
Flexible heuristics for simplification
with conditional lemmas by marking
formulas as forbidden, mandatory,
obligatory, and generous

Tobias Schmidt-Samoa

FB Informatik
Technische Universität Kaiserslautern
Postfach 3049
67653 Kaiserslautern (Germany)

schmidt@informatik.uni-kl.de

ABSTRACT.Due to its practical importance, context-dependent simplification of goals withcon-
ditional lemmas has been studied for three decades, mostly under the label of “contextual
rewriting”. We present a flexible framework for controllingthe recursive relief of conditions
by marking formulas in goals and lemmas. Within this framework, by marking goal formulas
as forbidden, we can simulate and improve the well-known approaches ofcontextual rewriting
and case rewriting. Furthermore, we develop novel heuristics which may mark goal formulas
as mandatoryand lemma formulas asobligatoryor generous. Our case studies in the field of
rewrite-based inductive theorem proving are encouraging.

KEYWORDS:conditional lemmas, case rewriting, contextual rewriting, heuristics, markings.

1. Introduction

In this paper, we present a flexible framework for guiding proof search with mark-
ings. Because of the novelty of our approach, we present manymotivating examples
and skip some of the technical details. We concentrate on onespecial application
domain, namely, equality-based inductive theorem provingin clausal first-order logic
with implicitly universally quantified variables using atoms over the following pre-
defined predicate symbols:equality atoms(symbol=), definedness atoms(def) to
establish the domain of partially defined operators, andorder atoms(<) to explicitly
represent order constraints in a fixed wellfounded order. Wepresent the examples
within our inductive theorem prover QUODL IBET [AVE 03]. Nevertheless, our ap-
proach is in principle widely applicable. We will comment onthis topic in Section 5.

Journal of Applied Non-Classical Logics.Volume 16 – No. 1-2/2006, pages 209 to 239



210 JANCL – 16/2006. Implementation of logics

When performing (mutual) inductive proofs for lemmasϕ1, . . . , ϕn with a rewrite-
based theorem prover, there are at least three important tasks:

1) finding appropriate inductive case splits;

2) speculating appropriate auxiliary lemmas;

3) simplifying the goals from Task 1 to valid formulas using the lemmas from
Task 2 and possibly smaller instances ofϕ1, . . . , ϕn as induction hypotheses.

Task 3 provides the best chances for automation. Since the simplification process may
be very time-consuming, automation has to be done carefully. Most work during the
simplification process is caused by the application of (conditional) lemmas. In our
case studies, they cause at least 50% of all proof steps. The process for applying a
lemma can be divided into two steps: choosing a lemma; and checking the lemma for
applicability and relieving its conditions. The first step can be supported by rippling
techniques [BUN 93]. Therelief testduring the second step has to be done by recur-
sively calling the simplification process. We will present anovelextensivebutefficient
relief test. By “extensive”, we mean that the test should notfail too often if the lemma
application may contribute to the proof (cf. Section 3).

1.1. Simplification with conditional lemmas

To perform proofs of lemmas, we use a sequent calculus, wherethe sequents
are just lists of literals, i.e. justclauses. We apply the inference rules reductively:
Each inference rule reduces a goal (conclusion) to a (possibly empty) list of subgoals
(premises). Roughly speaking, a goal consists of a clause. Consider the application
of a lemma to rewrite a subterm of a goal literal by replacing the left-hand side of an
equation in the lemma by its right-hand side. More precisely, a clause{l1, . . . , ln}
can be interpreted as an implicationl1 ∧ · · · ∧ ln−1 ⇒ ln, wherel is the conjugate
(classical negation) ofl. A lemma is calledconditional if n>1. As in [ZHA 95],
we fix one literal in the lemma clause by calling it thehead literal; the conjugates of
the other literals are calledcondition literals. For each inference step, we also fix one
literal in the goal clause, calledfocus literal; the conjugates of the other literals are
calledcontext literals. The head literal of a lemma may be applied for proving a goal
if the condition literals can be proved valid in the “context”. According to [BOY 88],
we have to relieve the conditions.

