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Abstract

Firstly, we show that the BUMANN ordinals can be defined and understood in set theory
without fixing a special theory of sets and classes such BSMANN—BERNAY S-GODEL,
MORSE-KELLEY, or QUINE’'s ML, and without any axioms, but the Axiom of Extensional-
ity. Especially, no axioms of choice, foundation, infingybset, or power are required.
Secondly, for general monotonic functors we presenaKTER-TARSKI andwell-ordered
fixpoint construction For set-continuous monotonic class operatars present least and
greatest fixpoint construction in set theory. Fdgebraic class operatorthere is a special
of construction of the elements of the least fixpoint witheldol well-founded rooted graphs.
As special monotonic class operators we disalizsure operatorgnd their relation taom-
plete lattices as well asalgebraic closure operatorand their relation t@lgebraic lattices
Finally, we show how to construct two monotonic closure apans from a monotonic func-
tor, namely thdeast-fixpointand thegreatest-fixpoinbperator.
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1 Urelements, Sets, and Classes

1.1 The Elementary Signature

The objects of class theory are partitioned intassesandurelements The classes are again
partitioned intosetsandproper classes

These partitions develop out of the binary element preditat " and the singulary pred-
icate symbol of urelementshi@f{_); which make up the wholelementaryi.e. non-defined)
signature of class theory, besides the pair constru¢tor)’ which may be reduced to classes
or urelements in some class theories, but which should ahwayncluded for conceptual reasons
anyway.

Following[Tarski, 1986, we do not consider the binary predicatgadmitive equality* _=_"
as a part of any signature, but of our logic language already.

1.2 Class Comprehension

It is convenient to add a class constructpr: | A }, which binds a variable for a formulaA
and, roughly speaking, is intended to construct “the cléssl @ such thatd” as a result of this
description and comprehension.

In Requirement 1.1, we assume the axiom schenwtasscomprehension which is common
to the class theories of "RSE-KELLEY (MK) and QUINE’S ML (ML). ! It differs from the one
of NEUMANN—BERNAYS-GODEL (NBG) only insofar as it admits binding of unrestricted slas
variables in the formulad. As there are no proper classes but only sets in the set éseofi
ZERMELO-FRAENKEL (ZF) (similar to NBG and MK) and QINE’s NF (NF) (similar to ML),
ZF and NF do not have any class comprehension schemes.

Requirement 1.1 (Axiom of Class Comprehension)
For each formul&, each variable:;, and each term, we require: then we require:

te{z| A} iff Afx—t} A 3IZ (teZ).

In §1.6, we will show that we can eliminate the class constructom all formulas, so that we
do not have to add it to the symbols of our elementary sigeatur

We can now already use the class constructor to define ttusvioly:

D= {ylyty) “empty set”
V = {y|ly=y} “universal class”
S = {y| Uy} “class of all sets”

{X} = {yly=X} “singleton set ofX”
R = {z]|zda} “RUssELLclass”

XY = {z|zeXAzeY} “union of X andY™

XY = {z|zeXvVvzeY} “intersection ofX andY™

X\Y = {z|zeXANzgY} “complement ofY” w.r.t. X

dom(R) = {z| Jy. (z,y) €R) } “domain of R”
ran(R) = {y| Jz. ((z,y)€R) } “range of R”

field(R) := dom(R)Uran(R) “field of R”



Corollary 1.2 3Z. (teZz) iff teV.

Corollary 1.3  For each formulaA, each variabler, and each term, we have:
te{xz| A} iff Afx—t} A teV.

Fort being not an object variable but a term with precisely the wasWablesr, ..., z,, the no-
tation “{t| A }" abbreviates{ y | 3x1,...,z,. (y=t AN A) }, foranew variablg. Similarly,
“{te B| A}" abbreviates{ y | Jz1,...,x,. (y=t Ay€ B A A) }. We now can define the
following:

id == {(z,2)| x=2} “identity function”
XxY = {(z,y)| zeXNzeY} “Cartesian product ok andY™
R = {(y,2)]| (z,y)€R} “reverse relation oR?”
RoS = {(z,2)| Jy. (z,y) e RA (y,2)€S)} “concatenation of? andS”
xR = {(v,y)eR| zeX } “restriction of R to X"
Rly = {(r,y)eR|yeY } “range-restriction of? to Y
(XO)R = {y]| JxeX. ((z,y) €R) } “image of X underR”
= ran(x|R)
R(Y) = {z| yeY. (z,y)eR} “reverse-image ot” underR”
= dom(R][y)
R(z) = ey. ((z,y) € R) “functional application”

The precise definition of functional application is not hgamportant here because we will
write “R(z)” only if 3z. Vy. (y=2 < (z,y) € R). The reason for a concrete definition is
that we need it for explaining stratifiedness, cf. DefiniloB0. The reason for choosing a de-
scriptive term is that we want to avoid overspecification.dAlme reason for choosingIEBERT’s
g-operator instead of EANO’s (inverted):-operator is because we thimoperators to be obso-
lete, cf.[Wirth, 2004. Only to be self-contained here, we assume the followingrmxscheme
for thee:

Requirement 1.4 €-Formula)
For each formulai, each variable:, and each term, we require:

Af{z—t} = A{z — cx. A}



1.3 Urelements

For very good reasofisye have chosen urelements to be an elementary concept irlassr ¢
theory. And we denote the singulary predicate of being ateorent by the symbolZt(_)” of
our elementary signature of class theory; scf.1.

In the literature, urelements are sometimes called “atom&iis, however, is misleading
because urelements do not have to be atomic. For examplé;, af pao sets may well be an
urelement.

To the contrary, the German prefix “ur” indicates exattlye proper intention behind ur-
elements: Urelements araeither constructedy the set constructof x | A} nor derived
by comprehension (cf. Requirement 1.5). Insteaglementsare possibly given as additional
elementgi.e. no proper classes) ahknown origin

As the most basic intention related to urelements is to Herdifit from classes, we capture
this intention with the following axiom scheme:

Requirement 1.5 (Axiom of Urelements)
For each formulad and each variable, we require =U({ z | A }).

For discussion of equality ifi1.4, we also need the following relation symbol:

Definition 1.6 (Equality of Urelements “_ =, ")
X=,Y if X=Y AUX)AUY).



1.4 Subclass and Extensionality

Definition 1.7 (Subclass, ', * D)

XCY if =UX) AN -UY) ANVz. (zeX =zeY).
YDOX if XCV.

XCY if XCY AN X#Y.

As corollaries of Requirement 1.5 and Definition 1.7 we get:

Corollary1.8 (0 C S C V.

Corollary 1.9
The following three statements are logically equivalent/(X); 0 C X; X C .

Definition 1.7 makes_ reflexive on non-urelements (i.e. classes) and transitWe.will assume
antisymmetry ofC as an axiom, cf. Requirement 1.10. Thus, the subclassaelatwill be a
reflexive ordering on classes.

Requirement 1.10 (Axiom of Extensionality)
VX,V (XCYANXDY = X=Y)

Lemma 1.11

B . UX) B reX ,
X=Y < Iif (v Uy) ) then X =, Y elseVz. (@ xéY) fi.

Remark 1.12 If we assume * =, _” to be an elementary symbol of our language, then we

can read Lemmal.11 as a definition and use it to remove alh@aes of “=_" which then
can be treated as a defined symbol.

Proof of Lemma1.11

UX)ANUY): In this case, X =Y is logically equivalent to X =, Y according to Defini-
tion 1.6.

UX)AN-UY): In this case, X =, Y is logically equivalent tofalse according to Defini-
tion1.6. Moreover, in this caseX = Y implies U(X) A =U(X), which
implies false. The other direction is trivialEx falso quodlibet!

-~U(X) ANU(Y): This case is symmetric to the previous one.

“UX)AN-UY): Inthis case, X =Y trivially implies Vz. (r€ X < z€Y). On the other
hand, in the latter case we g&f C Y and X D Y by Definition1.7, and
then X =Y by Requirement1.10. Q.e.d. (Lemmal.11)




Definition 1.13 (Power Class, Meet Class)
BX) = {z2]2CX} “power class ofX™
b(X) = {z]| ~UGRE) AN -UX) AN 2NX#D} “meet class ofX™”

The symbol %" is chosen for the meet class agForster, 199k The reason for this is thab"
looks a little bit like an upside-dowrf]3” and the two are dual as follows:

Corollary 1.14  B(X) = {z| “U(z) N “UX) N Vyez (yeX)}
b(X) = {z| "U() N -UX) AN Tyez (yeX) }

1.5 Sets and Classes

Definition 1.15 (Proper] Class, Set)
Xisaclassif —U(X). X isaproperclassif X is a class but not a set.
risasetif zeS.

Not all classes can be sets: the$SELL classR is the famous example. We have

ReER & RERAREY,
and thus:

Corollary1.16 VZ. (R¢Z) N RV AN RER AN —-UR).

I U | _isaclass
I ey _is a proper class—
| eS8 R

Different class theories compete in gettivigs big as possible. For example, in NF and ML we
have V€V. InNBG and in MK, however, a definable subclass of a set isysveeset, which
implies V& V.

Lemma1.17 PB(V)=S.

Proof of Lemma 1.17

The following are logically equivalent: x € B(V); = CV AzeV (by Corollary 1.3 and
Definition 1.13); —=U(x) Az €V (by Corollary 1.9); = € S (by Corollary 1.3).

By Requirement 1.5, we have U/ (B(V)) and —U(S).

Thus, an application of Lemma1.11 completes the proof. Q.e.d. (Lemmal.17)

As corollaries of Definition 1.15 as well as Corollary 1.9rGltary 1.8, and Lemma 1.17, respec-
tively, we get:

Corollary 1.18 X CV iff Xisaclass.

Corollary 1.19 X ¢V A-U(X) iff X is a proper class.

Corollary 1.20 zeB(V) iff zisaset.
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1.6 Expansion of the Class Constructor

In § 1.1 we did not list the class constructérz | A } among the basic symbols of the signature
of class theory. Thus, there must be a procedure to elimibdtem all formulas. And as
formulas may be parts of terms (due to the class construoBLBERT'’S s-operator), it is
wise to eliminate it locally from all atomic predicates.

After a preprocessing phase, in which all symbols definegttlir or indirectly in terms of the
class constructor must be recursively replaced with thefindions, this elimination procedure
applies the following rewrite steps:

Nested within a term: Replace all

atomic predicatesP[{ = | A }| where
the class constructof x | A } occurs as an argument of the pair constructor
with
AZ. (Z={z| A} N PlZ])
for a new variableZ. For example, replace
(u, (v, {z]| A})) ew
with
AZ (Z={z| A} N (u,(v,2)) € w).

To the left of €; Replace alke-atoms of the form

{z] A} et
with
AZ. (Z={z| A} N Z€t)
for a new variableZ.

On both sides of=: Replace alk=-atoms of the form
{z| Ay={yl B}

Vz.(ze{z| A} & ze{y| B})

for a new variablez. This an equivalence transformation by Lemma1.11 and Requi
ment1.5.

with

On a single side of=: Replace all=-atoms of the forms

{xz] A}=t ort={x| A}, wheretis nota class constructor,
with
UML) ANVz. (ze{z| A} & zet)
for a new variable.. This an equivalence transformation by Lemma 1.11, Remére 1.5,
and Definition 1.6.

Urelements: Replace all atoms of the form

U{z| A})
with
false.

This is an equivalence transformation according to Requerd 1.5.
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To the right of €: Replace alk-atoms of the form

t e {xz| A} where the variable does not occur in the term

with
dr. (x=t N AN IZ (xe€2))

for a new variableZ. This is an equivalence transformation by Requirement 1The
guantification on the variable is to avoid an increase of the number of occurrences of the
termt — and especially of the formulas thamay contain — which might occur for the
alternative of substitutingfor x. In case that does occur it — to apply the replacement
nevertheless — we have to rename the bound variabie{ = | A } in advance.

Now any of these steps reduces the following measure e.tvell-ordering which lexicograph-
ically combines the well-ordering of the natural numbergth

1. Number of the occurrences of a class constructors ateitevels of terms or directly to
the left ofe.

2. Number of the occurrences of

3. Number of the occurrences of class constructors.

Thus, all these steps together form a strongly terminatngite system in which all formulas
containing class constructors are reducible.
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1.7 Standard Axioms of Set Theory

While the class theories of QNE’s ML and NEUMANN—BERNAYS-GODEL are pro and contra
“Y eV’ ie.proand contra the universal class being a set, thegeagn the axioms here, just
as MORSE-KELLEY, ZERMELO-FRAENKEL, and QUINE’s NF.

Requirement 1.21 (Axiom of the Empty Set and the Singleton S
VX. ({X} €9S).

The title of Requirement 1.21 should become obvious fronfidhe@wing corollary of Corollary 1.16:

Corollary 1.22 {R} = 0.

Requirement 1.23 (Axiom of the Ordered Pair)
(z1,91) €V (z1,91) = (2,92)
Vm,yl. o ( r1 €Y ) VAN VZL’l,ZL’Q,yl,yQEV. PN ( T =29 ) .

A y1€V N Y1 =1y

Requirement 1.24 (Axiom of Simple Operations)
Vao,y€S. (zUy, zNy, z\y, .]id, xxy, dom(z), 271, xoy € S).

Corollary 1.25 Vz,yeS. (id|

» ran(z), field(x), =[,, 1z, (y)z, v(y) € S).

Note that the identity functioni” is not a set in ZF, NBG, and MK, but a set indeed in NF
and ML. Moreover, note that, for conceptual reasons, we dstate vz € S. (P(z) € S) as
an axiom here, although this is valid in all of ZF, NBG, MK, N&nhd ML, but only in Defini-
tion 1.26 as a special axiom.

1.8 Rarely Needed Special Axioms of Set Theory

In rare occurrences, we will need the Power-Set Axiom, the#wof Collection (a strong form
of the Axiom of Replacement, cf. e.fAczel, 1988) or the Principle of Dependent Choice (a
weak form of the Axiom of Choice, cfRubin & Rubin, 1985; Howard & Rubin, 1998

Definition 1.26 (Power-Set Axiom)
VeeS. (Plz)eS ).

Definition 1.27 (Axiom of Collection,[Jech, 2006, p. 65
The Axiom of Collections the following axiom scheme, where the variabl¥s” must not occur
in the formulaA:

vXe S FYeS vVreX. ( Jy. A = dyeY. A )
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1.9 The Critical Axiom of MK : Separation

The following axiom scheme is standard with ZF, NBG, and MKislcritical insofar as it is
inconsistent with the Axiom of Set Comprehension afiQe’s ML (cf. Definition 1.29), because
the latter axiom implied’ to be set and then the former axiom implieggo be a set as well.

Definition 1.28 (Axiom of Separation)
If Aisaformulaz is avariable, andis a term, then
teS = {zet| A} eS.

