due to β ∈ [S]O, moreover {β} ∈ V due to Requirement 1.21, and then
β ∪ {β} ∈ V due to Requirement 1.24. But then[S]O ∈ V, contradicting Corollary 3.25.

Q.e.d. (Lemma 3.28)
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3.4 Basic Properties of Well-Orderings

Initial segments were introduced already in Definition 2.18, but now they are going to become
essential.

Corollary 3.29 An initial segment of an[S-] well-ordering onA is an [S-] well-ordering on a
proper subclass ofA.

Lemma 3.30 Let≤ be an[S-] well-ordering, and let< be its ordering.
If a<b, then ⌊≤⌋a is the initial segment of⌊≤⌋b belowa.

Although this lemma seems to be trivial, note that it would not hold if we had defined initial seg-
ments via irreflexive well-orderings: For the irreflexive well-ordering< := {(0, 1)}, we would
have ⌊<⌋0 = ∅ = ⌊<⌋1, so that⌊<⌋0 would not be an initial segment of⌊<⌋1.

Proof of Lemma 3.30
From a<b, we get a∈B for B := <〈{b}〉. Thus — and this is the non-trivial step! —
a∈ field(⌊≤⌋b). Thus,⌊≤⌋a is the initial segment of⌊≤⌋b belowa. Q.e.d. (Lemma 3.30)

Lemma 3.31
No [S-] well-ordering is[S-] order-isomorphic to an initial segment of itself[provided that we
assume either the Set Comprehension Axiom ofML , or else the Axiom of Separation].

Proof of Lemma 3.31 Let ≤ be an [S-] well-ordering, and let< be its ordering. Then
< is [S-] well-founded according to Lemma 3.3. For areductio ad absurdum, suppose
f ::≤→⌊≤⌋a to be an [S-] order-isomorphism for somea ∈ field(≤). Then f(a)<a. By
Corollary 2.16, we have∀a, b. (a<b ⇒ f(a) < f(b)). By Lemma 2.5, we get the contradic-
tory ∀x. ¬(f(x)<x) [provided that we either have the Set Comprehension Axiom ofML and
<, f ∈ S, or else the Axiom of Separation andfield(<) ∈ S]. [Note that we havef,≤∈S.
We get <, field(<) ∈ S from < = ≤\(field(≤)↿id) by Requirement 1.24 and Corollaries 1.25
and 2.10.] Q.e.d. (Lemma 3.31)

Lemma 3.32 Let≤ be an[S-] well-ordering. Leta, b ∈ field(≤).
[Assume either the Set Comprehension Axiom ofML , or else the Axiom of Separation.]

(1) If ⌊≤⌋a and⌊≤⌋b are [S-] order-isomorphic, thena= b.

(2) If ⌊≤⌋a is [S-] order-isomorphic to an initial segment of⌊≤⌋b, then a<b.

Proof of Lemma 3.32
Let < be be the ordering of≤. By Lemma 3.3,≤ and< are total onfield(≤).

(1): Suppose that⌊≤⌋a and⌊≤⌋b are [S-] order-isomorphic. As botha<b and a>b contradict
Lemmas 3.30 and 3.31, we havea= b.

(2): Suppose that⌊≤⌋a and≤′ are [S-] order-isomorphic, and that≤′ is an initial segment
of ⌊≤⌋b. Then there is somec < b such that≤′ = ⌊≤⌋c. Then a= c by (1).

Q.e.d. (Lemma 3.32)
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Theorem 3.33
[Assume either the Set Comprehension Axiom ofML , or else the Axiom of Separation.]
If ≤0,≤1 [∈S] are two[S-] well-orderings, then exactly one of the following three cases holds:

(i) ≤0,≤1 are [S-] order-isomorphic.

(ii) ≤0 is [S-] order-isomorphic to an initial segment of≤1.

(iii) ≤1 is [S-] order-isomorphic to an initial segment of≤0.

Proof of Theorem 3.33
Let <i be the ordering of the well-ordering≤i (i∈{0, 1}). [By the Corollary 1.25 and Require-
ment 1.24,field(≤0), field(≤1), field(≤0)× field(≤1) ∈ S.] We set

f :=
{

(a0, a1) ∈ field(≤0)× field(≤1) ⌊≤0⌋a0
is [S-] order-isomorphic to⌊≤1⌋a1

}

[We have f ∈S, either due to the Set Comprehension Axiom of ML or else due tothe Axiom
of Separation. By Requirement 1.24 and Corollary 1.25,dom(f), ran(f) ∈ S, and then
field(≤0) \ dom(f), field(≤1) \ ran(f) ∈ S.]

Note that by Corollary 2.15, we have symmetry inf andf−1.

Claim 1: f is an injective function.

Proof of Claim 1: By symmetry in f and f−1, it suffices to show thatf is a function.
To show this, suppose that(a0, a1), (a0, b1)∈ f . By Corollary 2.15,⌊≤1⌋a1

and ⌊≤1⌋b1 are
[S-] order-isomorphic. By Lemma 3.32, we havea1 = b1. Q.e.d. (Claim 1)

Claim 2: ∀b ∈ dom(f). ∀a<0b.
(

a ∈ dom(f) ∧ f(a) <1 f(b)
)

and
∀b ∈ ran(f). ∀a<1b.

(

a ∈ ran(f) ∧ f−1(a) <0 f−1(b)
)

.

Proof of Claim 2: By symmetry inf andf−1, it suffices to show the first statement. Letb ∈
dom(f). Then there is some order-isomorphismh::⌊≤0⌋b→⌊≤1⌋f(b). Supposea<0b. By Lem-
ma 2.20 we have〈<0〈{a}〉〉h = <1〈{h(a)}〉. Thus,(<0〈{a}〉↿h)::⌊≤0⌋a→⌊≤1⌋h(a) is an order-
isomorphism. Thus,f(a) = h(a) <1 f(b). Q.e.d. (Claim 2)

Claim 3: We havedom(f) =field(≤0) or ran(f) = field(≤1).
If dom(f) = field(≤0) and ran(f) = field(≤1), then f ::≤0→≤1 is an [S-] order-isomorphism.
If ran(f) 6= field(≤1), then there is somea1 ∈ field(≤1) such thatf ::≤0→⌊≤1⌋a1

is an
[S-] order-isomorphism. Ifdom(f) 6= field(≤0), then there is somea0 ∈ field(≤0) such that
f ::⌊≤0⌋a0

→≤1 is an [S-] order-isomorphism.

Proof of Claim 3: Now it becomes crucial that≤0,≤0 are [S-] well-orderings. Be reminded
of Corollary 3.4. In case ofdom(f) 6= field(≤0), set a0 := min≤0

(field(≤0) \ dom(f)).
In case of ran(f) 6= field(≤1), set a1 := min≤1

(field(≤1) \ ran(f)). Then, by Claim 2,
dom(f) = <0〈{a0}〉, ran(f) = <1〈{a1}〉, respectively. In the case of both, by Claims 1 and 2,
f ::⌊≤0⌋a0

→⌊≤1⌋a1
would be an [S-] order-isomorphism, and then we would have the contra-

dictory a0 ∈ dom(f). Thus, we get the given cases and the described order-isomorphisms by
Claims 1 and 2 [and Lemma 2.17]. Q.e.d. (Claim 3)

By Claim 3, all that is left to show is that the three case are mutually disjoint. But case (i) trivially
does not go together with (ii) or (iii) by Corollary 2.15 and Lemma 3.31. Similarly, if cases (ii)
and (iii) fell together, sayhi::≤i→⌊≤1−i⌋a1−i

were [S-] order-isomorphisms fori ∈ {0, 1}, then
(h0◦h1)::≤0→⌊≤0⌋h1(a1) would be an [S-] order-isomorphism by Lemmas 2.21 and 3.30, again
contradicting Lemma 3.31. Q.e.d. (Theorem 3.33)
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3.5 FREGEOrdinals

It is a pity that in his seminal book[Quine, 1981] on ML, WILLARD VAN O. QUINE (1908–2000)
does not treat any infinite ordinal or cardinal numbers. In his finite cardinals, however, QUINE

follows GOTTLOB FREGE(1848–1925)[Frege, 1884; 1893/1903]; and we will call cardinal and
ordinal numbers in this style “FREGEcardinals” and “FREGEordinals”, respectively.

A FREGE ordinal is the most natural idea of an ordinal number of a given well-ordering≤,
namely the class of all reflexive orderings that are order-isomorphic to≤, i.e. the order-typeOT (≤, X)
of ≤ over some classX; cf. Definition 2.22.

Definition 3.34 (FREGEOrdinals over X, “FO(X)”)
α is an [S-] FREGEordinal overX if

¬U(X) and there is an [S-] well-ordering ≤ ∈ α such thatα = OT (≤, X).
[S]FO(X) := { α | α is an [S-] FREGEordinal overX }.

Corollary 3.35

(1) If α is a FREGEordinal overX,
then ¬U(α) andα is anS-FREGEordinal overX as well.

(2) FO(X) ⊆ SFO(X) ⊆ S.

Corollary 3.36 LetX ∈ S. Assume the Axiom of Separation. Then:

(1) α is a FREGEordinal overX iff α is anS-FREGEordinal overX.

(2) FO(X) = SFO(X).