More precisely,rewriting of a goal clause with a lemma clause instantiated by a
substitutionσ is only possible if the head literal of the lemma is an equation s = t

(or t = s) andsσ is equal to a subterm of the focus literal of the goal clause. The sub-
term is then replaced withtσ resulting in arewrite subgoal. To relieve the conditions,
for each instantiated condition literal, acondition subgoalis created that essentially
extends the original goal by the instantiated condition literal.1 If an instantiated con-

1. If we use partially defined operators or apply a lemma as induction hypothesis, additional
definednessandorder subgoalshave to be created.



Heuristics for conditional lemmas 211

dition literal is equal to a context literal2 we say that it isdirectly fulfilled in the goal
and the context literal is called acut-off literalas it cuts off the subgoal that otherwise
would have to be created for the condition literal. A lemma isdirectly applicableto a
goal if all condition literals are directly fulfilled in the goal. Following [GEN 35], lit-
erals of a goal clause are calledprincipal in an application of an inference rule if their
presence (in the conclusion) is required for the applicability of this inference rule. In a
rewrite step, the principal literals are the focus literal and the cut-off literals. A lemma
may also be applied forsubsumptionprovided that the head literal matches the focus
literal. The application results in the same subgoals without the rewrite subgoal.

In general, the relief test for a condition subgoal is performed by a recursive call
of the simplification process. Thus, the extent and efficiency of the test depend on the
simplification process. Various simplification processes differ e.g. in the way they use
equality information.NQTHM [BOY 88] andACL2 [KAU 00] use the cross fertilization
technique whileRRL [ZHA 95] uses a constant congruence closure algorithm. InRDL
[ARM 03], decision procedures can be used by the simplification process.

1.2. Flexible control with markings

The elements in the goals that can be used during the relief test have to be restricted
since the condition subgoals contain the original goal. Thus, without restrictions the
relief test may result in an infinite process: the lemma can beapplied to the condition
subgoals over and over again. We concentrate on the questionwhichelements can be
used during the relief test.

Practically, there are two major ways to restrict proof steps that may be used during
the relief test by marking elements in the goals:

1) In previous approaches known from the literature such as Contextual Rewriting
in [ZHA 95] and Case Rewriting in [BOU 93], elements are excluded from certain
condition subgoals. In the original approaches, excluded elements are completely
eliminated from the subgoals resulting inunsafeapplications, i.e. we may derive in-
valid goals by applying valid lemmas to valid goals. We may model these approaches
in a safe way by justmarkingexcluded elements asforbidden, instead of eliminating
them from the subgoals. The meaning is that a forbidden element in a goal must not
be principal in the application of an inference rule.

2) We propose a novel, alternative approach by marking elements in goals as
mandatory: If we apply an inference rule to a goal, one of the mandatory elements
must be principal. With a mandatory marking we may favor those proof steps that
locally contribute to the proof.

By marking elements as mandatory instead of forbidden, we overcome some difficul-
ties of previous approaches [ZHA 95, BOU 93]: As we can use every element dur-

2. Instead of using only pure syntactic equality, we first perform some additional normalizing
transformations on the literals.



212 JANCL – 16/2006. Implementation of logics

ing the relief test provided that there is also one mandatoryelement involved, we can
achieve a more extensive relief test. Furthermore, we develop techniques to restrict the
relief test in a user-defined way withobligatoryandgenerousmarkings in the lemmas
to achieve the right balance between efficiency and extent. Our flexible framework
allows us to combine the different markings in an arbitrary way.

For our heuristics, we assume that a goal can be divided into three parts w.r.t. the
inference rule applied as presented for rewriting in Section 1.1: An inference rule
is applicable to a goal if it contains theprincipal part for the application. The other
elements form thecontext.3 Whereas the principal part may be modified in an arbitrary
way—new elements may be added, old elements may be changed orremoved—the
context is passively inherited to the new subgoals. Within the principal part we may
identify some elements ascut-off elements. These elements are passively inherited
just like the context but they may cut-off some of the subgoals that otherwise would
have to be created. Therefore, the number of subgoals resulting from the application
depends on the cut-off part. Instead of confusing the readerwith formal definitions of
these concepts, we will exemplify this partitioning of goals in Section 2.1 with further
inference rules.

The influence of the markings in the goals on proof search can be defined in two
steps:

1) we restrict the proof stepsI that can be applied to a goalG according to the
markings and the partitioning of goalG into principal part, cut-off part and context
w.r.t. I;

2) we define the markings for the new subgoals.