1.10 The Critical Axiom of ML : Stratified Set Comprehension

For the very few parts of this text which strongly rely oo @E’s ML and QUINE’s NF, we have

to state ML's axiom scheme afet comprehension (cflQuine, 1981, p.159, which — of
course — is stricter than the one dhsscomprehension of Requirement1.1. Moreover, while
the latter one is common to ML and NBG, the former one is onlst pA ML and — after
removing the restrictions to sets (i.e. elementship) — afdgF.

Definition 1.29 (Set Comprehension Axiom ofQUINE’S ML)
Let B be a stratified formula which contains no other free vargbléx, w,, .. ., w,.
Let A result from B by restricting all bound variables to membership, i.e. ylaeing any
subformula of the formsvz. C, Jz. C, &c. with VzeV. C, Jz€V. C, &c..
Then theset comprehension axiom schem@&ofiNE’s ML says that:
wy, ..., w, €V = {z| A} eS.

Note that, in Definition 1.29, we may replace some of the=V” with “z€S” because this
justmeans £V A —=U(2)"

Definition 1.30 (Stratification, Stratifiedness)

N is aninteger-substituted formulaif there is a formulad such thatN results fromA by
substituting all variables, bound as well as free ones| alades, with integer numbers.

S is astratification if S is can be rewritten to an integer-substituted formtflavhere for each
atom A occurring inS’ there is some integer number such thatA is of one of the following
atom patterns:

Urelement Predicate: U(n).
Element Predicate: n € (n+1).

Primitive Equality Predicate: n=n.
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The rewriting may apply any rule of the following rewrite s from left to right:
Well-Typed Pair:  (n,n) — n.
HILBERT'Se: en. S” — n if S”is a stratification.

A formula A is stratified if for B resulting fromA by expanding all defined symbols, including
the class constructor according the procedurgl6, and then renaming bound variables such
that each bound variable is bound only once and does not freayithere is a substitutianfrom
variables to integers, such that the application td B, replacing both free and bound variables,
at all places, is a stratification.

As expanding defined symbols is not always confluent in a steiese, in Definition 1.30 we have
to check all possible expansions in principle. The intemtlmowever, is that it does not matter,
which expansion we take. Moreover, expansion easily resulformulas of a size which hu-
mans cannot handle. Thus, instead of actually executingxpansion, we prefer to extend the
confluent and strongly terminating rewrite system to haddf@itions of terms and to extend the
patterns to handle definitions of predicates:

Lemma 1.31 If we extend the atom patterns and the rewrite system of Defirii.30 as follows
and do not enforce the definitional expansion of the respeslymbols, this does not change the
notion of stratifiedness:

Subclass Predicate: n C n.
Functional Application:  (n+1)(n) — n.
Class Constructor: {n| S”} — (n+1) if S”is a stratification.

Simple Operations: nMn — n dom(n) — n n — n
nn — n ran(n) — n nl, — n
n\n — n field(n) — n (nyn — n
nxn — n n{n) — n
non — n

Power and Meet Class: B(n) — (n+1) | b(n) — (n+1)

Proof of Lemma 1.31

As we will possibly change the whole definition of stratificatin the further development, and
as proper proofs would be very involved, we just sketch tlo®fsrhere.

Subclass PredicateSubstitute the new variableof Definition 1.7 with(n—1).

Functional Application:Consider the functional applicatiof{x). According to the definition
of functional application ir; 1.2, f(x) expands tocy. ((x,y) € f).
Thus, the following are logically equivalent: there is somes N such that the definitional
expansion of f(z) instantiated according to ¥ {y—n} can be rewritten with the old rewrite
system ton; there is some € N such that(cy. ((z,y) € f))(c W {y—n}) can be rewritten
with the old rewrite system tor; there is some € N such that((x,y) € f)(c W {y—n}) is

a stratification andm = n;  ((z,y) € f)(c W {y—m}) is a stratification; fo = m+1 and
xo =m; (f(z))o can be rewritten with the new rewrite systenmto
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Class ConstructorHere we have to consider all the expansion§ bf6. We assume exactly the
notation of the respective casesih.6.

“Nested within a term” or “To the left oE”: As, in the definitional expansionZ ={ x| A}

is added for a new variablg, in case that the in-
stantiated expansion is a stratificatiofi,z | A }o must rewrite toZo, and P[Z]o must be a
stratification. This is equivalent to the stratificationlaut definitional expansion becauge |
A } now replace¥ in P[Z]. Note that the right-hand side of the new rewrite rule doesmwadter
in this case. What matters is only the addition of a new rutl #ie given left-hand side.

“On both sides o&" or “On a single side of=": Trivial.

Urelements:Trivial.

To the right ofe: Assume that(t € { x| A }) has passed definitional expansion with the ex-

ception of the given class constructor. Then the followirgylagically equi-
valent: there is am; € N such that, in the old rewrite system, definitional expansibthe
class constructor int € { | A }) instantiated according to W {Z+—n} is a stratification;
there is amy € N such that, in the old rewrite system,

(Fz. (x=t N AN 3IZ (x€Z)) ) (oW {Z—ny})
is a stratification; there is am; € N such that, in the old rewrite systerw; rewrites toxo,
and Ao is a stratification, andn, = xo+1; in the old rewrite systento rewrites tozo,
and Ao is a stratification; (t€{z| A })o is a stratification in the new rewrite system.
Q.e.d. (Lemmal.31)

Example 1.32 (Stratifiedness, positive)
“flg(z,y)) Cg(f(x),y)" is stratified according to the substitution
{z—n, yon, fo(ntl), g—(n+1)},

the application of which results firstin  (n+1)((n+1)(n,n)) < (n+1)((n+1)(n),n),
then in (n+1)((n+1)(n)) < (n+1)(n,n),

then in (n+1)(n) < (n+1)(n),

and finally in n C n.

Example 1.33 (Stratifiedness, negative)

e “z ¢ " is not stratified, so that the B5SELL class may still be a proper class.

e Moreover, “r ¢ f(x)”is not stratified, so that Cantor's€liagonalization may produce a
proper class.

e Finally, “« is full” (cf. Definition 3.7) is not stratified because its deéins
“Vr. (r€a)= (z Ca))”
Is not stratified: Indeed, if we substitutewith n, to satisfy the atom pattern for“C o”
of Lemma 1.31, we have to substitutevith n as well, resulting in
“Yn. (nen)=(nCn))"
containing the forbidden atom patterne n, not permitted for a stratification according to
Definition 1.30.
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2 Basic Notions and Notation

Let ‘N’ denote the set of natural numbers ard the ordering onN.
Let N, :={neN | 0#n }.
We use &’ for the union of disjoint classes.

Thefinite power-class operatds defined asBy(X) :={z| * C X A |z] €N }.

Let R be a binary relation. R is said to be a relatioon A if field(R) C A. Risirreflexive
if idNR =10. Ris A-reflexive if 4]id C R. Speaking of aeflexiverelation we refer
to the largestd that is appropriate in the local context. And referring ts th we write R° to
ambiguously denotglid. With R! := R, and R"*! := R"oR forn € N,, R™ denotes the
m-step relation folR. R istransitive if Va,y,z. ( (z,y) €RA(y,2)ER = (z,2)€R).
Thetransitive closureof R is R™ := R™.  Thereflexive & transitive closuref i is
R* =, en R

Furthermore, we usé)* to denote the empty set as well as the empty function. Fanstare
(right-) unique relations and the meaning g6y’ is extensionally given by( fog)(z) = g(f(z)).
The class of total functions from to B is denoted asl — B. Theclass of (possibly) partial
functions fromA to B is denoted asi ~~ B. Both — and ~~ associate to the right, i.e.
A~ B — CreadsA ~ (B — C).

neNL
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2.1 Suprema and Infima

Definition 2.1 (Dual, Upper Bound, Supremum)
Let < be a binary relation (orl). Let P be a singulary predicate (o).
Thedual of< is its reverse relation denoted by
s isan <-upper bound ofP if
Vr. (P(x) = 2<s) (UBS(P,s))

sisan<-supremum oF if sisthe least upper bound, i.e. an upper bound thatasvar bound
(= dual of upper bound) of the upper bounds; formally:

UBS(P, s) (sup 1)

and UBZ(\u. UBS(P,u), s); (sup 2)
or more explicitly:

Vr. (P(x) = x<s) (sup 1)

and V. ( Vu. (P(u) = u<z) = s<xz ). (sup 2)

We denote such a supremumith Supf)(x) z, or simply with supp, .
An infimum is the dual of a supremunipf= = sup>; more explicitly: s is an <-infimum ofP
if

UB=(P, s) (inf 1)
and UB=(\u. UBZ(P,u), s). (inf 2)
For a classY, we write sup= X for sup_, y .

Lemma 2.2 (Existence of Suprema = Existence of Infima)

If < is a binary relation (onA) where any singulary predicate (oA) has a <-supremum
(in A), then any predicaté’ (on A) has an<-infimum (in A), namely any<-supremum of\y.
UB=(P,y) is an<-infimum ofP; i.e., roughly speaking, we can always take

S — <
infp 2 = SUPyp> p) Y-

Proof of Lemma 2.2
As the second propertyinf 2) of an <-infimum of P is identical to the first propertgsup 1) of
an<-supremum of\y. UB=(P,y), namely (sup 1){P — \y. UB=(P,y)}, it suffices to show
that the second property of the supremum, namglyp 2){ P—\y. UB=(P,%)}, implies the
first property of the infimum, i.e.

UBZ(Au. UBS(\y. UBZ(P,y), u), s) = UBZ(P,s),
which is hardly comprehensible to humans, but most easidyqat automatically. Maybe hu-
mans would understand the following proof: “The class oferppounds of the lower bounds
of P is a super-class of the extension/®f Thus, any lower bound of the upper bounds of the
lower bounds ofP is a lower bound of”.” Q.e.d. (Lemma?2.2)
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2.2 Well-Founded Orderings

Definition 2.3 ([S-] Well-Founded, Total, Ordering)
Let < be a binary relation. As always, let, thedual of<, be defined bya>b if b<a.
< is [S-] well-foundedif for any class@ (C field(<)) with @ #0 [and@ € S], we have

dm e Q. Yw e Q. =(w<m).
< istotal if < is total onfield(<). <istotalon Aif VYa,be A. (a<bV a>bV a=0).
< is anordering[on A] if < is an irreflexive and transitive relation [of].

Note that, in the literature, an ordering is sometimes ddl#rict partial ordering” and a total
ordering is often called near ordering

Lemma 2.4 (Wirth, 2004, Lemma 2.1])
For a binary relationR [with R* € S], we have the following logical equivalence:
Ris[S-] well-founded iff Rt is an[S-] well-founded ordering.

Proof of Lemma 2.4

The backward implication is trivial becauge"-minimality in a classy implies R-minimality
in(@Q dueto R C R".

For the forward implication, since?* is clearly transitive, it suffices to show that it is
[S-] well-founded, because then it is irreflexive. Thus, siggpthat there is some cla§swith
[Qe S and] Vae@. 3a’ €Q. o’ RTa. We have to show th& must be empty.

Set B = (Q)R*.
[As B = QU (Q)R", we get B S by Requirement1.24 and Corollary 1.25.]
Claim1: For anyb € B, there is somé € B with v’ R b.

Proof of Claim 1: Let us assumé € B. Then, by definition ofB and the property of), there
are somer,a’ € Q with o’ R™ a R* b. Thus, o’ R™ b. Thus, there is somié with «’ R* b’ R b.
Q.e.d. (Claim1)

By Claim 1 and the assumption thatis [S-] well-founded, we getB = ().
Then, we also have) =() dueto @ C B. Q.e.d. (Lemmaz2.4)

Although the following lemma will have only one direct apgaltion in this paper (namely in the
Proof of Lemma 3.31), this application is crucial.

Lemma 2.5
If <isan[S-] well-founded relation and
if f:field(<) — field(<) satisfies Va,b. (a<b = f(a) < f(b) );
then we have
Va. =(f(a) < a)

[provided that either we assume the Set Comprehension Afidhh.aand <, f € S, or else we
assume the Axiom of Separation afidd(<) € S.]



19

Proof of Lemma 2.5

Set@ = {al f(a) <a}.
[On the one hand, if we assume the Set Comprehension AxiomLofd¥l Definition 1.29) and

<, f €8, thenwe haveQ) € S. On the other hand, if we assume the Axiom of Separation
(cf. Definition 1.28) andfield(<) € S, then due to@ C field(<), we have@ € S as well.]

Assume thatQ #0. Then, as< is [S-] well-founded, there is soma € Q with Ywe Q.
—(w < m). Butthen f(m) <m. Then f(f(m)) < f(m). Thus, f(m) € Q, contradicting
f(m) < m. Q.e.d. (Lemma?2.5)

Lemma 2.6 Let f be a function. Lek, be an ordering onlom(f). Let<; be an ordering on
ran(f). If Va,bedom(f). (a<ob & f(a) <1 f(b) ), then

Vb € dom(f). ( (<oloP)f = < {f(0)} )

Proof of Lemma2.6 The “C"-direction is trivial. To show the D"-direction, assumeé <

dom(f) and c<;f(b). As <; is an ordering onan(f), there is some: € field(<,) with

f(a)=c. From f(a)<;f(b), we geta<ob. Thenc= f(a) € (<o{b}))f, as was to be shown.
Q.e.d. (Lemma2.6)

Definition 2.7 (Ordering of a] [Well-Founded] Quasi-Ordering)

Let A be a class.

Let < be a binary relation. As always, lgt, thedual of <, be defined bya>b if b<a.
< is aquasi-ordering or4 if < is anA-reflexive and transitive relation as.

Theordering < of a quasi-orderings is <\ 2.

< is an [S-] well-founded quasi-orderingf < is a quasi-ordering and is [S-] well-founded.

Corollary 2.8 The ordering of a quasi-ordering is an ordering.

Definition 2.9 (Ordering of a] [Well-Founded] Reflexive Ordering)

Let A be a class.

Let < be a binary relation. As always, let, thedual of<, be defined bya>b if b<a.

< is areflexive ordering ord if < is an anti-symmetric quasi-ordering @n

< isanti-symmetricif Vz,y. (z<y A 2>y = x=y).

Theordering < of a reflexive ordering< is the ordering of the quasi-orderirg

< is an [S-] well-founded reflexive orderingg < is an [S-] well-founded quasi-ordering and a
reflexive ordering.

Corollary 2.10 The ordering< of a reflexive ordering< on A is exactly < \ (41id).
Corollary 2.11 If <is an ordering onA4, then < U 47id is a reflexive ordering oni.

Corollary 2.12 Let < be a reflexive ordering oA. Let< be the ordering of<. Then:
< istotal onA iff <is total[on A].

Corollary 2.13
The dual of arfreflexivé [quasi] ordering (onA) is an[reflexivg [quasi] ordering (onA).
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2.3 Order-Isomorphisms

Definition 2.14 (S-] Order-Isomorphism)
<o and<; are [S-] order-isomorphicif there is an §-] order-isomorphisny::<q—<;.
f:<o—<y is an [S-] order-isomorphismif <, <; are reflexive orderings and
f:field(<y) — field(<y) is a bijection with [f, <,, <; € S and]

Va,b. (a <o b < f(a) <y f(b)).