In Definition 3.34, we have restricted the fields of the well-orderings to subclasses of a classX
for two reasons: The first is that we needSFO(X) for a setX in HARTOGS’ Ordinal Theorem,
cf. Theorem 3.46. The second reason is that in the NBG and MK class theories, [S-] FREGEordinals
over a proper class, such asV, are not much fun because they are all proper classes, with the ex-
ception of the FREGE ordinal{∅} of the empty ordering∅. This means that in NBG and MK
we haveFO(V) = SFO(V) = {{∅}}. For a setX, however, as a corollary of Lemma 2.24 we
get:

Corollary 3.37 If α is an [S-] FREGEordinal overX ∈ S, then α ∈ [S]FO(X), provided
that we assume either the Set Comprehension Axiom ofML , or else both the Power-Set Axiom
and the Axiom of Separation.

Definition 3.38 (Ordering of S-FREGEOrdinals, “≺SFO(X)”)

≺[S]FO(X) :=







(α0, α1)
α0, α1 ∈ [S]FO(X)

∧ ∃≤0 ∈ α0. ∃≤1 ∈ α1. ∃a1 ∈ field(≤1).
(≤0 is [S-] order-isomorphic to⌊≤1⌋a1

)







.

�SFO(X) := ≺SFO(X) ∪ SFO(X)↿id.

Corollary 3.39 Let us assume the Axiom of Separation.
Then≺FO(X) = FO(X)↿≺SFO(X) ↾FO(X).
Moreover, if X ∈ S, then ≺FO(X) = ≺SFO(X).



35

Remark 3.40 Note that we have not defined a reflexive ordering�FO(X) in Definition 3.38
because this would not have any interesting properties:

1. According to Definitions 3.34 and 2.22, to show⌊≤1⌋a1
∈ α0 in case of≤0 ∈α0, it is

not sufficient that≤0 is order-isomorphic to⌊≤1⌋a1
. Instead we need that≤0 is S-order-

isomorphic to⌊≤1⌋a1
. And this would cause similar problems, most easily to be over-

looked. For instance, already Claim 1 of the Proof of Lemma 3.45 would not hold. As the
removal of the “S-” in Definition 2.22 would deprive us of the elementship of order-types
of Lemma 2.24, and thereby render order-types practically useless, the only way to proceed
here would be to define a quasi-ordering.FO(X), where two order-types are equivalent iff
they are order-isomorphic. The theory of.FO(X) would be awkward, however, even after
extending our theory of well-orderings to such quasi-well-orderings. Note that≺FO(X)

is not necessarily an irreflexive well-ordering because it has no minimum in non-trivial
equivalence classes of.FO(X).

2. If we assume the Axiom of Separation, by Corollary 3.39, then there is hardly any reason
to consider≺FO(X) in addition to≺SFO(X) .

3. If we do not assume the Axiom of Separation, however, the optional case of Definition 3.38
is quite unimportant anyway, because we cannot showFO(X)∈S for X ∈ S.

Lemma 3.41
[Assume either the Set Comprehension Axiom ofML , or else the Axiom of Separation.]
≺[S]FO(X) is an ordering on[S]FO(X).

Proof of Lemma 3.41 By Corollary 2.15 and Lemma 3.31,≺[S]FO(X) is irreflexive. By Co-
rollary 2.15 and Lemma 2.21,≺[S]FO(X) is transitive. Q.e.d. (Lemma 3.41)

Lemma 3.42
Assume either the Set Comprehension Axiom ofML , or else the Axiom of Separation.
�SFO(X) is anS-well-ordering onSFO(X).
≺SFO(X) is an irreflexiveS-well-ordering onSFO(X), and the ordering of�SFO(X).

Proof of Lemma 3.42

By Lemma 3.41,≺SFO(X) is an ordering onSFO(X). Thus, by Corollary 2.11,�SFO(X) is a
reflexive ordering onSFO(X). By Corollary 2.10, ≺SFO(X) is the ordering of�SFO(X). By
Lemma 3.3(4), it now suffices to show that�SFO(X) is anS-well-ordering onSFO(X).

To this end, let us assumeα0 ∈Q ⊆ SFO(X) andQ∈S. Thenα0 is anS-FREGEordinal over
the classX. Then there is anS-well-ordering≤0 ∈ α0. Set

Q′ := { a ∈ field(≤0) | ∃α1 ∈Q. ∃≤1 ∈α1. (≤1 is S-order-isomorphic to⌊≤0⌋a) }.

Due to≤0 ∈ S, by the Axiom of Simple Operations and either the Set Comprehension Axiom of
ML or else the Axiom of Separation, we getfield(≤0), Q

′ ∈S.

In case ofQ′ = ∅, we setα′
0 := α0 and≤′

0 := ≤0.

In case ofQ′ 6= ∅, however, we setm := min≤0
Q′ by Corollary 3.4. Then, due tom ∈ Q′,

there areα′
0 ∈ Q, ≤′

0 ∈ α′
0, and anS-order-isomorphismf1::≤

′
0→⌊≤0⌋m.
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In any case, letα1 ∈ Q be arbitrary. Asα1 ∈Q, there is anS-well-ordering≤1 ∈ α1. It
suffices to showα′

0 �SFO(X) α1. By Theorem 3.33, we have three cases now:

If ≤′
0 is S-order-isomorphic to≤1, then, due to≤′

0 ∈α′
0, ≤1 ∈α1, Definitions 3.34 and 2.22,

and Corollary 2.15, we getα′
0 = α1, which implies α′

0 �SFO(X) α1.

If ≤′
0 is S-order-isomorphic to an initial segment of≤1, then α′

0 ≺SFO(X) α1, which implies
α′

0 �SFO(X) α1.

Otherwise, there is anS-order-isomorphismf0::≤1→⌊≤
′
0⌋b for someb ∈ field(≤′

0). In case
of Q′ = ∅, we have≤′

0 = ≤0, and then the contradictoryb∈Q′. Thus, Q′ 6= ∅. Then, by
Lemma 2.21,(f0◦f1)::≤1→⌊≤0⌋f1(b) is anS-order-isomorphism withf1(b) <0 m. But then
f1(b) ∈ Q′, which contradicts the description ofm. Q.e.d. (Lemma 3.42)

Lemma 3.43 If X ∈ S, then SFO(X), ≺SFO(X), �SFO(X) ∈ S, provided that we
assume either the Set Comprehension Axiom ofML , or else both the Power-Set Axiom and the
Axiom of Separation.

Proof of Lemma 3.43

By the Axiom of Simple Operations, the Power-Set Axiom, and the Axiom of Separation,
we get [S]FO(X) ∈ S from FO(X) ⊆ SFO(X) ⊆ P(P(X×X)) ∈ S; and then
≺[S]FO(X), �SFO(X) ∈ S from ≺[S]FO(X), �SFO(X) ⊆ SFO(X)× SFO(X) ∈ S.

For SFO(X)∈S, by the Set Comprehension Axiom of ML, we just have to show that the defin-
ing statement of Definition 3.34 is stratified and equivalentto the version where all quantifiers are
restricted to elementship. Stratification is easy: Just set≤, X to the same integer numbern;
andα to n+1. The rest is follows from the Proof of Lemma 2.24.

Moreover,≺SFO(X) ∈ S now easily follows from the Set Comprehension Axiom of ML andthe
Axiom of the Ordered Pair.

Finally, �SFO(X) ∈ S now easily follows from the Axiom of Simple Operations.
Q.e.d. (Lemma 3.43)
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3.6 HARTOGS’ Ordinal Theorem

The following Lemma 3.45 and Theorem 3.46 are due to FRIEDRICH HARTOGS(1874–1943).

Definition 3.44 (HARTOGS-Morphism)
m is theX-HARTOGS-morphism onto≤ if m = (f ::⌊�SFO(X)⌋α→≤) for

f :=







(β, b)
β ≺SFO(X) α

∧ b ∈ field(≤)
∧ ∃≤′ ∈ β. (≤′ is S-order-isomorphic to⌊≤⌋b)







,

α := OT (≤, X).

Note that the Set Comprehension Axiom of ML does not seem to besufficient to showf ∈S
for the f of Definition 3.44, because stratification of the defining formula with a substitutionσ
results inβσ = ασ = ≤σ+1 = bσ+2, which is inconsistent with the requirement ofβσ = bσ,
resulting from the pair(β, b).

Lemma 3.45 ([Hartogs, 1915])

Let us assume either the Set Comprehension Axiom ofML , or else both the Power-Set Axiom
and the Axiom of Separation. Moreover, let us assumeX ∈ S. Then:

(1) For everyα ∈ SFO(X) and every≤ ∈ α,
theX-HARTOGS-morphism onto≤ is an order-isomorphism.

(2) If there is
an injective functionπ : SFO(X)→ X with π ∈S,

then for
≤ := π−1 ◦ �SFO(X) ◦ π,
α := OT (≤, X),

we have
≤ ∈ α ∈ SFO(X),

and
π::�SFO(X)→≤ is anS-order-isomorphism,

but there is
noS-order-isomorphismf ::⌊�SFO(X)⌋α→≤.

Proof of Lemma 3.45

(1): Let ≤ ∈ α ∈ SFO(X). Then≤ is anS-well-ordering on a subclass ofX.
Let f ::⌊�SFO(X)⌋α→≤ be theX-HARTOGS-morphism onto≤.

Claim 1: dom(f) = field(⌊�SFO(X)⌋α).