Whereas we fix Step 1, the inheritance procedure in Step 2 may be realized in dif-
ferent ways. Step 2 may also be influenced manually. Therefore, we get a flexible
mechanism to restrict proof search.

1.3. Organization of the paper

In Section 2, we exemplify the partitioning of goals w.r.t. the inference rule ap-
plied and present a simple example illustrating the advantages of our novel heuristics
based on a mandatory marking in comparison to previous approaches based on a for-
bidden marking. In Section 3, we motivate, describe and illustrate our heuristics based
on markings. For each heuristics, we identify proof patterns that cannot be handled
with this heuristics. For our novel heuristics based on a mandatory marking, we can
solve these problems at the expense of additional auxiliarylemmas or by using a gen-
erous marking which extends proof search. We compare the different heuristics in
Section 4. There, we also provide evidence for the adequacy of our modeling of Con-
textual Rewriting with a forbidden marking. We conclude in Section 5.

3. Note that the partitioning of goals into principal part andcontext here slightly differs from
the classification into focus and context literals in Section 1.1.



Heuristics for conditional lemmas 213

2. A simple example

Originally, we have developed our heuristics for the inductive theorem prover
QUODL IBET [AVE 03]. Therefore, we illustrate our approach with QUODL IBET.
Nevertheless, it can be easily applied to other sequent based theorem provers as well.

QUODL IBET admitspartial definitions of operators overfree constructorsusing
(possibly non-terminating) positive/negative-conditional equations as well ascon-
structor, destructor, andmutual recursion. Inductive validityis defined as validity
in the class of so-calleddata models, the models that do not equalize any different
constructor ground terms.

2.1. Partitioning of goals into principal part, cut-off part, and context

We illustrate the partitioning of goals into principal part, cut-off part, and context
with those inference rules of QUODL IBET that are used in the examples within this
paper. A formal treatment of these concepts in connection with pruning proof trees and
reusing proofs can be found in [SCH 06]. We identify the principal and cut-off part of
the goals. The context is given as those elements in the goal that are not principal. We
do not present a formal definition of the inference rules but only give some intuition
about their typical usage and semantics.ompl-lit can be applied to a goalG if G contains a literall and its conjugatel. In

this case, no new subgoals are created as the goal is valid dueto complementary
literals. The complementary literalsl andl are principal for the application. For
this inference rule, there exist no cut-off literals.

=-deomp can be applied to a goalG if G contains an equations = t such that
the toplevel symbols ofs andt are identical. Therefore, the equations = t is
principal for the application. Lets1, . . . , sn (resp. t1, . . . , tn) be the subterms
of s (resp. t) at the minimal positions wheres andt differ.4 To proves = t,
it suffices to provesi = ti for eachi ∈ {1, . . . , n}. Therefore, we apply the
following for eachi ∈ {1, . . . , n}: If si 6= ti is present inG, thensi 6= ti is a
cut-off literal for the application as it prevents the creation of the new subgoal
for si = ti (due to complementary literals). Otherwise, we generate one new
subgoal addingsi = ti to the original goal.

If s and t are identical, no new subgoals will be created. This is the typical
usage of the inference rule.

6=-unif can be applied to a goalG if G contains a negated equations 6= t ands

andt are unifiable constructor terms. Therefore, the equations 6= t is principal
for the application. For this inference rule, there exist nocut-off literals. Let

4. We may restrict the depth of the difference positions considered with a parameter of the
inference rule.



214 JANCL – 16/2006. Implementation of logics

σ be the most general unifier ofs andt. The inference rule generates one new
subgoal removing the principal literals 6= t from G and instantiating all other
literals with substitutionσ. The validity of the new subgoal entails the validity
of the original goalG because for the instances that are not covered byσ, the
negated equations 6= t holds true.

Note that we only classifys 6= t as principal for the application. All other
literals are modified in a uniform way with substitutionσ but the applicability
of the inference rule does not depend on these literals.

2.2. An example proof

The following example presents a proof pattern that can be handled by our novel
heuristics but cannot be proved by previous approaches suchas Contextual and Case
Rewriting summarized in Section 3.3. It is taken from our case study that the great-
est common divisor (gd) of two natural numbers is idempotent, commutative and
associative (at least if the numbers are not zero).