As a corollary of Requirement 1.24 and Corollary 1.25 we get:

Corollary 2.15
The property of beindS-] order-isomorphic is an equivalence on the reflexive ordgsis
[with field(<) € S]; i.e. itis reflexive (due t@geq(<)1id)::<—<), symmetric, and transitive.

Corollary 2.16

Let <y, <; be reflexive orderings. Let; being the ordering o; (i € {0, 1}).
Let f : field(<y) — field(<;) be a bijection.

Now the following two items are logically equivalent:
1. f:<o—<;is anorder-isomorphism
2. Ya,b. (a <o b < f(a) <y f(D)).

Moreover, if <, is total, then already the following is logically equivaten
3. Va,b. (a<ob = f(a) <1 f(D)).

As the concept of an ordering is simpler than the concept eflaxive ordering, but somehow
equivalent according to Corollaries 2.10 and 2.11, theovalhg question may arise from Co-
rollary 2.16: Why do we not use orderings instead of reflernderings in Definition 2.14? The
answer is simple: If we tooKeld(<;) instead offield(<;), we could not refer anymore to those
elements ofield(<;) that are not connected with other elementsvja And the possibility of
such a reference will become importangif.1.

Lemma 2.17
If f::<¢—<; is an order-isomorphism, then the following three are ladjicequivalent:
(i) f::<o—<yisanS-order-isomorphism.
(i) f.<o€S.
(i) f,<i€8.

Proof of Lemma2.17
We have<; = flo<yo f and <, = fo <, 0 f~1. Thus, everything is clear from the Axiom
of Simple Operations (cf. Requirement 1.24). Q.e.d. (Lemma2.17)
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2.4 Initial Segments

Definition 2.18 (Initial Segment)

Let < be a reflexive ordering. Let be the ordering ok.

<’is an (proper)nitial segment of< if there is ana € field(<) such that<’ is the initial
segment oK belowa.

Theinitial segment of< belowa is 41<[, for A := <{a}), and we denote it by <|,.

Lemma 2.19 Let|<|, be an initial segment of a reflexive orderirngon A. Then|<|, is a
reflexive ordering on a proper subclass4f Moreover, if <€ S, then [<]|,€S.

Proof of Lemma2.19 If |<|, is an initial segment oK € S, then a€field(<). By the
Axiom of the Singleton Set (cf. Requirement1.21), we haye} € S. By Corollary 1.25,
we have field(<) €S, and then by the Axiom of Simple Operations (cf. Requirenie?d)
(fiela(<y1id) € S, and then, by Corollary 2.10< = <\(feaq(<)lid) € S. Then, still by the
Axiom of Simple Operations and Corollary 1.23} := <{a}) € S, and |<[|, = 41< |4 € S.

Q.e.d. (Lemma2.19)

Lemma 2.20 Let f::<y—<; be an order-isomorphism.
Let <; be the ordering of<; (i € {0,1}).
Then v € field(<o). ( (<o{(b))f = <i{(F(B)}) )-

Proof of Lemma2.20 By Corollary 2.16, we get/a,b. (a <o b < f(a) <1 f(b)). Then, by
Lemma 2.6, we get/b € dom(f). ( (<o{(b))f = < {f(B)} ). Q.e.d. (Lemma 2.20)

Lemma2.21 If fi:<q—|<i]q and fo:<;—<, are[S-] order-isomorphisms,
then(fiofs)::<o—|<2]f,(a) IS @an[S-] order-isomorphism as well.

Proof of Lemma 2.21

By Lemma2.20 it is obvious thaf}::| <i |,,—|<2] () IS @n order-isomorphism forf; :=
field(|<1)a) 1 2o AS fio fo = fiofy, we know that(fiofs):<o—|<2] ) iS an order-
isomorphism by Corollary 2.15 [and also &rorder-isomorphism by the Axiom of Simple Op-
erations (cf. Requirement 1.24) and Lemma2.17]. Q.e.d. (LemmaZ2.21)
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2.5 Order-Types

Definition 2.22 (Order-Type “O7 (<, X)")
Let X be any class. Let be a reflexive ordering.
The theorder-type of< over X is

OT (<, X) := { = A field(<) C X

<’ is S-order-isomorphic te< }

As a corollary of Corollaries 1.25 and 2.15 we get:

Corollary 2.23
If < e Sis areflexive ordering withfield(<) C X, then < € OT (<, X).

The following lemma will find its applications if 3.5, especially in Corollary 3.37 and Lem-
ma 3.43.

Lemma2.24 If Xe S andif < € Sis areflexive ordering, then
OT (<,X) € S,

provided that we assume either the Set Comprehension Atidfih o or else both the Power-Set
Axiom and the Axiom of Separation.

Proof of Lemma2.24

According to Definition2.14, <" and < are S-order-isomorphic if <',< € § are reflexive
orderings and
dom(f) = field(<)
= <
Jfes., A ran(f) = field(<) Wt e
!/ /
A Y, a), (¥, b) € f ( L )
In case we assume the Set Comprehension Axiom of ML (cf. Definl.29), we just have
to show that the defining statement of Definition 2.22 is gieat and equivalent to the version
where all quantifiers are restricted to elementship. $itation is easy: Just s¢t <', <, X to
the same integer number.f, <’. <, X are explicitly restricted to elementship. And we have
field(<’), field(<) € S by Corollary 1.25. The bound variables introduced by defindl ex-
pansion are all restricted to elementshigiind(<’) or field(<), either directly or as an element
of a pair inf, <’, or <, which is equivalent due to the Axiom of the Ordered Pair Rgquire-
ment1.23).

In case we assume the Power-Set Axiom (cf. Definition 1.2@) e Axiom of Separation
(cf. Definition 1.28), we have to findtac S such thatOT (<, X') C ¢t. However,t := P(X xX)
will do: On the one hand, according to the Axiom of Simple Gyiens (cf. Requirement 1.24)
and the assumed Axiom of Power-Sets a set. On the other hand, froffield(<’) C X we
indeed getO7 (<, X) C ¢, by the Axiom of the Ordered Pair (cf. Requirement 1.23).

Q.e.d. (Lemma2.24)
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3 Well-Orderings

3.1 The Most Basic Concept of Well-Ordering

Definition 3.1 ([Irreflexive] [S-] Well-Ordering)

< is anirreflexive[S-] well-ordering onA if < is an ordering oM and
forevery class) C A with Q#0 [and@Q €S], wehave ImeQ. Vwe Q\{m}. (m<w).

<is a [S-] well-ordering onA if < is a reflexive ordering ol and
for every clasg) C A with Q #0 [andQ €S], we have ImeQ.VweQ. (m<w).

Note that it is a well-justified standard to define a well-ondg as a reflexive ordering instead of
an (irreflexive) ordering, although the latter is the simglencept in general. The reason is not
that we save {{m}, but that we want to have+1 well-ordered order-types over a set with
elements, for each € N. (More generally, we want KRTOGS Ordinal Theorem to hold;
cf. Theorem 3.46.)

Example 3.2 Let ustaken := 2. Considered as reflexive orderings we have the 3 well-
ordered order-types off), {(0,0)}, and {(0,0),(0,1),(1,1)}. We want to represent
these 3 order-types by theddinals 0 (or®), 1 (or{0}), and 2 (or{0,1}). Con-
sidered as irreflexive well-orderings, however, we get dhly 2 well-ordered order-types of
¢ and {(0,1)}, because the operation of taking the ordering of a reflexidering maps both

O and {(0,0)} tothe same elemerit.

Moreover, note that the reference of an irreflexive welleoing to a fieldA is necessary becauge
is an irreflexive well-ordering off and on{0}, but not on{0, 1}.

Regarding Yw € Q\{m}. (m<w)” in the definition of an irreflexive well-ordering, the restr
tion of “Q C A” is necessary. Note that the restriction af) ‘C field(<)” is irrelevant, how-
ever, in the definition of well-foundedness (cf. DefinitiaBR. because each € @ \ field(<)

satisfiesVw € Q. =(w<m) trivially.

Allin all — regarding well-orderings — reflexive orderingseanore convenient than (irreflexive)
orderings.
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Lemma 3.3 Let<, <, andR be binary relations.

1. The following are logically equivalent:
(@) <isan[S-] well-ordering onA.
(b) < isatotal and[S-] well-founded reflexive ordering as.

(c) <isan anti-symmetric relation oA and for every clas§) C A
with Q #0 [andQ € S], we have Im € Q. Vw € Q. (m<w).

2. The following are logically equivalent:
(@) < isanirreflexivelS-] well-ordering onA.
(b) < isatransitive relation omA which is total onA and[S-] well-founded.

3. The following are logically equivalent:
(@) RU 4lidis an[S-] well-ordering onA
(b) R\ (4]id) is an irreflexive]S-] well-ordering onA.

4. If <is areflexive ordering oml and < is the ordering of<, then we have:
<is an[S-] well-ordering onA iff < is an irreflexive[S-] well-ordering onA.

Note that, for a well-ordering, in addition tém € Q. Yw € Q. (m<w), anti-symmetry must be
required becauség(0,0), (0,1),(1,0),(1,1)} istransitive and reflexive, but not a well-ordering.
Reflexivity and transitivity, however, are redundant, asvahin Item (1c) of Lemma 3.3.

For an irreflexive well-ordering, however, in addition t&m € Q. Yw € Q\{m}. (m<w),
irreflexivity must be required becausé(0,0),(0,1),(1,0),(1,1)} is transitive, but not an
irreflexive well-ordering, and transitivity must be reqdrbecaus€ (0, 1), (1,0)} is irreflexive,
but not an irreflexive well-ordering. For this reason, Len8r&has no Item (2c) analogous to
Item (1c).

Proof of Lemma 3.3

“(1a)=-(1b)": Let < be an [S-] well-ordering onA. Then< is a reflexive ordering orl. More-

over, for any@ C field(<) with Q #0 [and@Q € S], there is somen € @ such
that Vw € Q. (m<w). Let< be the ordering ok. Let us show that is [S-] well-founded. If
there were some € @ with v<m, then ve Q\{m}, as< is irreflexive. Butthenv<m<w
contradicts anti-symmetry af. To show thak is total, suppose, b € field(<). Setting@ to
{a,b}, we get a<b Vv b<a [by the Axiom of the Singleton Set (cf. Requirement1.21) #mel
Axiom of Simple Operations (cf. Requirement 1.24)].

“(1b)=-(1c)”: Let < be a total and§-] well-founded reflexive ordering od. Let < be the

ordering of<. Then, foranyQ with Q #0, [Q €S], and Q C A, there is some
m € @ such thatVw € Q. =(w<m). We have to shown<w for eachw € Q. For deriving a
contradiction, suppose(m<w) for somew € (). Then, as< is A-reflexive, we haven # w.
Then, as< is total andA-reflexive, we havem>w. Then, as—-(m<w), we have m>w,
contradictingVw € Q. =(w<m).

“(1c)=(1a)": Setting to the respective singleton set, we get thas A-reflexive [by the Axiom
of Singleton Set (cf. Requirement 1.21)]. Thérld(<) = A. All we have left
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to show is transitivity. Thus, let us assume<b<c. Set @ := {a,b,c} [which is a set
by the Axiom of the Singleton Set (cf. Requirement1.21) drelAxiom of Simple Operations
(cf. Requirement1.24)]. Then, we getanc () such thatVw € Q. (m<w). If m=a, then
we get a<c as required. Ifm=5, then we getb<a and by anti-symmetrya=1>, i.e.
again the requirech<c. Finally, if m=¢, we getc<a and by anti-symmetryu = ¢, and by
A-reflexivity again the requiredi<c.

“(2a)=-(2b)": Let < be an irreflexive §-] well-ordering onA. Then< is an ordering oy, i.e.
an irreflexive and transitive relation oh  Moreover, for anyQ C A with Q #0)

[and @ € S], there is somen € Q) such thatVw € Q\{m}. (m<w).

Let us show that is [S-] well-founded. If there were somee @ with v<m, thenv e Q\{m},

as< isirreflexive. Thus,uy<m<wv, which contradicts< being an ordering.

To show thak is total onA, suppose,b € A. Setting@ to {a, b} [which is a set by the Axiom

of the Singleton Set (cf. Requirement 1.21) and the Axiomiafge Operations (cf. Require-

ment 1.24)], we geta<b V b<a V a=b.

“(2b)=-(2a)": Let < be a transitive relation od which is total onA and [S-] well-founded.
Then, foranyQ C A with Q #0 [andQ € S], there is somen € Q such that

Yw e Q. =(w<m).

Setting( to the respective singleton set [by the Axiom of Singletoh(8k Requirement 1.21)],

we see thak is irreflexive, i.e. an ordering.

As < is total on4, we haveVw € Q\{m}. (m<w). Thus, Vw € Q. (m<w).

“(3a)=(3b)": Let us assume that< := R U 4lid is an [S-] well-ordering onA. Then,

by Corollary2.10, R \ (4]id) is exactly the ordering< of <. By (1b),
< is [S§-] well-founded. By (2), it suffices to show that is total on A. But this is the case
by Corollary 2.12, because is total by (1b).

“(Bb)«=(3a)": Letusassumethat := R\ (4]id) is anirreflexive §-] well-ordering onA. By

Corollary 2.11, < := R U 4]id is areflexive ordering odl. By (2), < is total
and [S-] well-founded. Thus, by Corollary 2.1%; is a total and §-] well-founded reflexive
ordering onA, i.e. (1b) holds. Thus, (1a) holds as well.

(4): By (3) and Corollaries 2.10 and 2.11. Q.e.d. (Lemma 3.3)

Corollary 3.4 (min)

Let < be an[S-] well-ordering. Let< be the ordering of<.
For anyQ C field(<) with Q #0 [andQ € S],

there is a uniquen € Q with Yw € Q. (m<w),

and we denote thig: by min< @ or by min. Q.



26

Definition 3.5 (<-SuccessofS<, Limit Point)

Let < be an [S-] well-ordering. Let< be the ordering oK. Leta,b € field(<).

[Assume either the Set Comprehension Axiom of ML ard € S, or else the Axiom of
Separation andan(<) € S']

If Jec. (a<c), then the<-successor ofi is S<(a) := min< { ¢ | a<c }.

bis anon-limit <-point if there is some: € A such thatb=S<(a).

bis alimit <-point if bis not a non-limit<-point.

Lemma 3.6 K-Predecessor)

Let < be an[S-] well-ordering onA.

[Assume either the Set Comprehension Axiombfand < € S, or else the Axiom of Separa-
tion and ran(<) € S.]

Then, for every non-limi-pointb € A, there is a unique € A such thatb=S<(a).

Thisa is called the<-predecessor o0b.

Proof of Lemma 3.6

Suppose thaS<(a) =S<(a’). We have to showe =da'. Let< be the ordering oK. As < is
total by Lemma 3.3, due to symmetrydrandd’, it suffices to refutea<a’. But in the latter case
we haveS<(a) < @’ < S<(a’), which contradictsS<(a) =S<(a’). Q.e.d. (Lemma3.6)
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3.2 NEUMANN Ordinals

The implementation of ordinal numbers resulting from thiéfeing definition is essentially due
to JOHN VON NEUMANN (1903-1957).