Proof of Claim 1: Let β ≺SFO(X) α be arbitrary. By Lemma 3.42, it suffices to show
β ∈ dom(f). By Definition 3.38, there are≤′ ∈ β, ≤′′ ∈ α, b′′ ∈ field(≤′′), and an
S-order-isomorphismg0::≤

′→⌊≤′′⌋b′′ . Due to ≤,≤′′ ∈α∈SFO(X), by Definitions 3.34
and 2.22 and Corollary 2.15, there is anS-order-isomorphismg1::≤

′′→≤. By Lemma 2.21,
(g0◦g1)::≤

′→⌊≤⌋g1(b′′) is anS-order-isomorphism andg1(b
′′)∈ field(≤). Thus, (β, g1(b

′′))∈ f .
Thus, β ∈ dom(f), as was to be shown. Q.e.d. (Claim 1)
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Claim 2: f is a function.

Proof of Claim 2: In case that(β, bi)∈ f , for eachi∈{1, 2}, there are≤′
i ∈ β ∈ SFO(X)

such that≤′
i is S-order-isomorphic to⌊≤⌋bi

. By Definitions 3.34 and 2.22 and Corollary 2.15,
⌊≤⌋b1 is S-order-isomorphic to⌊≤⌋b2. Thus, by Lemma 3.32(a), we haveb1 = b2, as was to
be shown. Q.e.d. (Claim 2)

Claim 3: f is injective.

Proof of Claim 3: In case that(βi, b)∈ f , for eachi∈{1, 2}, there are≤′
i ∈ βi ∈ SFO(X)

such that≤′
i isS-order-isomorphic to⌊≤⌋b. Then, by Corollary 2.15,≤′

1 isS-order-isomorphic
to≤′

2. Thus, by Definitions 3.34 and 2.22 and Corollary 2.15, we have β1 = β2, as was to be
shown. Q.e.d. (Claim 3)

Claim 4: ran(f) = field(≤).

Proof of Claim 4: Let b ∈ field(≤) be arbitrary. Setβ := OT (⌊≤⌋b, X). By Corollary 3.29,
⌊≤⌋b is anS-well-ordering on a proper subclass ofX. By Lemma 2.19, we have⌊≤⌋b ∈ S, and
thus ⌊≤⌋b ∈ β by Corollary 2.23. Due toX ∈ S, by Corollary 3.37, we haveβ ∈SFO(X).
By Corollary 2.15,⌊≤⌋b is S-order-isomorphic to⌊≤⌋b. Thus, by Definition 3.38,β ≺SFO(X)

α. All in all, we have (β, b)∈ f . Thus, b∈ ran(f), as was to be shown. Q.e.d. (Claim 4)

Let us assumeγ, β to be arbitrary with γ≺SFO(X)β≺SFO(X)α. For f ::⌊�SFO(X)⌋α→≤ to
be an order-isomorphism, by Corollary 2.16, Claims 1–4, andLemma 3.3(1b), it suffices
to show f(γ) < f(β). Due to γ≺SFO(X)β, by Definition 3.38, there are≤′

γ ∈ γ,
≤′

β ∈ β, b ∈ field(≤′
β), and anS-order-isomorphismg2::≤

′
γ→⌊≤

′
β⌋b. Moreover, by

definition of f and Corollary 2.15, there are≤′′
γ ∈ γ, ≤′′

β ∈ β, andS-order-isomorphisms
g4::≤

′′
β→⌊≤⌋f(β) and g0::⌊≤⌋f(γ)→≤

′′
γ. Furthermore, due toγ, β ∈SFO(X), by Defi-

nitions 3.34 and 2.22 and Corollary 2.15, there areS-order-isomorphismsg1::≤
′′
γ→≤

′
γ and

g3::≤
′
β→≤

′′
β. Then we get theS-order-isomorphism(g3◦g4)::≤

′
β→⌊≤⌋f(β). Then, by

Lemma 2.21, (g2◦g3◦g4)::≤
′
γ→⌊≤⌋(g3◦g4)(b) is an S-order-isomorphism and (g3◦g4)(b) ∈

field(⌊≤⌋f(β)), i.e. (g3◦g4)(b) < f(β). Then(g0◦g1◦g2◦g3◦g4)::⌊≤⌋f(γ)→⌊≤⌋(g3◦g4)(b) is an
S-order-isomorphism. By Lemma 3.32 we getf(γ) = (g3◦g4)(b) < f(β), as was to be shown.

(2): Due to X ∈ S, by Lemma 3.43, we haveSFO(X), �SFO(X) ∈ S. Suppose that there
is an injectionπ : SFO(X)→ X with π ∈S. Let us consider the reflexive ordering on

ran(π) given by ≤ := π−1 ◦ �SFO(X) ◦ π, i.e. by a≤b if π−1(a) �SFO(X) π−1(b). Then
π::�SFO(X)→≤ is anS-order-isomorphism by Lemma 3.42 and the Axiom of Simple Opera-
tions. Moreover, ≤ is anS-well-ordering on a subclass ofX. Setα := OT (≤, X).
By Corollary 2.23, we have≤ ∈ α. Thus,α is anS-FREGE ordinal. By Lemma 2.24,
we have α∈S. Thus, α∈SFO(X). For a reductio ad absurdum, suppose that there
is anS-order-isomorphismf ::⌊�SFO(X)⌋α→≤. Then there is also anS-order-isomorphism
(f ◦ π−1)::⌊�SFO(X)⌋α→�SFO(X). This contradicts Lemma 3.31. Q.e.d. (Lemma 3.45)
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Roughly speaking, Theorem 3.46 says that the cardinality ofS-FREGE ordinals over a given
classX is neither smaller nor equal to the cardinality ofX; cf. also Example 3.2.

Theorem 3.46 (HARTOGS’ Ordinal Theorem, [Hartogs, 1915])
Let us assume the Power-Set Axiom and the Axiom of Separation.
Moreover, let us assumeX ∈ S. Then:

(1) For everyα ∈ SFO(X) and every≤ ∈ α,
theX-HARTOGS-morphism onto≤ is anS-order-isomorphism.

(2) There is no injectionπ : SFO(X)→ X.

Proof of Theorem 3.46

(1): Let ≤ ∈ α ∈ SFO(X). Then≤ is anS-well-ordering on a subclass ofX.
Let f ::⌊�SFO(X)⌋α→≤ be theX-HARTOGS-morphism onto≤.

By Lemma 3.45(1) and Lemma 2.17, it suffices to showf ∈S. By Lemma 3.43, we have
SFO(X)∈S. By Corollary 1.25, we havefield(≤)∈S. Thus, by the Axiom of Simple
operations (cf. Requirement 1.24), we havef ⊆ SFO(X)× field(≤) ∈ S, i.e. f ∈ S by the
Axiom of Separation.

(2): Reductio ad absurdum. Assume thatπ : SFO(X)→ X is an injective function. By Lem-
ma 3.43, we haveSFO(X)∈S. Thus, by the Axiom of Simple Operations, we haveπ ⊆

SFO(X)×X ∈ S, i.e. π ∈S by the Axiom of Separation. Thus, Lemma 3.45(2) contradicts
Theorem 3.46(1). Q.e.d. (Theorem 3.46)

The following theorem shows that there is no chance to prove HARTOGS’ Ordinal Theorem when
we assume the Set Comprehension Axiom of ML.

Theorem 3.47 (Anti-HARTOGS)
Let us assume the Set Comprehension Axiom ofML . Then

(1) SetΩ := OT (�SFO(S),S). Then Ω ∈ SFO(S). And for every≤ ∈ Ω,
theS-HARTOGS-morphismf ::⌊�SFO(S)⌋Ω→≤ is an order-isomorphism,
but, due tof 6∈ S, noS-order-isomorphism.

(2) (SFO(S)↿id) : SFO(S)→ S is an injection with(SFO(S)↿id) ∈ S ∈ S.

Proof of Theorem 3.47

(2): From the Set Comprehension Axiom of ML we getS ∈S. Then we getSFO(S)∈S by
Lemma 3.43. Thus,SFO(S)↿id∈S by the Axiom of Simple Operations. And trivially, id

andSFO(S)↿id are injective. Finally, we haveSFO(S) ⊆ S by Corollary 3.35(2).

(1): From Theorem 3.47(2), by Lemma 3.45(2), we have�SFO(S) ∈ Ω ∈ SFO(X), but are as-
sured that there is noS-order-isomorphismf ::⌊�SFO(S)⌋Ω→�SFO(S). By Lemma 3.45(1),

for every≤ ∈ Ω, theS-HARTOGS-morphismf ::⌊�SFO(S)⌋Ω→≤ is an order-isomorphism, but
cannot be anS-order-isomorphism because≤ is S-order-isomorphic to�SFO(S). This means
f 6∈ S. Q.e.d. (Theorem 3.47)
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*** END OF REVISION ***
Even in QUINE'� ML las� theory, from the a�umption that su� ordinal� are set�, we an prove that the theory i�inonsi�ent beause then the las� of FREGE ordinal� ontain� a proper sublas� without a minimal element. But in
QUINE'� NF thi� proof doe� not work beause proper subla�e� do not exi� and only subsetshave to have a minimalelement, and thi� way out an be �osen in ML a� well.
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4 Induction

We learly need a setion on Indution here. Also a setion on thenatural number� would be nie, though not urgent.

Note that the following setion� are not yet reworked aording tothe onretization on the theorie� of set� and la�e� of the previou�setion�!!!
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5 Fixpoints of Monotonic and Expansive Functors

We now need the following notions for the first time, which we could have defined already in§ 1.

Definition 5.1 (Monotonicity, Expansiveness, Fixpoint)
Let≤ be a binary relation (onA). Let f : A→ A be a singulary total function.
f is≤-monotonic if ∀x, y.

(

(x ≤ y) ⇒ (f(x) ≤ f(y))
)

.
f is≤-expansiveif ∀x∈A. (x ≤ f(x)).
s is afixpoint off if s = f(s).