EXAMPLE 1. — Let the specification consist of two sorts:Bool for the boolean
values with constructorstrue andfalse; Nat representing the natural numbers with
constructors0 for zero ands for the successor function. We consider the defined
operators+, *, -, div, gd,leq anddiv-p that represent the corresponding arithmetic
operations on natural numbers, a less-or-equal and a divisibility predicate on natural
numbers. We consider the formal specification ofgd only, given by Axioms (1)
to (4). Thegd of two natural numbers is defined if at least one of its arguments
is not zero. If exactly one of the arguments is not zero this argument is the result
of the operation. Otherwise, we recursively callgd with the smaller argument and
the difference of greater and smaller argument which ensures that the definition is
terminating.

(1) {gd(x , y) = x , y 6= 0, x = 0 }

(2) {gd(x , y) = y , x 6= 0, y = 0 }

(3) {gd(x , y) = gd(x , -(y , x)), leq(x , y) 6= true, x = 0, y = 0 }

(4) {gd(x , y) = gd(-(x , y), y), leq(x , y) = true, ¬def leq(x , y), x = 0, y = 0 }

As auxiliary lemma for the associativity ofgd, we want to prove the following lemma
on divisibility:

(5) {div-p(gd(x , y), z) = true, div-p(x , z) 6= true, x = 0 }

We assume that the following lemmas are activated for automatic applications:

(6) {def gd(x , y), x = 0 }

(7) {div-p(gd(x , y), x) = true, y = 0 }

(8) {div-p(x , z) = true, div-p(x , y) 6= true, div-p(y , z) 6= true }

For each of the axioms and lemmas, we choose the first literal as head literal for the
following reasons:



Heuristics for conditional lemmas 215

– The axioms define operatorgd using the first literal as rewrite rule from left to
right.

– Lemma (6) contains a definedness atom as first literal. Due toour monotonic
semantics based on data models, we cannot prove negated definedness literals as focus
literals. Therefore, the definedness atom should be presentin the goal the lemma is
applied to. Such a lemma is called adomainlemma as it establishes the domain of a
(partial) operator.

– In Lemma (7), the left-hand side of the first literal is the only term that binds all
variables of the lemma.

– In Lemma (8), the first literal is the positive literal in a Horn clause.

{ div-p(gd(x , y), z ) = true , div-p(x , z ) 6= true , x = 0 }lemma-rewrite (8)

{ def gd(x , y) ,div-p(gd(x , y), z ) = true,div-p(x , z ) 6= true,
x = 0 }lemma-subs (6)

{ div-p(gd(x , y), x ) = true ,

¬def gd(x , y) ,div-p(gd(x , y), z ) = true,div-p(x , z ) 6= true,
x = 0 }lemma-rewrite (7)

{ y 6= 0 , div-p(gd(x , y), x ) = true, ¬def gd(x , y),div-p(gd(x , y), z ) = true, div-p(x , z ) 6= true, x = 0 }axiom-rewrite (1)

{ y 6= 0 , div-p(x , x ) = true , ¬def gd(x , y),div-p(gd(x , y), z ) = true, div-p(x , z ) 6= true, x = 0 }axiom-rewrite (1)

{ y 6= 0 , div-p(x , x ) = true , ¬def gd(x , y),div-p(x , z ) = true , div-p(x , z ) 6= true, x = 0 }ompl-lit

{ y = 0 , true = true ,

¬def gd(x , y) , div-p(gd(x , y), z ) = true,div-p(x , z ) 6= true, x = 0 }
=-deomp

{ div-p(gd(x , y), x ) 6= true ,

¬def gd(x , y) ,true = true ,div-p(x , z ) 6= true ,

x = 0 }
=-deomp

Figure 1. Proof state tree for Goal(5) of Example 1

Figure 1 contains the whole proof state tree for Goal (5) as itis created by our novel
heuristics. A proof state tree consists of goal and inference nodes representing the ap-
plication of inference rules. The root goal node consists ofthe conjecture to be proved
and is displayed at the top of the proof state tree. The root goal node is rewritten by
the conditional Lemma (8) using the substitution[x ← gd(x , y), z ← z , y ← x ].
The substitution can be determined by using the first literalof the root goal as focus
literal and matching the head literal to the focus literal. The uninstantiatedextravari-