Definition 3.7 (Fullness,c,, NEUMANN Ordinal)

aisfull if —U(a) N Vzea. (z Ca).

The relatione,, is given as{ (z,y) | a3z €yca }.

ais an [S-] NEUMANN ordinal if «is full ande,, is an irreflexive §-] well-ordering ona.

Corollary 3.8 If ais aNEUMANN ordinal, thena is anS-NEUMANN ordinal as well.

The converse of Corollary 3.8 seems to require some extsuppssitions, but it is too early to
discuss this question now; cf. Lemma 3.18.

In the literature, “transitive class” is sometimes useddgad of “full” but we want to reserve
that name for its standard meaning referring to binary iatat

Note that the class of9-] NEUMANN ordinals cannot be defined via teetcomprehension
scheme of @INE’s NF or QUINE’s ML (cf. Definition 1.29) because neither the notion of full
ness (cf. Example 1.33) nor the relatiep are stratified, cf. e.JHolmes, 1998 And indeed,
the class of §-] NEUMANN ordinals cannot be a set, cf. Corollary 3.25.

We will show here that the BuMANN ordinals can be defined and understood without fixing
a special theory of sets and classes such as ZF, NBG, MK,uok€)s ML, and without any
axioms, but the standard axioms&f.7. Especially, no axioms of choice, foundation, infinity,
set comprehension, separation, subset, or power-setreae.

Corollary 3.9 If aisan[S-] NEUMANN ordinal, then « ¢ «.
Corollary 3.10 (0 is an[S-] NEUMANN ordinal.

Corollary 3.11
If « and are[S-] NEUMANN ordinals, themwn is an[S-] NEUMANN ordinal as well.

Corollary 3.12
If eaand aisfull, thenVy. (vep & ~ €&, f).

Lemma 3.13 If g€ a andais an[S-] NEUMANN ordinal,
then g = €,{3}) is an[S-] NEUMANN ordinal, too.

Proof of Lemma 3.13

Asaisfulland 5 € «, we haveg C a.

B = e.{p}) already follows from Corollary 3.12 and Requirement 1.10.

Then €z = sl€,ls. Thus, asg, is an irreflexive §-] well-ordering one, €5 is an irreflexive
[S-] well-ordering ong.

It now suffices to show that is full, and for this (as? C « implies—4/((3)), it suffices to show
nep for ne&eB. Thus, let us suppose the latter. Ass full, we have firstn € £ € a, and
then alson € a. Thus, we have) €, £ €, 5. As &, is transitive, we have) €, 3, i.e. n €[,
as was to be shown. Q.e.d. (Lemma3.13)
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Lemma 3.14 If «is an[S-] NEUMANN ordinal,
then o U {a} is an[S-] NEUMANN ordinal, too.

Be warned that in case af ¢ V, we havea U {a} = «a.

Proof of Lemma 3.14
Leta be a [S-] NEUMANN ordinal.

In case ofa ¢S, we havea U {a} = o and the lemma is trivial. Thus, in the following, we
may assumex € S.

aU{a}isfull: If z € aU{a}, thenz € a or z=a. Asais full, this meansz C « in both
cases.

€aufa} IS irreflexive: Supposefs €,y 8. Incase of 3ca, we get 3 €, 3, contradicting
thate, is an irreflexive ordering. Otherwise, in case gf=a, we get
a € o, contradicting Corollary 3.9.

€au{a} IS transitive: SUpposen €,uia § €aufay 3. Incase of €, asa is full, we have
n €. £ €4 B and then, ag, is transitive, n €, 3, i.e. 1 €.ugay B
Otherwise, in case off = «, asa is full, we haven € a =, and thenn €,y 3, again.

€aufa} IS an irreflexive §-] well-ordering ona U {a}: Supposel) € aU{a} with @ #0 [and
Q€ S]. Incase of @ ={«a}, we have
mine, ., @ = a. Otherwise, we s’ := Q Na. Then 0 #@Q" C a. [Moreover, froma e S,
we get )’ € S due to the Axiom of Simple Operations (cf. Requirement 1]24s « is an [S-]
NEUMANN ordinal, we havemin._ @)’ € o by Corollary 3.4, i-e-mineau{a} @ = mine_ Q'
Q.e.d. (Lemma3.14)

Lemma 3.15 If ais an[S-] NEUMANN ordinal, gis full, and § C o« [anda\(5 € S],
then 5 = mine_ (a\f) € a.

| do not know how to show3 € « for anS-NEUMANN ordinalo and a full3 C «, unlessy\g is
required to be a set.

Proof of Lemma 3.15
Dueto 3 C «, we havea\G#(. Thus, mine, (a\3) uniquely exists by Corollary 3.4.
By Requirement 1.10, it now suffices to show the following two

f C mine, (a\B): Supposen € B. As n, mine, (a\f) € «, andg, is total ona

by Lemma3.3, to shown € minc, (a\3), it suffices to refute both
n= mine_ (o\F) and mine, (o\F) € n. But in the first case trivially and in the second
case ag is full, we would havemine_ («\3) € 3, contradictingming_ (a\5) € o\S.

8 2O ming, (o\f): Suppose n € ming, (a\f). As « is full, we have nea and

n €4 ming, (a\fF). Thus,n ¢ (a\F). Thus,nep.
Q.e.d. (Lemma 3.15)
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Lemma3.16 If o, [€ S]are[S-] NEUMANN ordinals, thena C 5 or 3 C a.

Proof of Lemma 3.16

By Corollary 3.11, ang is an [S-] NEUMANN ordinal as well. [Moreover, we hawengec S
and o\ (anpg), 5\ (anB) € S by the Axiom of Simple Operations (cf. Requirement 1.24).3 A
a 2 anpg C B, itsuffices to refutea D anNg € F. But then, by Lemma 3.15, we would have
a > anf e (B, i.e. ang € ang, contradicting Corollary 3.9. Q.e.d. (Lemma3.16)

Lemma 3.17 If o, [€ S]are[S-] NEUMANN ordinals,
then exactly one of the following three cases holds:

() a=p.
(i) «cp.
(i) 5 € a

Proof of Lemma 3.17
By Lemma 3.16, we have

a=0 V aCpf V BCa
[Moreover, we havexn 5 € S and o\ (aNs), B\ (anB) € S by the Axiom of Simple Operations
(cf. Requirement1.24).] Thus, by Lemma 3.15, we have

a=p0 V aef V [Ean.
If two of these cases fell together, we would get o or 5 € 3 (in case of the two latter cases,
this is implied by fullness), contradicting Corollary 3.9. Q.e.d. (Lemma3.17)

Lemma 3.18 «is anS-NEUMANN ordinal iff o is aNEUMANN ordinal,
provided that we assume the Axiom of Separation.

Proof of Lemma 3.18

The backward implication is given already by Corollary 3.8.

To show the forward implication, let us assume tha anS-NEUMANN ordinal and that) C «
with § € Q.

All we have to find is some € @ such thatVg € Q\{~}. (y€3). According to Lemmas 3.17
and 3.13, it now suffices to find somes @ such thatvg e Q. (5 & 7).

Set @' := N Q. Due to the Axiom of Separation (cf. Definition 1.28), we h&yec S.

In case of Q' = (), foranys € @, we have3 ¢ as was to be shown.

Otherwise, in case of)’' # (), ase; is S-well-founded by Lemma 3.3(2), there is some Q'
with V5 € Q. (6 ¢ ). Now let us assumes €  and, ad absurdum 5 €+~. Then, due to
~ved, asd is full, we haveged. Thus,Fe€Q'. Thus, 5¢&~. Q.e.d. (Lemma 3.18)
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The following proposition is quite trivial as a statement[6r] NEUMANN ordinals; but as the
respective order-isomorphism cannot exist for hugi¢ FREGE ordinals in NF, it is interesting
insofar as it implicitly says that allj-] NEUMANN ordinals are comparatively “small”

Lemma 3.19 Leta be an[S-] NEUMANN ordinal. Definee  :=¢€,U,lid. Define
C. = { (B.O)|BCC A ea. (B=c ) A Irea. (C=calr}) }.
Now (,1id)::€,—C,, is an order-isomorphism. Moreover, in casexof S, this is anS-order-isomorphism,
provided that we either assume the Set Comprehension Afidaboor else the Axiom of Sepa-
ration.

Proof of Lemma 3.19

By Lemma3.13, we haveC, = {(6,7) | BCyAB,vE€a }. Due to Lemma3.13,
we have Vj3,v€a. (g, y= Cv). Due to Lemma3.15 and the Axiom of Simple Opera-
tions (cf. Requirement1.24), we haves,yca. (fe,y < fCv). Thus, (,1id):g,—C,

is an order-isomorphism. Finally, assumecS. By the Axiom of Simple Operations
(cf. Requirement1.24), we havé,lid), axa € S§. By LemmaZ2.17, it now suffices to
show C, € §. If we assume the Set Comprehension Axiom of ML, we get thisnfr
Co ={pl|p=(B,7) NBCy A [B,vea}. If we assume the Axiom of Separation, we get this
from C, C axa. Q.e.d. (Lemma3.19)

3.3 The Proper Class oNEUMANN Ordinals

Definition 3.20 (©O)
Theclass of thdS-] NEUMANN ordinalsis given as
[S]O = { a| aisan[S-] NEUMANN ordinal }.

Corollary 3.21 O C SO.

Corollary 3.22 O = SO, provided that we assume the Axiom of Separation.

Theorem 3.23 [S]O is an[S-] NEUMANN ordinal.

Proof of Theorem 3.23
By Lemma 3.13,[S]O is full.

It remains to show that s is an irreflexive §-] well-ordering on[S]O. By Lemma3.3(2), it
suffices to show that g0 is total on[S]O, transitive, and$-] well-founded.

For transitivity, supposey €sj0 5 €sjo «. Then [S]O 3 v € B € a € [S]O. Thus, asyis
full, we have v €50 a.
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The required totality is given by Lemma 3.17.

Finally, for [S-] well-foundedness, supposeC [S]O with ¢ € @ [andQ € S].

All we have to find is some € @ such thatVs e Q\{~}. (y€5). According to Lemmas 3.17
and 3.13, it now suffices to find somec @) such thatvVs e Q. (& 7).

Set@ :=dNAQ.

[Due to the Axiom of Simple Operations (cf. Requirement ] \2é have))’ € S.]

In case of Q' = (), foranys € @, we have3 ¢ as was to be shown.

Otherwise, in case of)’ # (), ase; is [S-] well-founded by Lemma 3.3(2), there is some& Q'
with V5 € Q. (5 ¢ ). Now letus assume? € () and, ad absurdum g €~. Then, dueto
~v€d, asdis full, we haveged. Thus,Fe€Q’. Thus, 5¢&~. Q.e.d. (Theorem 3.23)

As a corollary of Corollary 3.9, we get:

Corollary 3.24 [S]O ¢ [S]O.
Corollary 3.25 [S]O is a proper class, i.e[S]O ¢ V.

Corollary 3.26 [S]O U {[S]O} = [S]O and there is nd? with [S]O € (2.

Definition 3.27 (Limit Ordinal)
ais alimit [S-] NEUMANN ordinal if
ais an [S-] NEUMANN ordinal and—33 € [S]O. (a = U {3}).

Note that we tredl as a limit ordinal, which is not quite standard, but mostoeable. Moreover,
note that, in Definition 3.27, it is important to requirec V besides that is an [S-] NEUMANN
ordinal, because otherwise ary-] NEUMANN ordinala ¢ V would notbe limit ordinal, due to
a=aU{a}.

Lemma 3.28 [S]O is a limit [S-] NEUMANN ordinal.

Proof of Lemma 3.28

Otherwise, due to Theorem 3.23, there would i@ [S]O with U {5} = [S]O. Butthen

we have g € V dueto § € [S]O, moreover {3} € V due to Requirement1.21, and then

BU{B} € V due to Requirement1.24. Butthel$]O € V, contradicting Corollary 3.25.
Q.e.d. (Lemma 3.28)
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3.4 Basic Properties of Well-Orderings

Initial segments were introduced already in Definition 2.48t now they are going to become
essential.

Corollary 3.29 An initial segment of afiS-] well-ordering onA is an[S-] well-ordering on a
proper subclass ofl.

Lemma 3.30 Let < be an[S-] well-ordering, and lek be its ordering.
If a<b, then |<|, is the initial segment of <|, belowa.

Although this lemma seems to be trivial, note that it wouldlimald if we had defined initial seg-
ments via irreflexive well-orderings: For the irreflexivells@rdering < := {(0, 1)}, we would
have |[<]o =0 = |<];, sothat|<,would not be an initial segment ¢k |;.

Proof of Lemma 3.30
From a<b, we get ae B for B := <{b}). Thus — and this is the non-trivial step! —
a € field(|<]). Thus,| <], is the initial segment of<|, belowa. Q.e.d. (Lemma3.30)

Lemma 3.31
No [S-] well-ordering is[S-] order-isomorphic to an initial segment of itselprovided that we
assume either the Set Comprehension Axiombf or else the Axiom of Separatipn

Proof of Lemma3.31 Let < be an [5-] well-ordering, and let< be its ordering. Then
< is [S-] well-founded according to Lemma3.3. For raductio ad absurdumsuppose
f:<—|<], to be an §-] order-isomorphism for some € field(<). Then f(a)<a. By
Corollary 2.16, we haveva,b. (a<b = f(a) < f(b)). By Lemma2.5, we get the contradic-
tory V. —(f(xz)<z) [provided that we either have the Set Comprehension Axiomdbfand
<, [ € S, orelse the Axiom of Separation anitkld(<) € S]. [Note that we havef, <€ S.
We get <, field(<) € S from < = <\(faa(<)1id) by Requirement 1.24 and Corollaries 1.25
and 2.10.] Q.e.d. (Lemma3.31)

Lemma 3.32 Let < be an[S-] well-ordering. Leta,b € field(<).
[Assume either the Set Comprehension Axiomdlbf or else the Axiom of Separati¢n.

(1) If |[<],and| <], are[S-] order-isomorphic, them =b.
(2) If | <], is[S-] order-isomorphic to an initial segment 0K |,, then a<b.

Proof of Lemma 3.32
Let < be be the ordering of. By Lemma 3.3,< and< are total orfield(<).

(1): Suppose that<], and| <], are [S-] order-isomorphic. As botlu<b and a>b contradict
Lemmas 3.30 and 3.31, we have=>b.

(2): Suppose that<|, and <’ are [S-] order-isomorphic, and that’ is an initial segment
of | <|,. Then there is some< b such that<’ = |<|.. Thena=c by (1).
Q.e.d. (Lemma3.32)
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Theorem 3.33
[Assume either the Set Comprehension Axiomilbf or else the Axiom of Separati¢n.
If <o, <y [€ S]are two[S-] well-orderings, then exactly one of the following threeesalolds:

() <o, <; are[S-] order-isomorphic.
(i) <y is[S-] order-isomorphic to an initial segment of;.
(i) <, is[S-] order-isomorphic to an initial segment &f,,.