Definition 5.2 (Chain)
Let≤ be a reflexive ordering.
C is a≤-chain if C ⊆ field(≤) and ≤ is total onC.
C is awell-ordered≤-chain if C ⊆ field(≤) andC↿≤↾C is a well-ordering onC.

5.1 Simple Construction of Greatest Fixpoint

The following theorem holds, even without assuming any (weak) forms of the Axiom of Choice
or any kind of induction principle.

Theorem 5.3 (KNASTER–TARSKI)
Let≤ be a reflexive ordering. Letf be≤-monotonic.
If λx. (x ≤ f(x)) has a≤-supremumg := sup≤

x≤f(x) x,
theng is the≤-greatest fixpoint off .

Proof of Theorem 5.3
For anyx with x≤f(x) we have x≤g by (sup 1) of Definition 2.1, and thenx≤f(x)≤f(g)
by monotonicity. Thus,g≤f(g) by transitivity and(sup 2) of Definition 2.1. By monotonicity,
f(g)≤f(f(g)). Thus, f(g)≤g by (sup 1). Thus, g=f(g) by anti-symmetry. Thus,g is a
fixpoint of f , and by reflexivity and(sup 1) the≤-greatest. Q.e.d. (Theorem 5.3)
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5.2 Inductive Fixpoint Construction

The following is called ZERMELO’s Fixpoint Theoremafter[Moschovakis, 2006, Note 18, p. 102],
attributing the proof (but not the theorem) to[Zermelo, 1904]. We do not think this attribution to
be justified, but there is no better name to the best of our knowledge.

Theorem 5.4 (ZERMELO’s Fixpoint Theorem)
Let≤ be a reflexive ordering on a setA.
If the function f : A→ A is ≤-expansive, and if each well-ordered≤-chain has a
≤-supremum, thenf has a fixpoint.

Proof of Theorem 5.4

Let � be the well-ordering onFO(A) given by HARTOGS’ Theorem, cf. Theorem 3.46.
Let≺ be the ordering of�.

We definelβ for β ∈ FO(A) recursively over≺ as follows:
If β is a non-limit�-point (cf. Definition 3.5), we setlS�(α) := f(lα), for α being the�-
predecessor ofβ, cf. Lemma 3.6.
If β is a limit�-point: lβ := sup≤

α≺β lα.

Note that we will reuse this inductive construction in Theorem 5.5.

Claim 1: Let β be a non-limit�-point andα its�-predecessor. Thenlα ≤ lS�(α).
Proof of Claim 1: Directly by the presupposition thatf is expansive. Q.e.d. (Claim 1)

Claim 2: In case ofβ ≺ γ, we havelβ ≤ lγ.
Proof of Claim 2: If γ is a limit �-point, this follows from(sup 1) of Definition 2.1. If γ is
a non-limit ordinalS�(α), this follows from Claim 1 in case ofβ = α, and from induction
hypothesis and Claim 1 in case ofβ ≺ α by transitivity. Q.e.d. (Claim 2)

Note that the latter supremum in the recursive definition ofl is indeed taken over well-ordered
≤-chains according to Claim 2: ForQ ⊆ ran(l) with Q 6= ∅, we have min≤ Q = lα for
α := min� { β ∈FO(A) | lβ ∈Q }.
From Claim 2 we can also show by induction that∀β ∈FO(A).

(

lβ = sup≤
α≺β f(lα)

)

, which
gives an alternative definition ofl.

Claim 3: If lγ ≤ lβ for someγ ≻ β, then ∀α≻β. (lα = lβ).
Proof of Claim 3: In case of β ≺ α � γ, we have lβ ≤ lα ≤ lγ. Indeed, the first step
holds by Claim 2 and the second by Claim 2 and reflexivity. By transitivity we get lβ ≤ lγ. By
antisymmetry from the assumption we getlα = lβ.
The case ofα ≻ γ follows then by a trivial induction. Q.e.d. (Claim 3)

By HARTOGS’ Theorem, the functionl cannot be an injection. Thus, there must beγ ≻ β′ with
lγ = lβ′ . By reflexivity and Claim 3, we getlS�(β)′ = lβ′, i.e. f(lβ′) = lβ′. Thus,lβ′ is a fixpoint
of f . Q.e.d. (Theorem 5.4)
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5.3 Inductive Construction of Least Fixpoint

Theorem 5.5 (Inductive Fixpoint Construction)
Let≤ be a reflexive ordering on a setA andf : A→ A be≤-monotonic.
If each well-ordered≤-chain has a≤-supremum, thenf has a≤-least fixpointx.
In addition, x actually satisfies∀y ∈A.

(

(f(y) ≤ y) ⇒ (x ≤ y)
)

.

Now if supremaand infima exist, due to duality we can choose between Theorem 5.3and Theo-
rem 5.5 for the construction of greatest and least fixpoints.

Proof of Theorem 5.5

Firstly, we show that exactly the same construction as in theProof of Theorem 5.4 provides us
with the same fixpoint, which is actually the least one due to monotonicity, according to Claim 4.
Secondly, we sketch that Theorem 5.5 is actually a corollaryof Theorem 5.4.

Let l be defined exactly as in the Proof of Theorem 5.4. Moreover, let also Claim 1, Claim 2, and
Claim 3 be exactly as in the Proof of Theorem 5.4. Note that we have to give a new proof for
Claim 1 only, because this is the only one that uses the presupposition of expansiveness.

New Proof of Claim 1: On the one hand, ifα is a limit �-point, then we havelγ ≤ lα for
all γ ≺ α by definition of lα and by(sup 1) of Definition 2.1. By induction hypothesis and
monotonicity we then havelγ ≤ lS�(γ) = f(lγ) ≤ f(lα) = lS�(α). Then, by transitivity and
(sup 2) of Definition 2.1, we have the claimedlα ≤ lS�(α). On the other hand, ifα is a non-
limit �-point S�(γ), then we havelγ ≤ lS�(γ) by induction hypotheses and, by monotonicity,
lα = lS�(γ) = f(lγ) ≤ f(lS�(γ)) = f(lα) = lS�(α). Q.e.d. (Claim 1)

Claim 4: Assume thaty ∈ A satisfiesf(y) ≤ y. For allα ∈ FO(A) we have: lα ≤ y.
Proof of Claim 4: On the one hand, ifα is a limit �-point, this follows from the induction
hypothesis by(sup 2) of Definition 2.1. On the other hand, ifα is a non-limit�-point S�(β),
then we havelβ ≤ y by induction hypothesis, and then by monotonicity:lα = lS�(β) = f(lβ) ≤
f(y) ≤ y. Q.e.d. (Claim 4)

Finally, let us sketch why Theorem 5.5 is actually a corollary to Theorem 5.4. Set

B :=
{

b∈A b ≤ f(b) ∧ ∀y ∈A.
(

f(y) ≤ y ⇒ b ≤ y
) }

.

ThenB is closed underf and≤-suprema. By the first property of the conjunction separating B
from A we can now apply Theorem 5.4 to get a fixpoint. By the second property, this fixpoint is
the least one and satisfies the additional property stated inTheorem 5.5. Cf.[Moschovakis, 2006,
p. 103] for more details. Q.e.d. (Theorem 5.5)
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6 Fixpoints of Class Operators

6.1 Class Operators

Definition 6.1 ([Monotonic] Class Operator)
Φ is aclass operatorif Φ(X) denotes a unique class for each classX.
A class operatorΦ is calledmonotonic if it is monotonic for the subclass relation, i.e. if

∀X,Y.
(

X⊆Y ⇒ Φ(X) ⊆ Φ(Y )
)

.

Definition 6.2 ([Strongly] Set-Continuous)
A a class operatorΦ is calledset-continuousif

∀X⊆V.



 Φ(X) =
⋃

x∈P(X)

Φ(x)



.

Φ is strongly set-continuousif it additionally satisfies∀x∈P(V).
(

Φ(x) ∈ P(V)
)

.

Corollary 6.3 A class operatorΦ is set-continuous iff it is monotonic and satisfies
∀X 6∈ V. ∀a∈Φ(X). ∃x∈P(X).

(

a ∈ Φ(x)
)

Definition 6.4 (Algebraic)
A class operatorΦ is algebraic if

∀X⊆V.



 Φ(X) =
⋃

x∈PN(X)

Φ(x)



.

Corollary 6.5 An algebraic class operator is monotonic and set-continuous.
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6.2 Fixpoints of Set-Continuous Class Operators

Let Φ be a monotonic class operator. Then, by the KNASTER–TARSKI Theorem 5.3,
⋂

X⊇Φ(X) X

is the least and
⋃

X⊆Φ(X) X the greatest fixpoint ofΦ. Note that Theorem 5.5 cannot be applied
to get a least or greatest fixpoint ofΦ because itssetA would have to be the superlarge collection
of all classes.

6.2.1 The Least Fixpoint of a Set-Continuous Class Operator

For set-continuous class operators — and these are all monotonic class operators we are interested
in — the following Theorem 6.8 is a real improvement over Theorem 5.5. It is a very minor
refinement of Theorem 6.4 of[Aczel, 1988]. Not only does Theorem 6.8 require less set theory
than Theorem 5.5, but also reduces the well-ordered construction of whole sets to the construction
of their elements’ derivation graphs, which is an interesting technique for showing properties of
fixpoints.