216 JANCL – 16/2006. Implementation of logics

abley can be bound by matching the third lemma literal to the secondgoal literal
(cf. Section 3.6). Then, the third lemma literal isdirectly fulfilledby the second goal
literal which itself is acut-off literal. Thus, the first two goal literals areprincipal
for the application. In Figure 1, principal literals are underlined and mandatory lit-
erals are framed. Our novel heuristics applies an inferencerule automatically only
if one of the principal literals is also mandatory, i.e. if one of the underlined literals
is also framed. The application results in three new subgoals (from left to right):5

onedefinedness subgoal(since the substitution binds a constructor variable to a non-
constructor term), onecondition subgoaland onerewrite subgoal. As there is a condi-
tion subgoal, the lemma is notdirectly applicable. The definedness subgoal is proved
by a direct application of Lemma (6) for subsumption. Rewriting the condition sub-
goal with Lemma (7) leads to another condition subgoal. For its proof we rewrite the
second and fourth literal with Axiom (1). Note that these literals have been the focus
literals of the previous lemma applications that have generated the considered condi-
tion subgoal. Thus, these applications are possible only with our novel heuristics (cf.
Section 3). Altogether, we get aclosedproof state tree, i.e. a proof state tree whose
leaves are inference nodes. Therefore, Lemma (5) is inductively valid provided that
this holds true for the applied lemmas. We call such a closed proof state tree just a
proof. 2

3. Controlling the application of conditional lemmas

Lemmas are provided to guide the proof process. On the one hand, they should
be applied automatically as far as possible6 to free the user from routine work. On
the other hand, heuristics have to control the applicationsto guarantee the termination
of the process within a reasonable amount of time. Thus, we have to find the right
balance between extent and efficiency.

We essentially restrict proof search with markings in goalsand lemmas (cf. Sec-
tions 3.2 to 3.5). Our novel heuristics based on a mandatory marking is inspired by
the contribution of proof steps which we define in Section 3.1. To get a practicable
method, we adapt additional heuristics known from the literature—in particular those
presented in [BOY 88]. We summarize these heuristics in Section 3.6.

Note that, in general, in our domain neither confluence nor termination properties
can be assumed for rewriting with lemmas (cf. Example 21). Therefore, heuristics
based on wellfounded orders are not always applicable. If applicable, these heuristics
may be combined with our marking techniques.

5. This order is relevant insofar as we maximally downfold thedefinedness literals, the con-
dition literals, and the rewrite literalsσ 6= tσ to the right, i.e. enhance the subgoals to the right
with the negation of these literals to the left.
6. at least if they may contribute to the proof (cf. Section 3.1)



Heuristics for conditional lemmas 217

3.1. Contributing proof steps and elements

Analyzing a performed proof, aproof step(i.e. the application of an inference rule)
maycontributeto a proof for a goal in two ways: Firstly, no new subgoals are created
at all; thus, the goal is proved. Secondly, each subgoal contains new information in
the form of new (i.e. added or changed) literals that are needed for the proof (i.e.
become principal in a further contributing proof step). Otherwise, the proof step is
non-contributingand can be eliminated: If one subgoal can be proved without using
one of the new literals, this proof can also be used for the original goal.

DEFINITION 2 (CONTRIBUTING PROOF STEPS / ELEMENTS). — A proof stepI
of a proofP for goal G contributesto P if every direct subgoalSG created byI
contains a new element that contributes to the proof forSG in P . An element of a
goalG contributesto proofP for G if it becomes principal for one contributing proof
stepI of P .

In Example 1, the only non-contributing proof step is the first application of Ax-
iom (1) to rewrite the second literal. Indeed, this literal—the only new one—does not
contribute to the proof for its subgoal.

The notion of contribution can be used for pruning proof trees by eliminating non-
contributing proof steps. Thereby, we can

– get simpler proofs;

– determine superfluous literals in a goal that do not contribute to the proof;

– enhance the reusability of a proof by focusing on contributing literals.

For a detailed discussion on these topics and a more involvedbottom-up definition of
a logically stronger notion of contribution, we refer to [SCH 06].

The notion of contribution captures what we want but cannot be directly exploited
for proof search: As contribution of a proof step depends on the proof performed, it
can becheckedonly after the proof has been completed. But we can easilyensure
that we perform only contributing proof steps by using one ofthe new elements as
principal element in thenextproof step.