Proof of Theorem 3.33
Let <; be the ordering of the well-ordering; (i € {0,1}). [By the Corollary 1.25 and Require-
ment 1.24,field(<), field(<y), field(<p) x field(<;) € S ] We set

[ = { (ag,a1) € field(<p) x field(<1) | | <o), is [S-] order-isomorphic td <;],, }

[We have f €S, either due to the Set Comprehension Axiom of ML or else dubéoAxiom
of Separation. By Requirement1.24 and Corollary 1.2Bym(f), ran(f) € S, and then
field(<p) \ dom(f), field(<y) \ ran(f) € S.]

Note that by Corollary 2.15, we have symmetryfimnd f~!.
Claim1: f is an injective function.

Proof of Claim1: By symmetry inf and f~!, it suffices to show thaif is a function.
To show this, suppose thatag,a1), (ag,b1) € f. By Corollary 2.15,| < |,, and [<;],, are
[S-] order-isomorphic. By Lemma 3.32, we have = b;. Q.e.d. (Claim1)

Claim2: Vb € dom(f). Va<gb. ( a € dom(f) A f(a) <, f(b) ) and
Vb € ran(f). Va<ib. (a eran(f) A f~Ha) <o f7H(D) ).

Proof of Claim 2: By symmetry inf and f~!, it suffices to show the first statement. et

dom(f). Then there is some order-isomorphism < |,—| <1 ;). Suppose<gb. By Lem-
ma2.20 we have(<o{al))h = <i{h(a)}). Thus, (<oqap1h)::[<ola— <11 is an order-
isomorphism. Thusf(a) = h(a) <1 f(b). Q.e.d. (Claim 2)

Claim 3: We havedom( f) =field(<y) or ran(f)=field(<y).

If dom(f)=field(<y) andran(f)=field(<;), then f::<q—<; is an [S-] order-isomorphism.
If ran(f)#field(<;), then there is some, € field(<;) such thatf:<,—|<i],, is an
[S-] order-isomorphism. Ifdom(f) # field(<y), then there is some, € field(<,) such that
f:1<0lag— <1 is an [S-] order-isomorphism.

Proof of Claim 3: Now it becomes crucial that,, <, are [S-] well-orderings. Be reminded
of Corollary3.4. In case ofdom(f)#field(<y), set ay := minc, (field(<p) \ dom(f)).

In case of ran(f) #field(<y), set a; := ming, (field(<;) \ ran(f)). Then, by Claim 2,
dom(f)=<o{ag}), ran(f)=<1{a1}), respectively. Inthe case of both, by Claims 1 and 2,
f:1<0)ay—1<1]a, Would be an §-] order-isomorphism, and then we would have the contra-
dictory ay € dom(f). Thus, we get the given cases and the described order-iphisors by
Claims 1 and 2 [and Lemma 2.17]. Q.e.d. (Claim 3)

By Claim 3, all that is left to show is that the three case aréuaily disjoint. But case (i) trivially
does not go together with (ii) or (iii) by Corollary 2.15 anérama 3.31. Similarly, if cases (ii)
and (iii) fell together, say;::<;—[<1_;|4,_, Were [S-] order-isomorphisms foi € {0, 1}, then
(hoohy)::<o—[<0]h,(a;) Would be an §-] order-isomorphism by Lemmas 2.21 and 3.30, again
contradicting Lemma 3.31. Q.e.d. (Theorem 3.33)
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3.5 FREGEOrdinals

It is a pity that in his seminal bodiQuine, 1981 on ML, WILLARD VAN O. QUINE (1908-2000)
does not treat any infinite ordinal or cardinal numbers. mfimite cardinals, however, @NE
follows GoTTLOB FREGE (1848—-1925]Frege, 1884; 1893/1903 and we will call cardinal and
ordinal numbers in this style ‘REGE cardinals” and “REGEordinals’, respectively.

A FREGE ordinal is the most natural idea of an ordinal number of amgiwell-ordering<,
namely the class of all reflexive orderings that are ordemisrphic to<, i.e. the order-typ&7 (<, X)
of < over some class’; cf. Definition 2.22.

Definition 3.34 (FREGEOrdinals over X, “ FO(X)”")
ais an [S-] FREGEordinal over X if

—-U(X) and there is ang-] well-ordering < € o such thata = OT (<, X).
[S]FO(X) :={ a| ais an[S-] FREGEordinal overX }.

Corollary 3.35

(1) If ais aFREGEoOrdinal overX,
then —U(a) anda is anS-FREGEordinal over X as well.

(2) FO(X)C SFO(X)C 8.

Corollary 3.36 LetX € S. Assume the Axiom of Separation. Then:
(1) «isaFREGEordinal overX iff «is anS-FREGEordinal overX.
(2) FO(X)=SFO(X).

In Definition 3.34, we have restricted the fields of the wetlerings to subclasses of a class
for two reasons: The first is that we ne&8O(X) for a setX in HARTOGS Ordinal Theorem,
cf. Theorem 3.46. The second reason is thatin the NBG and M$S¢heories -] FREGEordinals
over a proper class, such Bsare not much fun because they are all proper classes, withxth
ception of the REGEordinal {()} of the empty ordering. This means that in NBG and MK
we have FO(V) = SFO(V) = {{0}}. For asetX, however, as a corollary of Lemma2.24 we
get:

Corollary 3.37 If ais an[S-] FREGEordinal overX € S, then a € [S]FO(X), provided
that we assume either the Set Comprehension AxioMlof or else both the Power-Set Axiom
and the Axiom of Separation.

Definition 3.38 (Ordering of S-FREGEOrdinals, “ <sro(x)")
ap, aq € [S]FO(X)
<[S|Fo(X) = { (CKQ,Oél) A < € ap. A< € . day Gﬁeld(gl) }
(<o is [S-] order-isomorphic td < |,, )
=sro(x) = <srox) U srox)lid.

Corollary 3.39 Let us assume the Axiom of Separation.

Then <rox) = rox) 1 <srox) [Fo(x)-
Moreover, if X € S, then <zox) = <sro(x)-
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Remark 3.40 Note that we have not defined a reflexive orderifg, x) in Definition 3.38
because this would not have any interesting properties:

1. According to Definitions 3.34 and 2.22, to show(, |,, € ag in case of <, € ay, itis
not sufficient that<, is order-isomorphic t9<, |,,. Instead we need that, is S-order-
isomorphic to| <, |,,. And this would cause similar problems, most easily to be-ove
looked. For instance, already Claim 1 of the Proof of Lemm& 3vould not hold. As the
removal of the S-” in Definition 2.22 would deprive us of the elementship ofler-types
of Lemma 2.24, and thereby render order-types practicalyass, the only way to proceed
here would be to define a quasi-orderifigox), where two order-types are equivalent iff
they are order-isomorphic. The theory$fo x) would be awkward, however, even after
extending our theory of well-orderings to such quasi-veetlerings. Note thak z»x)
is not necessarily an irreflexive well-ordering becauseag ho minimum in non-trivial
equivalence classes §frv(x)-

2. If we assume the Axiom of Separation, by Corollary 3.3@ntthere is hardly any reason
to consider< zo(x) in addition to<sro(x) -

3. If we do not assume the Axiom of Separation, however, thi@oal case of Definition 3.38
is quite unimportant anyway, because we cannot stf@( X ) S for X € S.

Lemma 3.41
[Assume either the Set Comprehension Axiomalbf or else the Axiom of Separatign.
<[s)70(x) is an ordering onS|FO(X).

Proof of Lemma3.41 By Corollary 2.15 and Lemma 3.31<sj70(x) is irreflexive. By Co-
rollary 2.15 and Lemma 2.21xs)70(x) IS transitive. Q.e.d. (Lemma3.41)

Lemma 3.42

Assume either the Set Comprehension Axiomil bf or else the Axiom of Separation.
=sro(x) Is anS-well-ordering onSFO(X).

=<sro(x) is an irreflexiveS-well-ordering onSFO(X), and the ordering of<sqo(x).

Proof of Lemma 3.42

By Lemma3.41, <sro(x) is an ordering or8FO(X). Thus, by Corollary 2.11,=sr0(x) is @
reflexive ordering orSFO(X). By Corollary 2.10, <sro(x) is the ordering oK sro(x). By
Lemma 3.3(4), it now suffices to show thétzo x) is anS-well-ordering onSFO(X).

To this end, let us assume, € Q C SFO(X) andQ € S. Thena is anS-FREGEordinal over
the classX. Then there is as-well-ordering<, € . Set

Q' ={a € field(<yp) | oy € Q. I<; € . (< is S-order-isomorphic td <, |,) }.

Due to<, € S, by the Axiom of Simple Operations and either the Set Comgmsion Axiom of
ML or else the Axiom of Separation, we gétld(<,),Q’ € S.

In case of Q' =), we setn], := ap and<j, := <.

In case of @' # (), however, we setn := min<, Q' by Corollary3.4. Then, due ton € ',
there arey, € Q, <) € af, and anS-order-isomorphisny;::<{—|<q|m.



36

In any case, lety; € @ be arbitrary. Asa; €@, there is anS-well-ordering<; € a;. It
suffices to showo <sro(x) a1. By Theorem 3.33, we have three cases now:

If <, is S-order-isomorphic te<;, then, due to<j € aj, <; €y, Definitions 3.34 and 2.22,
and Corollary 2.15, we gety, = «;, which implies of <sro(x) a1-

If <{, is S-order-isomorphic to an initial segment gf;, then o) <sro(x) 1, Which implies
oy 2sro(x) 0.

Otherwise, there is af-order-isomorphismfy::<;—| <], for someb € field(<j). In case
of Q'=0, we have <, = <,, and then the contradictoryc @)’. Thus, Q' #0. Then, by

Lemma2.21, (foofi)::<1— <o) ) is @anS-order-isomorphism withf;(b) <o m. But then
f1(b) € @', which contradicts the description of. Q.e.d. (Lemma 3.42)

Lemma3.43 If XeS§, then SFO(X), <srox), Jsrox) € S, provided that we
assume either the Set Comprehension Axiobf, or else both the Power-Set Axiom and the
Axiom of Separation.

Proof of Lemma3.43

By the Axiom of Simple Operations, the Power-Set Axiom, ahd Axiom of Separation,
we get [S|JFO(X) € S from FO(X) C SFO(X) C P(P(XxX)) € S; and then
<[s|F0(x)s Ssrox) €S from <s170x), Ssrox) € SFO(X) x SFO(X) € S.

For SFO(X) € S, by the Set Comprehension Axiom of ML, we just have to showtadefin-
ing statement of Definition 3.34 is stratified and equivaterihe version where all quantifiers are

restricted to elementship. Stratification is easy: Jus&set to the same integer number
anda ton+1. The rest is follows from the Proof of Lemma 2.24.

Moreover, <srox) € S now easily follows from the Set Comprehension Axiom of ML dhd
Axiom of the Ordered Pair.

Finally, <sro(x) € S now easily follows from the Axiom of Simple Operations.
Q.e.d. (Lemma 3.43)
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3.6 HARTOGS Ordinal Theorem
The following Lemma 3.45 and Theorem 3.46 are duerREBRICH HARTOGS (1874-1943).

Definition 3.44 (HARTOGSMorphism)
m is the X-HARTOGSmorphismonto< if m = (f:|2srox)la—<) for

{ B <sro(x) }
Fo= 4 B ] A befed(<) ,
Ib)

A I< e p. (<'is S-order-isomorphic td < |,
a = OI(<,X).

Note that the Set Comprehension Axiom of ML does not seem tauffecient to show f € S
for the f of Definition 3.44, because stratification of the definingriata with a substitutionr
resultsinfo = ac = <o+ 1 = bo + 2, which is inconsistent with the requirement 66 = bo,
resulting from the paif, b).

Lemma 3.45 (Hartogs, 1919)

Let us assume either the Set Comprehension AxioMlof or else both the Power-Set Axiom
and the Axiom of Separation. Moreover, let us assuxhe S. Then:

(1) For everya € SFO(X) and every< € a,
the X-HARTOGSmorphism ontc< is an order-isomorphism.

(2) Ifthereis
an injective functionr : SFO(X) — X with 7€ S,

then for

< = 7 lo=Zgrox) o,

a = 0I(£,X),
we have

< €aeSFO(X),
and
TR srox)— < Is anS-order-isomorphism,

but there is

no S-order-isomorphismf::[ < sro(x) ] a— <.

Proof of Lemma 3.45

(1) Let < € a € SFO(X). Then<is anS-well-ordering on a subclass of.
Let f:|2srox)]a—< be theX-HARTOGSmorphism onto<.

Claim1: dom(f) = field(| =sro(x)]a)-

Proof of Claim1: Let 3 <grox) « be arbitrary. By Lemma3.42, it suffices to show
pedom(f). By Definition3.38, there arel’ € 3, <" € «, V' efield(<”), and an
S-order-isomorphisny::<'—|<"|,».  Due to <, <"ecaeSFO(X), by Definitions 3.34
and 2.22 and Corollary 2.15, there is 8rorder-isomorphisny,::<”—<. By Lemma2.21,
(goog1)::<"— | <] g4, vy is @anS-order-isomorphism and, (b”) € field(<). Thus, (5, g1 (b")) € f.
Thus, g € dom(f), as was to be shown. Q.e.d. (Claim1)
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Claim2: f is a function.

Proof of Claim 2: In case that(3,b;) € f, for eachie{1,2}, there are<; € g € SFO(X)
such that<! is S-order-isomorphic tg<|,,. By Definitions 3.34 and 2.22 and Corollary 2.15,
| <|s, is S-order-isomorphic td <|,,. Thus, by Lemma3.32(a), we havg =b,, as was to
be shown. Q.e.d. (Claim 2)

Claim 3: f is injective.

Proof of Claim 3: In case that(s;,b) € f, for eachi € {1,2}, there are<; € 3, € SFO(X)
such that<} is S-order-isomorphic td<|,. Then, by Corollary 2.15</ is S-order-isomorphic
to <,. Thus, by Definitions 3.34 and 2.22 and Corollary 2.15, weehdv= (3,, as was to be
shown. Q.e.d. (Claim 3)

Claim4: ran(f) = field(<).

Proof of Claim4: Letb € field(<) be arbitrary. Set := O7 (| <|,,X). By Corollary 3.29,

| <]y is anS-well-ordering on a proper subclass®f ByLemma?2.19, we havé<|, € S, and
thus |<|, € 5 by Corollary 2.23. Due toX € S, by Corollary 3.37, we haves € SFO(X).