Definition 6.6 ([Finitely Branching ] Labeled Well-Founded Rooted Graphs)
A [finitely branching] well-founded rooted graphis a pair(−→, l), wherel is a function, called
labeling function, and−→ is a binary relation on the setdom(l), such that←− is well-
founded, [∀n∈ dom(l).

(

〈{n}〉−→ is finite
)

,] and such that there is aroot r ∈ dom(l) with

〈{r}〉
∗
−→ = dom(l). As such a root is unique, we denote it withroot(−→).

By a trivial Noetherian induction over←− on the cardinality of〈{u}〉
∗
−→, we get the following

corollary. Note that we do not need any weak form of the Axiom of Choice (such as K̈onig’s
Lemma) here, because we do not have to construct an infinite branch.

Corollary 6.7
If (−→, l) is a finitely branching well-founded rooted graph, thendom(l) is finite.

Theorem 6.8 LetΦ be an[algebraic] set-continuous class operator.
Let D be the class of[finitely branching] labeled well-founded rooted graphs(−→, l) such that
∀i∈dom(l).

(

l(i) ∈ Φ({ l(j) | i−→j })
)

.
Set I :=

{

l(root(−→)) (−→, l) ∈ D
}

.
If Φ is algebraic or if we assume the Axiom of Collection, thenI is the least fixpoint ofΦ.

Note that we have
I =

⋂

X⊇Φ(X)

X

in the case of Theorem 6.8, but the latter construction according to Theorem 5.3 requires a theory
of setsand classes. For

I ′ :=
⋂

x⊇Φ(x) ∧ x∈P(V)

x
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along the KNASTER–TARSKI proof we still get I ′ ⊇ Φ(I ′) and Φ(I ′) ⊇ Φ(Φ(I ′)). But
Φ(I ′) ⊇ I ′ is guaranteed only ifΦ(I ′) ∈ P(V), which (even ifΦ is strongly set-continuous!) is
not generally the case: To wit, consider NBG (where the classof cardinal numbersC is proper,
Cantor’s 2nd Diagonalization holds, and any proper class contains subsets of arbitrary cardinality)

and defineΦ by Φ(X) :=

{

|P(X)| if X ∈P(V)
C otherwise

}

. By Corollary 6.3, Φ is strongly set-

continuous, and we haveI = C but I ′ = V.

Proof of Theorem 6.8

Claim 1: Φ(I) ⊆ I.
Proof of Claim 1:Assumea ∈ Φ(I). AsΦ is set-continuous or algebraic, there is somex ∈ P(I)
or x ∈ PN(I), resp., such thata∈Φ(x). Since x⊆I, by the definition ofI we have

∀y ∈x. ∃(−→, l).
(

(−→, l)∈D ∧ y = l(root(−→))
)

.
Sincex is a set or a finite set, by the Axiom of Collection (cf. Definition 1.27) there is a setA or
simply by induction on the size ofx there is a finite setA, resp., such that

∀y ∈x. ∃(−→, l)∈A.
(

(−→, l)∈D ∧ y = l(root(−→))
)

.

Define B :=
{ (

0, ((−→, l), i)
)

(−→, l)∈A ∧ i∈dom(l)
}

. Note that the step from
A to B is missing in the proof of Theorem 6.4 of[Aczel, 1988]. Now B is a set again, due to
B ⊆

⋃

(−→,l)∈A

(

{0}×({(−→, l)}×dom(l))
)

. Then C := B ⊎ {(1, 0)} is a set. Define the
relation=⇒ to be the smallest relation onC such that, for each(−→, l) ∈ A, we have

(1, 0) =⇒ (0, ((−→, l), root(−→)))
and

∀i, j ∈ dom(l).
(

j−→i ⇒ (0, ((−→, l), j)) =⇒ (0, ((−→, l), i))
)

.

We defineL on C by L(0, ((−→, l), i)) := l(i) and L(1, 0) := a. Now the second following
=-step is the one that requires the definition ofB in addition toA: We have

L(0, ((−→, l), i))
= l(i) ∈ Φ({ l(j) | i−→j }) = Φ

( {

l(j) (0, ((−→, l), i)) =⇒ (0, ((−→, l), j))
} )

= Φ
( {

L(J) (0, ((−→, l), i)) =⇒ J
} )

,

and by x ⊆ { l(root(−→)) | (−→, l)∈A } and monotonicity ofΦ we have

L(1, 0) = a ∈ Φ(x) ⊆ Φ
( {

l(root(−→)) (−→, l)∈A
} )

= Φ
( {

L(J) (1, 0) =⇒ J
} ) .

All in all, (=⇒, L)∈D, i.e. a = L(1, 0) = L(root(=⇒)) ∈ I. Q.e.d. (Claim 1)

Claim 2: If Φ(X) ⊆ X, then I⊆X.
Proof of Claim 2: Let (−→, l)∈D. We have to showl(root(−→))∈X. It suffices to show
l(i)∈X for i ∈ dom(l) by induction on←−. By induction hypothesis:{ l(j) | i−→j } ⊆ X.
By definition ofD and monotonicity, we have
l(i) ∈ Φ({ l(j) | i−→j }) ⊆ Φ(X) ⊆ X. Q.e.d. (Claim 2)

By Claim 1 and monotonicity we haveΦ(Φ(I)) ⊆ Φ(I) ⊆ I. Thus, by Claim 2,I ⊆ Φ(I). By
antisymmetry of⊆, I is a fixpoint ofΦ, and by Claim 2 the least one. Q.e.d. (Theorem 6.8)
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6.2.2 The Greatest Fixpoint of a Set-Continuous Class Operator

The following is a theorem of set theory.

Theorem 6.9 ([Aczel, 1988], Theorem 6.5) Let Φ be some set-continuous class operator. As-
sume the Axiom of Collection and the Principle of Dependent Choice. Set

J :=
⋃

x⊆Φ(x) ∧ x∈P(V)

x.

Now: J is the greatest fixpoint ofΦ.

Note that we have J =
⋃

X⊆Φ(X)

X

in the case of Theorem 6.9, but the latter construction according to Theorem 5.3 requires a theory
of setsand classes.

Example 6.10 (Set-Continuity Necessary in Theorem 6.9)
Along the KNASTER–TARSKI proof we always getJ ⊆ Φ(J) ⊆ Φ(Φ(J)). But J ⊇ Φ(J) is
guaranteed only ifΦ(J)∈P(V), which is not generally the case: To wit, consider NBG (where

a subclass of a set is always a set) and defineΦ by Φ(X) :=

{

X∩O if X ∈P(V)
V otherwise.

}

. Then

Φ is monotonic (but not set-continuous), and we haveJ=O but Φ(J)=V=
⋃

X⊆Φ(X) X. Thus,
J 6⊇ Φ(J).

Example 6.11 (No Analog of Theorem 6.9 for AlgebraicΦ as for Theorem 6.8) DefineΦ(X) :=
{ y ∈O | ∃x∈X. y≺x }. ThenΦ is algebraic:Φ(X) =

⋃

∃y ∈X. x={y} Φ(x). We haveJ =O,
but

⋃

x⊆Φ(x) ∧ x∈PN(V) Φ(x) = ∅.

Proof of Theorem 6.9

Claim 1: J ⊆ Φ(J).
Proof of Claim 1: Let a ∈ J . Then there is somex∈S with x⊆Φ(x) and a∈ x. Then x ⊆ J .
Then a∈ x ⊆ Φ(x) ⊆ Φ(J) by monotonicity. Q.e.d. (Claim 1)

Claim 2: If X⊆Φ(X) and x∈P(X), then there is anx′ ∈ P(X) such thatx⊆Φ(x′).
Proof of Claim 2: We havex⊆X⊆Φ(X). As Φ is set-continuous, this means

∀y ∈x. ∃u.
(

u∈P(X) ∧ y ∈Φ(u)
)

.
Sincex is a set, by the Axiom of Collection there is a setA such that

∀y ∈x. ∃u∈A.
(

u∈P(X) ∧ y ∈Φ(u)
)

.
Set A′ := A ∩P(X) and x′ :=

⋃

A′. Thenx′ is a set withx′⊆X, and, by monotonicity, we
have Φ(u) ⊆ Φ(x′) for anyu ∈ A′. Thus, x ⊆

⋃

u∈A′ Φ(u) ⊆ Φ(x′). Q.e.d. (Claim 2)

Claim 3: If X⊆Φ(X), then X⊆J .
Proof of Claim 3: Assumea ∈ X. By Claim 2 and the Principle of Dependent Choice, there
is an x : N→ P(X) with x0 = {a} and ∀i∈N. xi⊆Φ(xi+1). Set z :=

⋃

i∈N
xi. Then

a∈ z ∈P(X). Moreover, by monotonicity,z =
⋃

i∈N
xi ⊆

⋃

i∈N
Φ(xi+1) ⊆ Φ(z). Thus,

a∈ z ⊆ J . Q.e.d. (Claim 3)

By Claim 1 and monotonicity we haveJ ⊆ Φ(J) ⊆ Φ(Φ(J)). Thus, by Claim 3,Φ(J) ⊆ J . By
antisymmetry of⊆, J is a fixpoint ofΦ, and by Claim 3 the greatest one.Q.e.d. (Theorem 6.9)
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7 Lattices

Definition 7.1 (Compactly Generated)

Let≤ be a binary relation (onA).

An elementa (of A) is ≤-compact if for every ≤-supremums (in A) of every singulary
predicateP (on A) with a≤s, there are finitely manyy1, . . . , yn (in A) (n∈N), such that
∀i∈{1, . . . , n}. P (yi) and such thatλx. (x∈{y1, . . . , yn}) has a≤-supremum witha ≤ sup≤{y1, . . . , yn}

An elementc (of A) is≤-compactly generatedif c is a≤-supremum of some predicateP with
∀x.

(

P (x)⇒ (x is≤-compact)
)

.

Corollary 7.2 Let≤ be a binary relation (onA). Leta ∈ A.
If a is≤-compact, thena is≤-compactly generated.

Definition 7.3 ([Algebraic] [Complete] Lattice)
A lattice (onA) is a reflexive ordering≤ (onA) where any predicateP (onA) with
∃x, y. ∀z. (P (z)⇔ z=x ∨ z=y) has an≤-supremum and an≤-infimum (inA).
A complete lattice(on A) is a reflexive ordering≤ (on A) where any singulary predicate (onA)
has an≤-supremum (inA).
An algebraic lattice(on A) is a complete lattice (onA), where every element (ofA) is ≤-
compactly generated.

Corollary 7.4 Let≤ be a complete lattice onA ⊆ V. SetA′ := { a ∈ A | a is≤-compact}.
Let c ∈ A. Thenc is≤-compactly generated iffc = sup≤ { a∈A′ | a ≤ c }.

The following is a corollary of Lemma 2.2 and Corollary 2.13:

Corollary 7.5
A complete lattice is a lattice; and the dual of a[complete] lattice is a[complete] lattice.

Lemma 7.6 If ≤ and� are two complete lattices, andf ::≤→� is an order-isomorphism,
then

∀X ⊆ field(≤).

(

f(inf≤ X) = inf� (〈X〉f)
∧ f(sup≤ X) = sup� (〈X〉f)

)

.

Proof of Lemma 7.6 For x ∈ X, we have x ≤ sup≤ X. Thus, f(x) � f(sup≤ X). This
means thatf(sup≤ X) satisfies(sup 1) of Definition 2.1 for the supremum ofλy. (y ∈ 〈X〉f).
It remains to show that it also satisfies(sup 2). Thus, suppose that, for somey, we havef(x) � y
for all x ∈ X. As f is surjective onfield(≤′), there is somez ∈ field(≤) with y = f(z). Then
f(x) � f(z). Then x ≤ z for all x ∈ X. Then sup≤ X ≤ z. Then f(sup≤ X) � f(z) = y,
as was to be shown. Q.e.d. (Lemma 7.6)

Corollary 7.7 If ≤ and� are two lattices, andf ::≤→� is an order-isomorphism, then

∀x, y ∈ field(≤).

(

f(inf≤{x, y}) = inf�{f(x), f(y)}
∧ f(sup≤{x, y}) = sup�{f(x), f(y)}

)

.
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8 Closure Operators

The following is based on[Burris & Sankappanavar, 1981, Chapter I,§ 5].

Definition 8.1 ([Algebraic] Closure Operator)
An [algebraic] closure operatoris an [algebraic] monotonic class operatorC satisfying

∀X⊆V.
(

X ∪ C(C(X)) ⊆ C(X)
)

.

Remark 8.2 (Dual Closure Operator)
Note that the dual concept of a monotonic class operatorC ′ satisfying

∀X⊆V.
(

X ∩ C ′(C ′(X)) ⊇ C ′(X)
)

does not seem to be needed at first glance, because we can turnC ′ into a closure operatorC
simply by defining

C(X) := V \ C ′(V\X).
We make use of this trick in Definition 10.4 for the greatest-fixpoint operator, which would natu-
rally satisfy the dual concept. But cf. Remark 10.7.

Lemma 8.3 LetC be a closure operator.

1. X is a fixpoint ofC iff X = C(Y ) for someY ⊆ V.

2. For a predicateP holding only for classes (not necessarily fixpoints):

(a) C
( ⋃

P (Z) C(Z)
)

= C
( ⋃

P (Z) Z
)

.

(b) C
( ⋂

P (Z) C(Z)
)

=
⋂

P (Z) C(Z).

Proof of Lemma 8.3

1: On the one hand, ifX is a fixpoint ofC, then X = C(X). On the other hand, we have
both C(C(Y )) ⊆ C(Y ) and C(Y ) ⊆ C(C(Y )), and thusC(Y ) = C(C(Y )), i.e.C(Y ) is

a fixpoint ofC.

2a “⊆”: For every classZ ′ with P (Z ′) we have Z ′ ⊆
⋃

P (Z) Z. By monotonicity
C(Z ′) ⊆ C(

⋃

P (Z) Z). Thus
⋃

P (Z′) C(Z ′) ⊆ C(
⋃

P (Z) Z). By monotonicity
C(

⋃

P (Z′) C(Z ′)) ⊆ C(C(
⋃

P (Z) Z)) ⊆ C(
⋃

P (Z) Z).

2a “⊇”: By extensiveness, we haveZ ⊆ C(Z) for everyZ. Thus,
⋃

P (Z) Z ⊆
⋃

P (Z) C(Z).
By monotonicity C(

⋃

P (Z) Z) ⊆ C(
⋃

P (Z) C(Z)).

2b “⊆”: For every classZ ′ with P (Z ′) we have
⋂

P (Z) C(Z) ⊆ C(Z ′). By monotonicity
C(

⋂

P (Z) C(Z)) ⊆ C(C(Z ′)) ⊆ C(Z ′). Thus C(
⋂

P (Z) C(Z)) ⊆
⋂

P (Z′) C(Z ′).

2b “⊇”: By extensiveness.

Q.e.d. (Lemma 8.3)
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9 Fixpoint Lattices

As corollary from Lemma 8.3 we get:

Corollary 9.1 (Fixpoint Lattice)
The subclass relation restricted to the fixpoints of a closure operatorC forms a complete lattice,
where, for any predicateP holding only for such fixpoints,

inf⊆
P (X) X =

⋂

P (X) X
and

sup⊆
P (X) X = C

( ⋃

P (X) X
)

.

This lattice is called the fixpoint latticeof C.

Lemma 9.2 (Algebraic Fixpoint Lattice)
If C is an algebraic closure operator, then the fixpoint lattice of C is an algebraic lattice and its
compact elements are precisely the finitely generated fixpoints, i.e. theC(Y ) with Y ∈PN(V).

Proof of Lemma 9.2

Claim 1:C({x1, . . . , xm}) is compact form ∈ N.
Proof of Claim 1:Let us assumeC({x1, . . . , xm}) ⊆ supP (Z) C(Z).
According to Lemma 8.3(2a), our assumption isC({x1, . . . , xm}) ⊆ C

( ⋃

P (Z) Z
)

.
By Definition 8.1, for eachi ∈ {1, . . . ,m}, we have

{xi} ⊆ C({xi}) ⊆ C({x1, . . . , xm}) ⊆ C
( ⋃

P (Z) Z
)

.
By Definition 6.4, there is some finite setXi ⊆

⋃

P (Z) Z with xi ∈C(Xi). Thus
there is someoi ∈ N such that ∀k∈{1, . . . , oi}. P (Zi,k) and Xi ⊆

⋃

k∈{1,...,oi}
Zi,k.

By monotonicity of C, we have {xi} ⊆ C
( ⋃

k∈{1,...,oi}
Zi,k

)

. By monotonicity

again and Lemma 8.3(2a),C({x1, . . . , xm}) ⊆ C
(

⋃

i∈{1,...,n} C
( ⋃

k∈{1,...,oi}
Zi,k

)

)

=

C
( ⋃

i∈{1,...,n}

⋃

k∈{1,...,oi}
Zi,k

)

= C
( ⋃

i∈{1,...,n}, k∈{1,...,oi}
C(Zi,k)

)

=
supi∈{1,...,n}, k∈{1,...,oi}

C(Zi,k) and ∀i∈{1, . . . , n}. ∀k∈{1, . . . , oi}. P (Zi,k). This was to be
shown according to Definition 7.1. Q.e.d. (Claim 1)

Claim 2:For anyX ⊆ V we haveC(X) =
⋃

x∈PN(X) C(x) = supx∈PN(X) C(x) .
Proof of Claim 2:The first equation is just the definition of an algebraic classoperator, cf. Defi-
nition 6.4. The second follows by applyingC to both sides of the first equation.C(X) =
C

(

C(X)
)

= C
( ⋃

x∈PN(X) C(x)
)

= supx∈PN(X) C(x) by Definition 8.1 and Corollary 9.1,
respectively. Q.e.d. (Claim 2)

Claim 3:If C(X) is compact, then it is finitely generated.
Proof of Claim 3:By Claim 2, C(X) = supx∈PN(X) C(x). If C(X) is compact, then, by Defi-
nition 7.1, there is someY ∈ PN(PN(X)) with C(X) ⊆ supx∈Y C(x) = C

(
⋃

x∈Y x
)

by
Corollary 9.1 and Lemma 8.3(2a). Q.e.d. (Claim 3)

By Claim 1 and Claim 3 the compact elements are precisely the finitely generated fixpoints. Thus,
according to Claim 2, Definitions 7.1 and 7.3, the fixpoint lattice ofC is an algebraic lattice.

Q.e.d. (Lemma 9.2)
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Definition 9.3 (General-Closure, Compact-Closure, Algebraic-Closure)
Let≤ be a complete lattice onA ⊆ V. Let A′ := { a ∈ A | a is≤-compact}.