By Corollary 2.15, | <|; is S-order-isomorphic tg <|,. Thus, by Definition 3.38, 8 <sro(x)

a. Allinall, we have (5,b) € f. Thus, beran(f), as was to be shown. Q.e.d. (Claim 4)

Let us assumey, 3 to be arbitrary with v<sro(x)8<srox)a- For f::| 2srox)]a—< tO
be an order-isomorphism, by Corollary2.16, Claims1-4, bhathma3.3(1b), it suffices
to show f(v) < f(5). Due to y<sro(x)3, by Definition3.38, there ared, € 7,
<s € B, b € field(<j), and anS-order- |somorph|srry2 <= <p ] Moreover, by
deflnltlon of f and Corollary2.15, there ar€” € v, <j € ﬁ, and S-order-isomorphisms
91:<p— <] andgo:|<]s—<].  Furthermore, due tov,3€SFO(X), by Defi-
nitions 3.34 and 2.22 and Corollary 2.15, there &rerder-isomorphismg;::<’—<’ and
93:<p—<j Then we get theS-order-isomorphism(gzog,)::<j;—[<]fp).  Then, by
Lemma2.21, (920930094)::<.— | <|(gs004)») IS an S-order-isomorphism and (gzog.4)(b) €

field([ <] 4(3), 1-€. (g30g4)(b) < f(B). Then(goog1092093094)::| <] p()= | < (gs0gs)(v) IS AN
S-order-isomorphism. By Lemma 3.32 we géty) = (g3094)(b) < f(3), as was to be shown.

(2): Dueto X € S, by Lemma3.43, we havesSFO(X), =srox) € S. Suppose that there
~— is an injectiont : SFO(X) — X with 7€S. Letus conS|der the reflexive ordering on
ran(r) given by < := 77! o Xgmo(x) o7, i.e. by a<b if 7' (a) Zgrox) 7 H(b). Then
TuRsrox)— < IS anS-order-isomorphism by Lemma3.42 and the Axiom of Simple 1@pe
tions. Moreover, < is an S-well-ordering on a subclass of. Seta = OT (<, X).
By Corollary 2.23, we have< € a.  Thus,a is anS-FREGE ordinal. By Lemma2.24,
we have a € S. Thus, a € SFO(X). For areductio ad absurdumsuppose that there
is an S-order-isomorphisny::| <sro(x)Jo—<.  Then there is also af-order-isomorphism
(fom 1) Zsrox))a—=sro(x). This contradicts Lemma 3.31. Q.e.d. (Lemma 3.45)
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Roughly speaking, Theorem 3.46 says that the cardinalit§-6iREGE ordinals over a given
classX is neither smaller nor equal to the cardinalityof cf. also Example 3.2.

Theorem 3.46 HARTOGS Ordinal Theorem, [Hartogs, 1913)
Let us assume the Power-Set Axiom and the Axiom of Separation
Moreover, let us assum&’ € S. Then:

(1) For everya € SFO(X) and every< € a,
the X-HARTOGSmorphism onto< is anS-order-isomorphism.

(2) There is no injectiomr : SFO(X) — X.

Proof of Theorem 3.46

(1): Let < € a € SFO(X). Then<is anS-well-ordering on a subclass of.
— Let fu[2srpox)le—< be theX-HARTOGS-morphism onto<.

By Lemma 3.45(1) and Lemma 2.17, it suffices to shgwe S. By Lemma3.43, we have
SFO(X)eS. By Corollary1.25, we havefield(<)eS. Thus, by the Axiom of Simple
operations (cf. Requirement 1.24), we haye_ SFO(X) x field(<) € S, i.e. f € S bythe
Axiom of Separation.

(2): Reductio ad absurdumAssume thatr : SFO(X) — X is an injective function. By Lem-
~ ma3.43, we haveSFO(X) € S. Thus, by the Axiom of Simple Operations, we haveC
SFO(X)xX € S, i.e. 1S by the Axiom of Separation. Thus, Lemma 3.45(2) contradicts
Theorem 3.46(1). Q.e.d. (Theorem 3.46)

The following theorem shows that there is no chance to provetdGs Ordinal Theorem when
we assume the Set Comprehension Axiom of ML.

Theorem 3.47 (Anti-HARTOGS)
Let us assume the Set Comprehension AxioMIlof Then

(1) Set? := OT (Zsro(s),S). Then 2 € SFO(S). And for every< € (2,
the S-HARTOGSmorphism f::| < sz (s) | o—< is an order-isomorphism,
but, duetof ¢S, noS-order-isomorphism.

(2) (sros)1id) : SFO(S) — S is an injection with (sro(s)1id) € S € S.

Proof of Theorem 3.47

(2): From the Set Comprehension Axiom of ML we g&tc S. Then we getSFO(S) € S by
- Lemma3.43. Thusgro(s)lid €S by the Axiom of Simple Operations. And trivially, id
andsro(s)1id are injective. Finally, we have&s7O(S) C S by Corollary 3.35(2).

(1): From Theorem 3.47(2), by Lemma 3.45(2), we havery(s) € 2 € SFO(X), but are as-
~ sured that there is nS-order-isomorphisny::| <sro(s)] o — 2sro(s). By Lemma3.45(1),
for every< € 2, theS-HARTOGSmorphismf::[ <sro(s) ] o— < is an order-isomorphism, but
cannot be arS-order-isomorphism because is S-order-isomorphic to<smo(s)- This means
fé&S. Q.e.d. (Theorem 3.47)
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K END OF REVISTON H+*

Even in QUINE’S ML clof theory, from the affumption that fudy ordinal8 are fet8, we can prove that the theory i3
inconfiftent becaufe then the cla of FREGE ordinal8 containd a proper fubcla@ without a minimal element. But in
QUINE’8 NF thi3 proof does not worf becaufe proper fubclaffes do not egift and only fubsetshave to have a minimal
element, and this way out can be dofen in ML a8 mwell.
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4 Induction

We clearly need a fection on Jnduction bere. Alfo a fection on the
natural numbers would be nice, though not urgent.

NMote that the following fectiond are not pet reworfed according to
the concretization on the theorie8 of fet8 and claffed of the previous

fections!!!
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5 Fixpoints of Monotonic and Expansive Functors
We now need the following notions for the first time, which veeiltl have defined already l.

Definition 5.1 (Monotonicity, Expansiveness, Fixpoint)

Let < be a binary relation (od). Let f : A — A be a singulary total function.
fis <-monotonicif Vz,y. ( (z <y) = (f(z) < f(y)) ).

fis <-expansiveif Vre A. (x < f(x)).

s is afixpointof f if s= f(s).

Definition 5.2 (Chain)

Let < be a reflexive ordering.

Cisa<-chain if C C field(<) and < is total onC'.

C'is awell-ordered<-chain if C C field(<) and¢1<[. is a well-ordering orC'.

5.1 Simple Construction of Greatest Fixpoint

The following theorem holds, even without assuming any @yéarms of the Axiom of Choice
or any kind of induction principle.

Theorem 5.3 KNASTER-TARSKI)

Let < be a reflexive ordering. Let be <-monotonic.

If Az. (z < f(x)) has a<-supremumyg := sup;_ . ,
theng is the <-greatest fixpoint off.

Proof of Theorem 5.3
For anyz with z<f(x) we have x<g by (sup 1) of Definition 2.1, and thenz<f(z)<f(g)
by monotonicity. Thusg<f(g) by transitivity and(sup 2) of Definition 2.1. By monotonicity,

f(9)<f(f(g)). Thus, f(9)<g by (sup1). Thus, g=f(g) by anti-symmetry. Thusg is a
fixpoint of f, and by reflexivity andsup 1) the <-greatest. Q.e.d. (Theorem5.3)
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5.2 Inductive Fixpoint Construction

The following is called ZRMELO's Fixpoint Theorenafter[Moschovakis, 2006, Note 18, p. 102
attributing the proof (but not the theorem)[@ermelo, 1904 We do not think this attribution to
be justified, but there is no better name to the best of our ledye.

Theorem 5.4 ZERMELO'S Fixpoint Theorem)

Let < be a reflexive ordering on a seit.

If the function f: A— A is <-expansive, and if each well-ordered-chain has a
<-supremum, theri has a fixpoint.

Proof of Theorem 5.4

Let < be the well-ordering otFO(A) given by HARTOGS Theorem, cf. Theorem 3.46.
Let < be the ordering oK.

We definel; for 5 € FO(A) recursively over< as follows:

If 3 is a non-limit <-point (cf. Definition 3.5), we setls_(,) = f(l.), for a being thex-
predecessor gf, cf. Lemma3.6.

If 3is alimit <-point: 15 := sup;_ la.

Note that we will reuse this inductive construction in Thears.5.

Claim 1 Let 3 be a non-limit<-point anda its <-predecessor. Theh, < s_(q)-
Proof of Claim 1 Directly by the presupposition thdtis expansive. Q.e.d. (Claim1)

Claim2 In case ofs < v, we havelg <,.

Proof of Claim2 If ~ is a limit <-point, this follows from(sup 1) of Definition2.1. If~y is
a non-limit ordinalS<(«), this follows from Claim 1 in case ofs=«, and from induction
hypothesis and Claim 1 in case of < a by transitivity. Q.e.d. (Claim2)

Note that the latter supremum in the recursive definition isfindeed taken over well-ordered
<-chains according to Claim2: Fa@p C ran(l) with @ #0, we have mincQ = [, for
a:=ming{ € FOA) | l3€Q }.

From Claim 2 we can also show by induction that € FO(A). ( I3= Sup§<ﬁ f(ls) ), which
gives an alternative definition of

Clam3 If I, <z forsomey > 3, thenVa>p3. (I, =13).

Proof of Claim3 Incase of 3 < a =< v, we have lg < [, < [,. Indeed, the first step
holds by Claim 2 and the second by Claim 2 and reflexivity. Bysitivity we geti; < [,. By
antisymmetry from the assumption we gigt= /5.

The case ofv > ~ follows then by a trivial induction. Q.e.d. (Claim 3)

By HARTOGS Theorem, the functiorh cannot be an injection. Thus, there mustbe 5 with
l,=ly. By reflexivity and Claim 3, we gets_ 5y =1y, i.e. f(lgr) =lz. Thus,ls is a fixpoint
of f. - Q.e.d. (Theorem5.4)
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5.3 Inductive Construction of Least Fixpoint

Theorem 5.5 (Inductive Fixpoint Construction)

Let < be a reflexive ordering on a sdtand f : A — A be <-monotonic.

If each well-ordered<-chain has a<-supremum, theri has a<-least fixpointz.
In addition, z actually satisfiesvy € A. ( (f(y) <y) = (z<y) ).

Now if supremaand infima exist, due to duality we can choose between Theorerarid3rheo-
rem 5.5 for the construction of greatest and least fixpoints.

Proof of Theorem 5.5

Firstly, we show that exactly the same construction as inPituef of Theorem 5.4 provides us
with the same fixpoint, which is actually the least one due ématonicity, according to Claim 4.
Secondly, we sketch that Theorem 5.5 is actually a corobaijheorem 5.4.

Let! be defined exactly as in the Proof of Theorem 5.4. Moreovea|$® Claim 1, Claim 2, and
Claim 3 be exactly as in the Proof of Theorem5.4. Note that axeHho give a new proof for
Claim 1 only, because this is the only one that uses the ppesitpn of expansiveness.

New Proof of Claimi On the one hand, if is a limit <-point, then we havel, < [, for
all v < « by definition ofl, and by (sup 1) of Definition2.1. By induction hypothesis and
monotonicity we then havd,, < Is_,) = f(l;) < f(la) = ls.(). Then, by transitivity and
(sup2) of Definition 2.1, we have the claimed, < ls_ (). On the other hand, i is a non-
limit <-pointS<(v), then we havel, <ls_(,, by induction hypotheses and, by monotonicity,
lo = le(W) = f(lﬂf) < f(lsj(,y)) = f(la) = ls_j(a). Q.e.d. (Clalm 1)
Claim4 Assume thay € A satisfies f(y) <y. Foralla € FO(A) we have: [, < y.

Proof of Claim4 On the one hand, if is a limit <-point, this follows from the induction
hypothesis bysup 2) of Definition2.1. On the other hand, df is a non-limit<-point S<(3),
then we havelz < y by induction hypothesis, and then by monotonicity:= Is_ ) = f(l3) <
fly) <wv. Q.e.d. (Claim 4)

Finally, let us sketch why Theorem 5.5 is actually a corgltarTheorem 5.4. Set
B = { be A ‘ b< f(b) N VYyeA. (f(y)gy = bgy) }

ThenB is closed undef and<-suprema. By the first property of the conjunction sepagatin
from A we can now apply Theorem 5.4 to get a fixpoint. By the seconpestg, this fixpoint is
the least one and satisfies the additional property stat€déorem 5.5. CfiMoschovakis, 2006,
p. 103 for more details. Q.e.d. (Theorem5.5)




6 Fixpoints of Class Operators

6.1 Class Operators

Definition 6.1 (Monotonic] Class Operator)
¢ is aclass operatorif ¢(X) denotes a unique class for each class
A class operato® is calledmonotonicif it is monotonic for the subclass relation, i.e. if

VX, Y. ( XCY = &(X) C oY) ).

Definition 6.2 ([Strongly] Set-Continuous)
A a class operatop is calledset-continuousf

VX CV. (@(X) U 2@ )

zeP(X)
@ is strongly set-continuou$f it additionally satisfiesva € B(V). ( &(x) € B(V) ).

Corollary 6.3 A class operatow is set-continuous iff it is monotonic and satisfies
VX €V.Vaed(X). JxeP(X). (acd(z))

Definition 6.4 (Algebraic)
A class operato® is algebraic if

VX CV. (@(X) = | 2@ )
)

zePN(X

Corollary 6.5 An algebraic class operator is monotonic and set-contirsuou

45
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6.2 Fixpoints of Set-Continuous Class Operators

Let & be a monotonic class operator. Then, by theAKTER-TARSKI Theorem 5.3, ¢4 ) X

is the least ancUX@(X) X the greatest fixpoint ab. Note that Theorem 5.5 cannot be applied
to get a least or greatest fixpointétecause itset A would have to be the superlarge collection
of all classes.

6.2.1 The Least Fixpoint of a Set-Continuous Class Operator

For set-continuous class operators — and these are all mainalass operators we are interested
in — the following Theorem 6.8 is a real improvement over Tie@o5.5. It is a very minor
refinement of Theorem 6.4 dAczel, 1988. Not only does Theorem 6.8 require less set theory
than Theorem 5.5, but also reduces the well-ordered cartisinof whole sets to the construction
of their elements’ derivation graphs, which is an interestiechnique for showing properties of
fixpoints.

Definition 6.6 ([Finitely Branching] Labeled Well-Founded Rooted Graphs)

A [finitely branching well-founded rooted grapts a pair(—, 1), wherel is a function, called
labeling function and — is a binary relation on the selom(/), such that— is well-
founded, ¥nedom(l). ( {n})— isfinite ),] and such that there israot r € dom(l) with

{r)— = dom(l). As such aroot is unique, we denote it withot(—).