1. Thegeneral-closure operator of≤ is
C(X) := { y ∈A | y ≤ sup≤ (X ∩ A) } ⊎ X\A.

2. Thecompact-closure operator of≤ is
C ′(X) := { y ∈A′ | y ≤ sup≤ (X ∩ A) } ⊎ X\A′.

3. Thealgebraic-closure operator of≤ is
C ′′(X) := { y ∈A′ | y ≤ sup≤ (X ∩ A′) } ⊎ X\A′.

Corollary 9.4
Let≤ be a complete lattice onA ⊆ V. SetA′ := { a ∈ A | a is≤-compact}.
Let C ′ be the compact-closure operator of≤.
Let C ′′ be the algebraic-closure operator of≤.
Then, forX ⊆ A′, we haveC ′(X) = C ′′(X).

Lemma 9.5
If ≤ is a complete lattice onA ⊆ V, then the general-closure operator of≤ is indeed a clo-
sure operator, and the compact-closure operator and the algebraic-closure operator of≤ are
algebraic closure operators.

Proof of Lemma 9.5

SetA′ := { a ∈ A | a is≤-compact}. The general-closure operatorC, the compact-closure
operatorC ′, and the algebraic-closure operatorC ′′ of ≤ are monotonic class operators by simple
inspection. Moreover, they are obviously⊆-extensive. Note that requirement of extensiveness
forces us to includeX\A or X\A′, respectively.

Claim 1:We haveC(C(X)) ⊆ C(X), C ′(C ′(X)) ⊆ C ′(X), and C ′′(C ′′(X)) ⊆ C ′′(X).
Proof of Claim 1:Forx ∈ C(X) \X, we havex ≤ sup≤ (X ∩ A). Thus, sup≤ (C(X) ∩ A) ≤
sup≤ (X ∩ A). Thus, C(C(X)) ⊆ C(X). For x ∈ C ′(X) \ X or x ∈ C ′′(X) \ X, we
have x ≤ sup≤ (X ∩ A) or x ≤ sup≤ (X ∩ A′), respectively. Thus,sup≤ (C ′(X) ∩ A) ≤
sup≤ (X ∩ A) and sup≤ (C ′′(X) ∩ A′) ≤ sup≤ (X ∩ A′). Thus, C ′(C ′(X)) ⊆ C ′(X) and
C ′′(C ′′(X)) ⊆ C ′′(X). Q.e.d. (Claim 1)

Claim 2: C ′ andC ′′ are algebraic.
Proof of Claim 2: AssumeX ⊆ V, andx ∈ C ′(X) or x ∈ C ′′(X), respectively. Then we
have to findY ∈ PN(X) such that x ∈ C ′(Y ) or x ∈ C ′′(Y ), respectively. If x ∈ V\A′,
then we can takeY := {x}. Thus, we may assumex∈A′. Then we havex ≤ sup≤ (X ∩ A)
or x ≤ sup≤ (X ∩ A′), respectively. Asx is ≤-compact (cf. Definition 7.1), there must be
someY such that Y ∈ PN(X ∩ A) or Y ∈ PN(X ∩ A′), resp., andx ≤ sup≤ Y . Then
x ≤ sup≤ (Y ∩ A) or x ≤ sup≤ (Y ∩ A′), respectively. Thenx ∈ C ′(Y ) or x ∈ C ′′(Y ),
respectively. Q.e.d. (Claim 2)

Q.e.d. (Lemma 9.5)
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By Corollary 9.1, every closure operator gives rise to a complete lattice, namely to its fixpoint
lattice. By Lemma 9.5, every complete lattice gives rise to aclosure operator, namely to its
general-closure operator. As the following lemma states, this closure operator gives a represen-
tation of the original lattice up to isomorphism.

Lemma 9.6 (Complete Lattice = Fixpoint Lattice of General-Closure)
Let≤ be a complete lattice onA ⊆ V. LetC be the general-closure operator of≤.
Let� be the fixpoint lattice ofC restricted to those fixpointsY with Y ⊆ A.
Letf : A→ P(A) be given byf(a) := C({a}).
Thenf ::≤→� is an order-isomorphism with inverseX 7→ sup≤ X (X ⊆ A with C(X)=X).

Proof of Lemma 9.6
Firstly, we have to show that the restriction of the fixpoint lattice of C to those fixpointsY
with Y ⊆ A is a complete lattice again. Indeed, it is actually a complete sub-
lattice because, according to Corollary 9.1, forP holding only for such fixpoints, we have
sup⊆

P (X) X = C(
⋃

P (X) X) = { y ∈A | y ≤ sup≤ ((
⋃

P (X) X) ∩ A) } ⊎ (
⋃

P (X) X)\A

= { y ∈A | y ≤ sup≤ (
⋃

P (X) X) } ⊆ A. Secondly, for a ∈ A we have
f(a) = C({a}) = { y ∈A | y ≤ sup≤ ({a} ∩ A) } ⊎ {a}\A =
{ y ∈A | y ≤ sup≤ ({a}) } = { y ∈A | y ≤ a }. Thus, we have sup≤ (f(a)) =
a, and f : A→ field(�) is bijective with the given inverse, and we obviously have
∀a0, a1 ∈A.

(

(a0 ≤ a1)⇔ (f(a0) ⊆ f(a1))
)

. Q.e.d. (Lemma 9.6)

By Lemma 9.2, every algebraic closure operator gives rise toan algebraic lattice, namely to
its fixpoint lattice. By Lemma 9.5, every complete lattice gives rise to two algebraic closure
operators, namely to its compact-closure operator and to its algebraic-closure operator. As the
following lemma states, each of these closure operators gives a representation of the original
lattice up to isomorphism, provided that this original lattice is actually algebraic.

Lemma 9.7 (Algebraic Lattice = Fixpoint Lattice of Compact-Closure)
Let≤ be an algebraic lattice onA ⊆ V. SetA′ := { a ∈ A | a is≤-compact}.
Let C ′ be the compact-closure operator of≤.
Let C ′′ be the algebraic-closure operator of≤.
Let� be the fixpoint lattice ofC ′ restricted to those fixpointsY with Y ⊆ A′.

1. � is identical to the fixpoint lattice ofC ′′

restricted to those fixpointsY with Y ⊆ A′.

2. Letf : A→ P(A) be given byf(a) := C ′({a}).
Thenf ::≤→� is an order-isomorphism with inverseX 7→ sup≤ X (X ⊆ A′ with
C(X)=X).

Note that the reason for the compact-closure (or algebraic-closure) operator in addition to the
general-closure operator is that — in general — the general-closure operator of an algebraic
lattice does not seem to be algebraic, and the compact-closure of a complete but non-algebraic
lattice does not provide an isomorphism.



54

Proof of Lemma 9.7

1: By Corollary 9.4.

2: Firstly, we have to show that the restriction of the fixpoint lattice ofC ′ to those fixpointsY
with Y ⊆ A′ is an algebraic lattice again. Indeed, it is actually a complete sub-

lattice because, according to Corollary 9.1, forP holding only for such fixpoints, we have
sup⊆

P (X) X = C ′(
⋃

P (X) X) = { y ∈A′ | y ≤ sup≤ ((
⋃

P (X) X) ∩ A) } ⊎ (
⋃

P (X) X)\A′

= { y ∈A′ | y ≤ sup≤ (
⋃

P (X) X) } ⊆ A′. Secondly, for a ∈ A′ we have
f(a) = C ′({a}) = { y ∈A′ | y ≤ sup≤ ({a} ∩ A) } ⊎ {a}\A′ =
{ y ∈A′ | y ≤ sup≤ ({a}) } = { y ∈A′ | y ≤ a }. Thus, asa is ≤-compactly generated,
we have sup≤ (f(a)) = a by Corollary 7.4, andf : A→ field(�) is bijective with the given
inverse, and we obviously have∀a0, a1 ∈A.

(

(a0 ≤ a1)⇔ (f(a0) ⊆ f(a1))
)

.
Q.e.d. (Lemma 9.7)
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10 Closure Operators from Monotonic Class Operators

Definition 10.1 (LC)
The least-fixpoint operatorLC maps any class operatorΦ to a class operatorLC(Φ) given by
LC(Φ)(X) :=

⋂

Z ⊇Φ(Z)∪X

Z for X ⊆ V.

Lemma 10.2 If Φ is a monotonic class operator, thenLC(Φ) is a closure operator which satis-
fies LC(Φ)(X) = Φ(LC(Φ)(X)) ∪X for all X ⊆ V.

Proof of Lemma 10.2
Let Φ be a monotonic class operator. DefineΦ∪ by Φ∪(X)(Y ) := Φ(Y ) ∪X. ThenΦ∪(X) is a
monotonic class operator as well, for everyX ⊆ V. Then, by Theorem 5.3 applied toΦ∪(X), we
get thatLC(Φ)(X) is the least fixpoint ofΦ∪(X). Thus,LC(Φ) satisfies the equation stated in the
lemma. Thus,LC(Φ) is extensive. Moreover,LC(Φ) is obviously a monotonic class operator.
It remains to showLC(Φ)

(

LC(Φ)(X)
)

⊆ LC(Φ)(X) for everyX ⊆ V. This means that we
have to showLC(Φ)

(

V
)

⊆ W for V := LC(Φ)(X) andW := LC(Φ)(X). This means to
show

⋂

Z⊇Φ(Z)∪V Z ⊆ W . For this it again suffices to showW ⊇ Φ(W )∪V . But W ⊇ Φ(W )
has already been shown andW ⊇ V is trivial. Q.e.d. (Lemma 10.2)

Theorem 10.3
Let Φ be a monotonic class operator.
If Φ is algebraic or if we assume the Axiom of Collection, then we have the following:

1. If Φ is set-continuous, thenLC(Φ) is set-continuous, too.

2. If Φ is algebraic, thenLC(Φ) is algebraic, too.

Proof of Theorem 10.3
Let Φ∪ be given as in the Proof of Lemma 10.2. AssumeX ⊆ V anda ∈ LC(Φ)(X). AsLC(Φ)
is a monotonic class operator, by Corollary 6.3, we only haveto find somex∈P(X) (or even
x∈PN(X)) with a∈LC(Φ)(x). As Φ is set-continuous (or even algebraic),Φ∪(X) is set-
continuous (or even algebraic), too. Thus, asLC(Φ)(X) is the least fixpoint ofΦ∪(X) by Lem-
ma 10.2 and Definition 10.1, according to Theorem 6.8, we havea= l(root(−→)) for a [finitely
branching] well-founded rooted graph(−→, l) with

∀i∈ dom(l).
(

l(i) ∈ Φ∪(X)({ l(j) | i−→j })
)

.
Setx := ran(l) ∩ X. Then x∈P(X) (or evenx∈PN(X) by Corollary 6.7). By definition
of x andΦ∪ we have

∀i∈dom(l).
(

l(i) ∈ Φ∪(x)({ l(j) | i−→j })
)

.
Thus, by Theorem 6.8 again, we havea∈LC(Φ)(x) , indeed. Q.e.d. (Theorem 10.3)
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Definition 10.4 (GC)
Thegreatest-fixpoint operatorGC maps any class operatorΦ to a class operatorGC(Φ) given
by GC(Φ)(X) :=

⋃

Z ⊆Φ(Z)\X

Z, where DGC(Φ)(X) := V \GC(Φ)(X), for X ⊆ V.

Lemma 10.5 If Φ is a monotonic class operator, thenGC(Φ) satisfies
GC(Φ)(X) = Φ(GC(Φ)(X)) \X

for all X ⊆ V, andDGC(Φ) is a closure operator.

Proof of Lemma 10.5
Let Φ be a monotonic class operator. DefineΦ\ by Φ\(X)(Y ) := Φ(Y ) \X. ThenΦ\(X) is a
monotonic class operator as well, for everyX ⊆ V. Then, by Theorem 5.3 applied toΦ\(X), we
get thatGC(Φ)(X) is the greatest fixpoint ofΦ\(X). Thus,GC(Φ) satisfies the equation stated
in the lemma. Thus,DGC(Φ) is extensive. Moreover,DGC(Φ) is obviously a monotonic class
operator. It remains to showDGC(Φ)

(

DGC(Φ)(X)
)

⊆ DGC(Φ)(X) for everyX ⊆ V.
This means that we have to showGC(Φ)

(

DGC(Φ)(X)
)

⊇ GC(Φ)(X). This means that we
have to showGC(Φ)

(

V
)

⊇ W for V := DGC(Φ)(X) andW := GC(Φ)(X). This means
to show

⋃

Z ⊆Φ(Z)\V Z ⊇ W . For this it again suffices to showW ⊆ Φ(W ) \ V . By definition
of V andW , this meansW ⊆ Φ(W )∩W , i.e. W ⊆ Φ(W ), i.e. GC(Φ)(X) ⊆ Φ(GC(Φ)(X)),
which has already been shown. Q.e.d. (Lemma 10.5)

There is no analog to Theorem 10.3 forDGC(Φ):

Example 10.6 (AlgebraicΦ with DGC(Φ) not even set-continuous)
For the algebraic closure operatorΦ of Example 6.11 the following holds: For allx ∈ P(V):
GC(Φ)(x) = O\x, i.e. DGC(Φ)(x) = x ∪ V\O. But: GC(Φ)({ β ∈O | 2≺β }) = ∅, i.e.
DGC(Φ)({ β ∈O | 2≺β }) = V. This means thatDGC(Φ) is not set-continuous because of
{0, 1, 2} ⊆ DGC(Φ)({ β ∈O | 2≺β }) \

⋃

x∈P({ β ∈O | 2≺β }) DGC(Φ)(x).

Remark 10.7 It is not too surprising that the greatest fixpoint of an algebraic class operator
does not behave nicer than that of a set-continuous one (cf. Theorem 6.9 and Example 6.11) as
is the case for the least fixpoint (cf. Theorem 6.8), because we probably need something co-
algebraic for the greatest fixpoint. That the greatest-fixpoint operator of a set-continuous class
operator is not set-continuous (cf. Example 10.6) contraryto the least-fixpoint closure operator
(cf. Theorem 10.3) may just mean that — contrary to what was written in Remark 8.2 — we
nevertheless need the dual concept of a closure operator. This should be investigated in the future.
What about you, Peter?
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Notes

Note 1 In [Forster, 2008] we read:

“Quite early on QUINE added classes to NF to obtain a theory of sets-with-classes
known as ML. In the ZF context, adding classes is a natural thing to do, for it enables
one to reduce the infinite replacement scheme to a single set-existence axiom: “the
image of a set in a class is a set” if augmented with suitable class-existence axioms.
However, none of the axioms of NF refer to classes in the way the replacement
scheme of ZF does, so there is nothing for the class existenceaxioms to do. For this
reason ML is nowadays regarded as a pointless syntactic complication of NF with
no new mathematics and is not the subject of any research.”

This argument does not count, however, regarding theapplicationof class theories, where ML is
clearly preferable to NF, just as MK is clearly preferable toNBG and ZF, simply because you
want to have an object for the extension of any predicate, even if you later find out that that object
must be a proper class. This preference of class theories over mere set theories is especially
strong for this paper, because we want to work with the commonsub-theory of both ML and MK
in general, choose one the two only if necessary, and, moreover, discuss class operators.

Note 2 On a first look, it may seem that there is a chance not takeU( ) as an elementary predicate
symbol, but todefineit via the class constructor, say as

U := { x | ¬∃Z. (Z ∈x) ∧ x 6= ∅ }.

This definition has two weaknesses:

1. “¬∃Z. (Z ∈x)” may actually be a slight overspecification.

2. To restrict all urelements to be elements ofV may actually be a slight overspecification.

3. This would force all urelements to receive the same numberduring stratification, which
may actually be a slight overspecification.

4. More seriously, in§ 1.6, we present a procedure to eliminate the class constructor from
any given formula, where the elimination of exactly one class constructor as an argument
of an=-atom has to introduce the symbol “U ” in an atomic formula of the form “X ∈ U
”. If we have to replace “U ” with the definition suggested above, then this introduces two
new class constructors. The outer one is no problem for the elimination procedure because
it occurs to the right of the symbol “∈”. The inner one results from the elimination of
the defined symbol “∅” and introduces an=-atom exactly of the type that we wanted to
eliminate. Thus, the elimination procedure would loop and not terminate anymore. This
means that we have to accept at least one of “U ”, “ ∅”, and “{ x | A }” as elementary.
And our preference is definitely to take “U ” as elementary.
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Note 3 “Ur” (speak: “oor” with “oo” as in “boot”) is a German prefix which means “above the
current construction” (“hinauf”, “hinaus”), often also with the temporal aspect of “being gener-
ated in advance” (Latin:primigenius). Moreover this prefix means “original” (“ursprünglich”),
and “not derived” (“unabgeleitet”). For instance, “Ur” turns a grandmother (Großmutter) into
a great-grandmother (Urgroßmutter), and an ancestor (Ahn)into an ancestor whose ancestors
are unknown (Urahn). For more information on the semantics of “Ur”, cf. [Grimm & Grimm,
1854ff., Vol. 24, p. 2356ff.].

Note 4 As the lemma does not require≤ to be a reflexive ordering, a formal proof also stops us
from typical human errors. Thus, let us do it in the formal calculus of[Wirth, 2004]:

Expanding the definitions we get

∀u.
(

∀y. (∀z. (P (z)⇒ z≥y) ⇒ y≤u) ⇒ u≥s
)

⇒ ∀x.
(

P (x)⇒ x≥s
)

,

and then

∀u.
(

∀y. (∀z. (P (z)⇒ y≤z) ⇒ y≤u) ⇒ s≤u
)

⇒ ∀x.
(

P (x)⇒ s≤x
)

,

which reduces in anα-, aδ−-, and anotherα-step to the sequent

¬∀u.
(

∀y. (∀z. (P (z)⇒ y≤z) ⇒ y≤u) ⇒ s≤u
)

, ¬P (xδ ), s≤xδ .

Restricting to a multiplicity of1, aγ-step (settingu to xδ ) reduces this to

¬
(

∀y. (∀z. (P (z)⇒ y≤z) ⇒ y≤xδ ) ⇒ s≤xδ
)

, ¬P (xδ ), s≤xδ .

A β-step reduces this to the two sequents

∀y. (∀z. (P (z)⇒ y≤z) ⇒ y≤xδ ), ¬P (xδ ), s≤xδ

and s�xδ , ¬P (xδ ), s≤xδ .

The second sequent is a tautology, and aδ−- and anα-step reduce the first sequent to

¬∀z. (P (z)⇒ yδ ≤z), yδ ≤xδ , ¬P (xδ ), s≤xδ

and aγ- and aβ-step reduce this to the two tautologies

P (xδ ), yδ ≤xδ , ¬P (xδ ), s≤xδ

yδ �xδ , yδ ≤xδ , ¬P (xδ ), s≤xδ .
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[Hartogs, 1915] Friedrich Hartogs.Über das Problem der Wohlordnung.Mathematische An-
nalen, 76:438–443, 1915.

[Heijenoort, 1971] Jean van Heijenoort.From FREGE to GÖDEL: A Source Book in Mathema-
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