By a trivial Noetherian induction over— on the cardinality of {u})——, we get the following
corollary. Note that we do not need any weak form of the AxidnChoice (such as 8nig’s
Lemma) here, because we do not have to construct an infirgitehr

Corollary 6.7
If (—, () is a finitely branching well-founded rooted graph, th&nn(!) is finite.

Theorem 6.8 Let® be an[algebraid set-continuous class operator.

Let D be the class offinitely branching labeled well-founded rooted graplis—, /) such that
Viedom(l). (1(i) € ¢({1(j)|i—3}) ).

Set ] := { l(root(—)) | (—,1) € D }.

If @ is algebraic or if we assume the Axiom of Collection, tlhes the least fixpoint of.

Note that we have
I = X
XDP(X)
in the case of Theorem 6.8, but the latter construction aiegto Theorem 5.3 requires a theory
of setsand classes For
I = m x

2P (x) A zeP(V)
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along the KNASTER-TARSKI proof we still get I” O &(I') and &(I') O &(¥(I')). But
¢(I') O I' is guaranteed only ifp(1') € PB(V), which (even if® is strongly set-continuous!) is
not generally the case: To wit, consider NBG (where the addgsrdinal numbers§ is proper,
Cantor’s 2¢ Diagonalization holds, and any proper class contains ssib$arbitrary cardinality)

and define? by ¢(X) := { (‘;B(X)’ gthXerewqi?ss(eV) } By Corollary 6.3, @ is strongly set-

continuous, and we havé=C_C but I’ = V.

Proof of Theorem 6.8

Claim1: ¢(I) C I.
Proof of Claim 1: Assumez € ¢(I). As @ is set-continuous or algebraic, there is same B(1)
orx € Pn (1), resp., such that € ¢(z). Since zC1, by the definition off we have
Vyex. I(—,1). ( (—,1)eD A y=I(root(—)) ).

Sincez is a set or a finite set, by the Axiom of Collection (cf. Defiaitil.27) there is a set or
simply by induction on the size afthere is a finite se#l, resp., such that

Vyex. I(—, 1) €A ( (—,1)eD A y=I(root(—)) ).
Define B := { (0, ((—,0),4) )| (—,))e AAiedom(l) }. Note that the step from
A to B is missing in the proof of Theorem 6.4 phczel, 1984. Now B is a set again, due to
B C U pea ({03x({(—,0)}xdom(l)) ). Then C := Bw{(1,0)} is aset. Define the
relation—> to be the smallest relation ari such that, for each—, 1) € A, we have

(1,0) = (0, (==, 1), root(—)))

Vi,j€dom(l). ( j—i = (0,((—>,1),5)) = (0, ((—1),7)) ).

We defineL onC by L(0, ((—,1),7)) :=I(¢) and L(1,0) := a. Now the second following
=-step is the one that requires the definitionbin addition toA: We have

L0, (=, 1), 7))

and

= 1(0) € 2({1(G) | i—3}) = o({ U \ (—0),1) = (0,((—1).4) })
= o({L \ (—,0,0)=J } ),
and by z C {l(root(—)) | (—,1)€A} a nd monotommty of? we have
L(1,0)=ac®(z) € o( { root ) | (—,1) GA})
= o({L \ (1,0)=J } )
Allinall, (=,L)eD, ie.a=L(1,0)= (root( ) € 1. Q.e.d. (Claim 1)

Claim2: If ¢(X)C X, thenICX.

Proof of Claim2: Let (—,1) € D. We have to showl(root(—)) € X. It suffices to show
[(i) € X fori € dom(l) by induction on—. By induction hypothesis{ I(j) | i—j } C X.
By definition of D and monotonicity, we have

(i) e d({1(j) ]| i—J }) CP(X) C X. Q.e.d. (Claim 2)
By Claim 1 and monotonicity we havé(®(1)) C (/) C I. Thus, by Claim2,/ C ¢(I). By
antisymmetry ofC, [ is a fixpoint of®, and by Claim 2 the least one. Q.e.d. (Theorem 6.8)
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6.2.2 The Greatest Fixpoint of a Set-Continuous Class Opetar

The following is a theorem of set theory.

Theorem 6.9 (Aczel, 1988, Theorem 6.5) Let & be some set-continuous class operator. As-
sume the Axiom of Collection and the Principle of Dependémtic2. Set
J = U x.
zCP(z) N zePB(V)
Now: J is the greatest fixpoint @b.

Note that we have J — X
XCh(X)

in the case of Theorem 6.9, but the latter construction aaegrto Theorem 5.3 requires a theory
of setsand classes

Example 6.10 (Set-Continuity Necessary in Theorem 6.9)

Along the KNASTER-TARSKI proof we always get/ C &(J) C &(¢(J)). But J D &(J) is

guaranteed only if2(J) € B(V), which is not generally the case: To wit, consider NBG (where
: . [ XNO if X eB(V)

a subclass of a set is always a set) and defily (X)) := { Y otherwise. (- Then

@ is monotonic (but not set-continuous), and we hateO® but ¢(J)=V=)ycsx) X. Thus,
J 2 P(J).

Example 6.11 (No Analog of Theorem 6.9 for Algebrai@ as for Theorem 6.8) Define (X)) :=
{yeO| dreX. y<x}. Thendisalgebraic:®(X) = s, ¢ x. ,—q,; P(x). We haveJ=0,

but U, co@) n zepnv) P(2) = 0.

Proof of Theorem 6.9

Claim1: J C &(J).
Proof of Claim 1:Leta € J. Then there is somee S with zC®(z) and acx. Thenz C J.
Thenacx C ¢(z) C ¢(J) by monotonicity. Q.e.d. (Claim 1)

Claim2: If XC@(X) and z €PB(X), thenthereis an’ € P(X) such thatzCP(z').
Proof of Claim 2: We have :CX C®(X). As® is set-continuous, this means
Vyez. Ju. (ueP(X)Ayed(u) ).

Sincez is a set, by the Axiom of Collection there is a sesuch that

Vycx. Jue A (ueP(X)Ayed(u) ).
Set A" := AnP(X) and 2’ :=|JA. Thenz'is a set withz’CX, and, by monotonicity, we
have ¢(u) C &(a') foranyu € A'. Thus, z C |J,c 4 P(u) C P(2). Q.e.d. (Claim 2)
Claim3: If XCo(X), then XCJ.
Proof of Claim 3: Assumea € X. By Claim2 and the Principle of Dependent Choice, there
isan r: N — P(X) with zo={a} and VieN. 7,CP(z;1,). Set z := [J,envi- Then
aczcP(X). Moreover, by monotonicity,z = J,.x %i € Ujen @(zi11) € @(2). Thus,
aczCJ. Q.e.d. (Claim 3)
By Claim 1 and monotonicity we havé C ¢(.J) C ¢(®(J)). Thus, by Claim3,2(J) C J. By
antisymmetry ofC, J is a fixpoint of®, and by Claim 3 the greatest oneQ.e.d. (Theorem 6.9)
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7 Lattices

Definition 7.1 (Compactly Generated)
Let < be a binary relation (on).

An elementa (of A) is <-compact if for every <-supremums (in A) of every singulary
predicateP (on A) with a<s, there are finitely manyy,...,y, (in A) (n€N), such that

Vie{l,...,n}. P(y;) andsuchthabz. (z € {y;,...,y,}) hasa<-supremum witha < sup={yy, ...

An element: (of A) is <-compactly generatedf cis a<-supremum of some predicatewith
Vz. ( P(x) = (xis <-compac} ).

Corollary 7.2 Let< be a binary relation (o). Leta € A.
If ais <-compact, them is <-compactly generated.

Definition 7.3 (JAlgebraic] [ Completq Lattice)

A lattice (on A) is a reflexive ordering< (on A) where any predicat® (on A) with

dz,y. Vz. (P(z) & z=z V z=y) has an<-supremum and ag-infimum (in A).

A complete latticdon A) is a reflexive ordering< (on A) where any singulary predicate (ot)
has an<-supremum (in4).

An algebraic lattice(on A) is a complete lattice (o), where every element (ofl) is <-
compactly generated.

Corollary 7.4 Let < be a complete lattice oA C V. SetA’ := {a € A | ais <-compact}.
Letc € A. Thencis <-compactly generated iffc = sup={ac A’ | a < c}.

The following is a corollary of Lemma 2.2 and Corollary 2.13:

Corollary 7.5
A complete lattice is a lattice; and the dual of@mplet¢ lattice is a[complet¢ lattice.

Lemma 7.6 If < and=< are two complete lattices, ang::<—= is an order-isomorphism,

then
F(inf< X) = inf= ((X) f)
VX C field(<). ( A f(sup= X) = sup= ((X)f) )

Proof of Lemma7.6 Forz € X, we haver < sup< X. Thus, f(z) < f(sup= X). This
means thayf (sup= X) satisfies(sup 1) of Definition 2.1 for the supremum of\y. (y € (X) f).
It remains to show that it also satisfigsp 2). Thus, suppose that, for somewe havef(z) <y
forall z € X. As f is surjective orfield(<’), there is some € field(<) with y= f(z). Then
f(x) < f(2). Thenz <z forallz € X. Thensups X < z. Then f(sup= X) < f(z) =y,
as was to be shown. Q.e.d. (Lemma7.6)

Corollary 7.7 If <and= are two lattices, andf::<—= is an order-isomorphism, then

f(int={z, y}) = int={ /(). f(4)}
ve,y € feld(s). ( A FlsupS{z,y}) = sup={f(2), /() )

7yn
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8 Closure Operators

The following is based ofBurris & Sankappanavar, 1981, Chaptey3].

Definition 8.1 (Algebraic] Closure Operator)
An [algebraid closure operatois an [algebraic] monotonic class operatosatisfying
VXCV. ( X UC(C(X)) C C(X) ).

Remark 8.2 (Dual Closure Operator)
Note that the dual concept of a monotonic class opef@atsatisfying

VXCY. ( XNC'(C'(X)) 2 C"(X) )
does not seem to be needed at first glance, because we cafi’tumo a closure operatof’
simply by defining

C(X):=V\C'(V\X).

We make use of this trick in Definition 10.4 for the greatespdint operator, which would natu-
rally satisfy the dual concept. But cf. Remark 10.7.

Lemma 8.3 Let(' be a closure operator.
1. X is afixpoint ofC' iff X =C(Y) for someY C V.

2. For a predicateP’ holding only for classes (not necessarily fixpoints):

() C( UP(Z) C(2) ) = C( UP(Z)Z )
(b) C( mP(Z) C(Z) ) - ﬂP(Z) C(2).

Proof of Lemma 8.3

1: On the one hand, iX is a fixpoint of C, then X = C(X). On the other hand, we have
both C(C(Y)) C C(Y) and C(Y) C C(C(Y)), and thusC(Y) = C(C(Y)), i.e.C(Y) is

a fixpoint of C'.

2a“C™ For every classz’ with P(Z') we have Z' C Up, Z. By monotonicity
C(Z') € CUp2)- Thus UpC(Z') € C(Up %) By monotonicity

C(Upz) C(2) € C(C(Upz 2)) € CUpz) 2)-

2a*2" By extensiveness, we havE C C(Z) foreveryZ. Thus, Up, Z C Upz C(2).
By monotonicity C(Up ) Z2) € C(Up ) C(2)).

2b*“C": For every classZ’ with P(Z') we have (1, C(Z) C C(Z'). By monotonicity
CNpz C(2)) € C(C(Z") € C(Z"). Thus C((pz) C(Z)) € Npzn C(2).

2b“D". By extensiveness.

Q.e.d. (Lemma8.3)
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9 Fixpoint Lattices
As corollary from Lemma 8.3 we get:

Corollary 9.1 (Fixpoint Lattice)
The subclass relation restricted to the fixpoints of a clesyveratorC' forms a complete lattice,
where, for any predicat® holding only for such fixpoints,

s rC
infp ) X = Npx) X

sup]%(X)X = C( UP(X)X )
This lattice is called the fixpoint latticef C'.

and

Lemma 9.2 (Algebraic Fixpoint Lattice)
If C'is an algebraic closure operator, then the fixpoint lattide(dis an algebraic lattice and its
compact elements are precisely the finitely generated fixpdie. theC'(Y) with Y € P (V).

Proof of Lemma 9.2

Claim1:C({zy,...,x,}) is compact forn € N.
Proof of Claim 1:.Let us assume’({z1, ..., Zn}) C suppz C(2).
According to Lemma 8.3(2a), our assumption(§{z1, ..., 2, }) € C( Upz) Z ).
By Definition 8.1, for each € {1,...,m}, we have
{z:i} € C{ai}) € C{mn,- - 2m}) SC(Upz) 2 )
By Definition6.4, there is some finite seX; C Up, Z with z;€ C(X)). Thus

.....

.....

again and Lemma8.3(2a),C({z1,...,zm}) C C( Uiepn n}()( Useqt, o Zik ) ) -

..........

..........

SUDje(1, .}, ke(l,.o) C(Zix) and Vie{l,... ,n}. VK€ {l,... ,0;}. P(Z;)). This was to be

.....

shown according to Definition 7.1. Q.e.d. (Claim1)

Claim 2:For anyX C V we have C(X) = U,cqy (x) C(2) = SuPeqyx) C(2) -

Proof of Claim 2:The first equation is just the definition of an algebraic clggsrator, cf. Defi-
nition 6.4. The second follows by applying to both sides of the first equationC(X) =
C( C(X) ) = C( Usepnx) C(@) ) = sup,eqpx) C(x) by Definition8.1 and Corollary 9.1,
respectively. Q.e.d. (Claim2)

Claim 3:If C'(X) is compact, then it is finitely generated.

Proof of Claim 3:By Claim2, C'(X) = sup,cqpy(x) C(r). If C(X) is compact, then, by Defi-
nition 7.1, there is som& € Py (Pn (X)) with C(X) C sup,ey C(z) = C( Uyey z ) by
Corollary 9.1 and Lemma 8.3(2a). Q.e.d. (Claim 3)

By Claim 1 and Claim 3 the compact elements are preciselynitelff generated fixpoints. Thus,
according to Claim 2, Definitions 7.1 and 7.3, the fixpointi¢at of C' is an algebraic lattice.
Q.e.d. (Lemma9.2)
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Definition 9.3 (General-Closure, Compact-Closure, Algekaic-Closure)
Let < be a complete lattice oA C V. Let A’ :={a € A| ais <-compact}.

1. Thegeneral-closure operator ok is
C(X) = {yeA|y<sup=(XNA} W X\A

2. Thecompact-closure operator of is
C'(X) = {yeA|y<supS(XNA}w X\A.

3. Thealgebraic-closure operator oK is
C"X) = {yeA|y<sups(XNA)}w X\A4.

Corollary 9.4

Let < be a complete lattice oA C V. SetAd’ :={a € A| ais <-compact}.
Let C’ be the compact-closure operator ¢f.

Let C” be the algebraic-closure operator of.

Then, forX C A’, we haveC'(X) = C"(X).

Lemma 9.5

If <is a complete lattice oml C V, then the general-closure operator ¢&f is indeed a clo-
sure operator, and the compact-closure operator and thelaigic-closure operator oK are
algebraic closure operators.

Proof of Lemma9.5

SetA’ .= {a€ A| ais<-compact}. The general-closure operatét, the compact-closure
operatorC’, and the algebraic-closure operafdf of < are monotonic class operators by simple
inspection. Moreover, they are obviouslyextensive. Note that requirement of extensiveness
forces us to include&\ A or X'\ A’, respectively.

Claim1:We haveC(C(X)) C C(X), C'(C'(X)) C C'(X), and C"(C"(X)) C C"(X).
Proof of Claim 1: Forz € C(X)\ X, we havez < sup= (X N A). Thus,sup= (C(X)N A) <
sup= (X NA). Thus, C(C(X)) C C(X). Forzx € C'(X)\ X orz € C"(X) \ X, we
have z < sup= (X N A) or z < sup= (X N A’), respectively. Thussup= (C"(X)N A) <
supS (X N A) and sup= (C"(X)NA") < sup= (X NA). Thus, C'(C"(X)) C C'(X) and
C"(C"(X)) C C"(X). Q.e.d. (Claim 1)

Claim 2: C" andC"” are algebraic.

Proof of Claim 2: AssumeX C V, andz € C'(X) orz € C"(X), respectively. Then we
have to findY” € Py (X) such thatz € C'(Y) or = € C"(Y), respectively. Ifz € V\A/,
then we can tak& := {z}. Thus, we may assume € A’. Then we haver < sup= (X N A)

or z < sup= (X NA), respectively. Aseis <-compact (cf. Definition7.1), there must be
someY such thatY € Pu(X NA) or Y € Pu(X NA), resp.,, andx < sup=Y. Then

r < sups (Y NA) or x <sups (Y NA), respectively. Thenz € C'(Y) or z € C"(Y),
respectively. Q.e.d. (Claim2)

Q.e.d. (Lemma?9.5)
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By Corollary 9.1, every closure operator gives rise to a detepattice, namely to its fixpoint
lattice. By Lemma9.5, every complete lattice gives rise wasure operator, namely to its
general-closure operator. As the following lemma states,dlosure operator gives a represen-
tation of the original lattice up to isomorphism.

Lemma 9.6 (Complete Lattice = Fixpoint Lattice of General-Gosure)

Let < be a complete lattice oA C V. LetC be the general-closure operator &f.

Let < be the fixpoint lattice of” restricted to those fixpoints with Y C A.

Letf: A — PB(A) be given byf(a) := C({a}).

Thenf::<—= is an order-isomorphism with invers& — sup= X (X C A with C(X)=X).

Proof of Lemma 9.6

Firstly, we have to show that the restriction of the fixpoiattice of C' to those fixpointsy’
with Y C A is a complete lattice again. Indeed, it is actually a coneplstib-
lattice because, according to Corollary 9.1, f@rholding only for such fixpoints, we have
SUPI%(X) X = ClUpxyX) = {yeA ] y<sup=(UpxyX)NA) W (Upi) X\A

= {yed | y<sups(UppX)} < A Secondly, fora € A we have
fla) = C{a}) = {yeAly<suw=({a}NA)}w{a\4 =

{yeA | y<swp=({a})} = {yecA| y<a}.  Thus, we have sup=(f(a)) =

a, and f:A — field(=x) is bijective with the given inverse, and we obviously have
Vag,a1 € A. ( (ao < a1) < (f(ao) C f(ar)) ). Q.e.d. (Lemma?9.6)

By Lemma9.2, every algebraic closure operator gives risant@lgebraic lattice, namely to
its fixpoint lattice. By Lemma?9.5, every complete latticees rise to two algebraic closure
operators, namely to its compact-closure operator and talgebraic-closure operator. As the
following lemma states, each of these closure operatoessgivrepresentation of the original
lattice up to isomorphism, provided that this originalitztis actually algebraic.

Lemma 9.7 (Algebraic Lattice = Fixpoint Lattice of Compact-Closure)

Let < be an algebraic lattice oot C V. SetA’ :={a € A| ais <-compact}.
Let C’ be the compact-closure operator &f.

LetC” be the algebraic-closure operator ef.

Let < be the fixpoint lattice of’” restricted to those fixpoints with Y C A’.

1. <isidentical to the fixpoint lattice of”
restricted to those fixpoints with Y C A'.

2. Letf: A — P(A) be givenbyf(a) := C'({a}).
Then f::<—= is an order-isomorphism with inverse{ — sup=X (X C A’ with
C(X)=X).

Note that the reason for the compact-closure (or algelatasiire) operator in addition to the
general-closure operator is that — in general — the gersdoslire operator of an algebraic
lattice does not seem to be algebraic, and the compactrelasia complete but non-algebraic
lattice does not provide an isomorphism.
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Proof of Lemma9.7
By Corollary 9.4.

1:

2: Firstly, we have to show that the restriction of the fixpogttice of C’ to those fixpoints”
with Y C A’ is an algebraic lattice again. Indeed, it is actually a catgplsub-

lattice because, according to Corollary 9.1, f@rholding only for such fixpoints, we have

SupI%(X) X = CUpxyX) = {yed | y< sup= (Upxy X) N A) W (Upy XNA

= {yedA | y<sw(UpxX)} < A, Secondly, fora € A’ we have
fla) = C'({a}) = {yedA|y<suwp={a}nA)}w{a\Ad =
{yeA | y<sup=({a})} = {yedA | y<a}. Thus, ax is <-compactly generated,

we have sup= (f(a)) = a by Corollary7.4, andf : A — field(=) is bijective with the given
inverse, and we obviously havéug, a; € A. ( (ap < a1) < (f(a0) € flar)) ).
Q.e.d. (Lemma9.7)



55

10 Closure Operators from Monotonic Class Operators

Definition 10.1 (LC)
Theleast-fixpoint operatof.C maps any class operatdr to a class operatof.C(®) given by
LC(O)(X) == () Z for X CV.

Z2d(Z)uX

Lemma 10.2 If ¢ is a monotonic class operator, thér(®) is a closure operator which satis-
fies LC(®)(X) = ¢(LC(®)(X))U X forall X C V.

Proof of Lemma 10.2

Let @ be a monotonic class operator. Defingby @,(X)(Y) :=&(Y)U X. Thend,(X)isa
monotonic class operator as well, for evefyC V. Then, by Theorem 5.3 applied4,(X), we
get thatL.C(2)(X) is the least fixpoint of, (X ). Thus,LC(®) satisfies the equation stated in the
lemma. ThusLC(®) is extensive. Moreovel,C(2) is obviously a monotonic class operator.
It remains to showL.C(®)( LC(®)(X) ) € LC(¥)(X) for everyX C V. This means that we
have to showLC(®)( V ) € W for V := LC(®)(X) andW := LC(®)(X). This means to
show (o470 Z C© W. Forthis it again suffices to shoW” 2 ¢(W)UV. But W 2 (W)
has already been shown antd O V' is trivial. Q.e.d. (Lemma10.2)

Theorem 10.3
Let® be a monotonic class operator.
If @ is algebraic or if we assume the Axiom of Collection, then axetthe following:

1. If ¢ is set-continuous, thehC(¢®) is set-continuous, too.

2. If @ is algebraic, ther.C(?) is algebraic, too.

Proof of Theorem 10.3
Let @, be given as in the Proof of Lemma10.2. Assu& V anda € LC(®)(X). AsLC(®)
is @ monotonic class operator, by Corollary 6.3, we only htavend somer € B(X) (or even
r€Py(X)) with a € LC(P)(z). As @ is set-continuous (or even algebraid),(X) is set-
continuous (or even algebraic), too. ThusJ&§®)(X) is the least fixpoint oo, (X) by Lem-
ma 10.2 and Definition 10.1, according to Theorem 6.8, we hawd (root(—)) for a [finitely
branching] well-founded rooted graph—, [) with

Viedom(l). (1(i) € Bu(X)({ ()| i—j }) ).
Setx :=ran(l) N X. Then z€P(X) (or evenz € Py (X) by Corollary 6.7). By definition
of z and®, we have

Viedom(l). ((1(i) € Du(x){ 1) | i—3 }) ).
Thus, by Theorem 6.8 again, we hawes LC(®)(z) , indeed. Q.e.d. (Theorem 10.3)
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Definition 10.4 (GC)
Thegreatest-fixpoint operatozC maps any class operatdrto a class operatofzC(®) given
by GC(@)(X) == |J 2, where DGC(®)(X) :=V\ GC()(X), for X C V.

ZCH(ZN\X

Lemma 10.5 If ¢ is a monotonic class operator, th€éhC(&) satisfies
GC(P)(X) = P(GC(P)(X))\ X
forall X CV, andDGC(®) is a closure operator.

Proof of Lemma 10.5

Let ¢ be a monotonic class operator. Defihgby &\ (X)(Y) := @(Y) \ X. Thend\ (X)is a
monotonic class operator as well, for eveéfyC V. Then, by Theorem 5.3 applied4g (X), we
get thatGC(2)(X) is the greatest fixpoint @b, (X'). Thus,GC(®) satisfies the equation stated
in the lemma. ThudDGC(®) is extensive. Moreovef)GC(®) is obviously a monotonic class
operator. It remains to shoWwbGC(®)( DGC(2)(X) ) € DGC(9)(X) for everyX C V.
This means that we have to sha@C(®)( DGC(?)(X) ) 2 GC(®)(X). This means that we
have to showGC(®)( V ) 2 W for V := DGC(®)(X) andW := GC(®)(X). This means
to show U, c g2\ Z 2 W. For this it again suffices to show” C ¢(WW) \ V. By definition
of V andW, this meansiV C ¢(W)NW, i.e. W C (W), i.e. GC(P)(X) C &(GC(P)(X)),
which has already been shown. Q.e.d. (Lemma10.5)

There is no analog to Theorem 10.3 fo6GC(P):

Example 10.6 (Algebraic® with DGC(®) not even set-continuous)

For the algebraic closure operatbrof Example 6.11 the following holds: For all € B(V):
GC(P)(x) = O\z, i.e. DGC(P)(z) = z UV\O. But: GC(®){B€0O|2<p}) =10, ie.
DGC(®){ €O | 2=<5}) = V. This means thabGC(®) is not set-continuous because of
{0,1,2} € DGC@)({ BEO | 2<B N\ Usepyq sco 2«4 ) DEC@) ().

Remark 10.7 It is not too surprising that the greatest fixpoint of an algebclass operator
does not behave nicer than that of a set-continuous one Iteforém 6.9 and Example 6.11) as
is the case for the least fixpoint (cf. Theorem 6.8), becauserebably need something co-
algebraic for the greatest fixpoint. That the greatest-fixpoperator of a set-continuous class
operator is not set-continuous (cf. Example 10.6) conttarthe least-fixpoint closure operator
(cf. Theorem 10.3) may just mean that — contrary to what wagiemrin Remark 8.2 — we
nevertheless need the dual concept of a closure operatersiduld be investigated in the future.
What about you, Peter?
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Notes

Note 1 In [Forster, 200Bwe read:

“Quite early on QUINE added classes to NF to obtain a theory of sets-with-classes
known as ML. Inthe ZF context, adding classes is a natunagitto do, for it enables
one to reduce the infinite replacement scheme to a singlexsgence axiom: “the
image of a set in a class is a set” if augmented with suitalaleseéxistence axioms.
However, none of the axioms of NF refer to classes in the wayréplacement
scheme of ZF does, so there is nothing for the class existenioms to do. For this
reason ML is nowadays regarded as a pointless syntacticlmatipn of NF with

no new mathematics and is not the subject of any research.”

This argument does not count, however, regardin@fi@icationof class theories, where ML is
clearly preferable to NF, just as MK is clearly preferableNBG and ZF, simply because you
want to have an object for the extension of any predicatey gy@u later find out that that object
must be a proper class. This preference of class theorigsnoee set theories is especially
strong for this paper, because we want to work with the comsadrtheory of both ML and MK
in general, choose one the two only if necessary, and, mergdiscuss class operators.

Note 2 On afirst look, it may seem that there is a chance notékgas an elementary predicate
symbol, but tadefineit via the class constructor, say as

U:={z|-3Z. (Zex) N x#0}.

This definition has two weaknesses:

1. “=3Z. (Z € )" may actually be a slight overspecification.
2. To restrict all urelements to be element3/aiay actually be a slight overspecification.

3. This would force all urelements to receive the same nurdbang stratification, which
may actually be a slight overspecification.

4. More seriously, i 1.6, we present a procedure to eliminate the class constrirom
any given formula, where the elimination of exactly one glegsnstructor as an argument
of an=-atom has to introduce the symba@l” in an atomic formula of the formX € U/
" If we have to replacelf” with the definition suggested above, then this introduoes t
new class constructors. The outer one is no problem for threreltion procedure because
it occurs to the right of the symbok” The inner one results from the elimination of
the defined symbol@” and introduces ar=-atom exactly of the type that we wanted to
eliminate. Thus, the elimination procedure would loop anttarminate anymore. This
means that we have to accept at least onetdf, “(; and “{ x| A}" as elementary.
And our preference is definitely to tak&" as elementary.
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Note 3 “Ur” (speak: “oor” with “00” as in “boot”) is a German prefix wbh means “above the
current construction” (*hinauf’; “hinaus”), often also thithe temporal aspect of “being gener-
ated in advance” (Latinprimigeniug. Moreover this prefix means “original” (“ursinglich”),
and “not derived” (“unabgeleitet”). For instance, “Ur” e a grandmother (Grof3mutter) into
a great-grandmother (UrgroBmutter), and an ancestor (Alim)an ancestor whose ancestors
are unknown (Urahn). For more information on the semanti¢t)g, cf. [Grimm & Grimm,
1854ff., Vol. 24, p. 2356fi.

Note 4 As the lemma does not requireto be a reflexive ordering, a formal proof also stops us
from typical human errors. Thus, let us do it in the formatao#is of[Wirth, 2004:

Expanding the definitions we get
Vu. (Vy. (Vz. (P(z) = 2>y) = y<u) = u>s) = Va. ( Plx)=x>s),
and then
Vu. (Vy. (Vz. (P(z) = y<z) = y<u) = s<u) = Va. ( P(x)=s<z),
which reduces in an-, aé— -, and anothet-step to the sequent
“Vu. (Vy. (Vz. (P(2) = y<z) = y<u) = s<u ), —-P(z"), s<az’.
Restricting to a multiplicity ofi, a~y-step (setting: to ) reduces this to
—( Vy. (Vz. (P(2) = y<z) = y<a”) = s<z* ), —P(z"), s<a’.
A [(-step reduces this to the two sequents
Vy. (Vz. (P(z) = y<z) = y<z”), —-P(z"), s<a®
and sta®, =P(z7), s<a’.
The second sequent is a tautology, ard aand ana-step reduce the first sequent to
—Vz. (P(2) =y <2), y"<z”, —P(z"), s<z®
and ay- and ag-step reduce this to the two tautologies
P(z™), y" <z, —=P(z%), s<z”
y g, Yy <a®, —P(z%), s<z’.
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