DEFINITION 3 (LOCALLY CONTRIBUTING PROOF STEPS / ELEMENTS). — A
proof stepI in a proof P for a goalG locally contributesto P if every direct sub-
goalSG created byI contains a new element that becomes principal in the proof step
performed forSG in P .

LEMMA 4. — If every proof step in a proofP locally contributes toP , then every
proof step contributes toP .

PROOF. — This is proved immediately by structural induction on proof trees. ■

Note that, in general, a proof step does not have to be contributing even if it is
locally contributing, because the new elements may become principal only in non-
contributing proof steps.



218 JANCL – 16/2006. Implementation of logics

As we will see, this strict usage of local contribution is toorestrictive for guiding
proof search. It excludes too many proofs in which all proof steps are contributing but
some of them do not contribute locally.

3.2. Novel heuristics based on mandatory markings in goals

We aim at avoiding non-contributing proof steps. To be able to define local restric-
tions on proof steps in a flexible way, we introduce a mandatory marking in goals.

RESTRICTION5 (CAUSED BY MANDATORY MARKING). — An inference rule may
be applied to a goalG with a mandatory markingonly if one of the mandatory ele-
ments is principal in the proof step applied toG. 2

If we mark only new elements in a subgoal as mandatory in a proof, it is ensured
that all proof steps (locally) contribute to that proof. Butthen, the proof search is too
restricted. It will find only “linear” proofs: We can apply only those inference rules
that also use new elements introduced by the previous proof step. For a successful
proof, however, it may be necessary to apply inference rules“in parallel” that are not
linearizable. Such proofs are impossible with this strict usage of a mandatory marking
as the following example illustrates.

EXAMPLE 6. — Given three boolean valued constantsp1, p2, p3, we assume the
activation of Lemmas (9) and (10) and want to prove Goal (11)

(9) {p1 = p3 } (10) {p2 = p3 } (11) {p1 = true, p2 6= true }

To prevent trivial loops we use equations for rewriting justin one direction. We present
our examples in such a way that equations are always applied for rewriting from left
to right. Therefore, the only way to prove Goal (11) is to rewrite p1 andp2 to p3.
Then the resulting subgoal is tautological as it contains complementary literals. But
if we mark only new elements as mandatory, this proof is prohibited since the second
rewrite step does not use a new element. 2

Alternatively, if all elements of subgoals are marked as mandatory, the marking
has no effect and the search space contains too many proof steps that do not contribute
to the proof. Our compromise results in the following default heuristics which can be
fine-tuned with agenerousmarking in the lemmas as explained in Section 3.5:

HEURISTICS7 (FOR MARKING ELEMENTS AS MANDATORY). — At the beginning
of a proof attempt for a lemma every element in the clause is marked as mandatory.
Thus, there are no restrictions for performing proof steps.

For applicability subgoals—i.e. definedness or condition subgoals of applicative
inference rules—the marking of the parent goal is not inherited to the subgoal, but a
new set of mandatory elements is introduced that consists exactly of the new elements
of the subgoal. With thisstrict marking heuristics, it is guaranteed that one of the new
definedness or condition literals is used in the next proof step.



Heuristics for conditional lemmas 219

For order subgoals, we mark only the single new order atom as mandatory. In this
case, the proof has to proceed by treating the order atom.

For all other subgoals—i.e. rewrite subgoals or subgoals created by other infer-
ence rules—the mandatory elements of the parent goal stay mandatory in the subgoal
(unless they are deleted) and are supplemented with all new elements of the subgoal.
Thus, we use arelaxedmarking heuristics. We can perform rewrite steps even if they
do not contribute to the proof. This is helpful for the speculation of auxiliary lemmas.

2

EXAMPLE 8 (1 CONTINUED). — In Figure 1, mandatory literals are framed, princi-
pal literals are underlined. Thus, we can apply an inferencerule only if at least one of
the underlined literals is also framed.

The proof starts at the root goal node with all literals marked as mandatory. After
applying Lemma (8), the resulting definedness subgoal has one mandatory literal—
the first one—that is handled by the following subsumption with Lemma (6). The
mandatory literals of the condition subgoal—the second subgoal—are the first two
literals. Note that the repeated application of Lemma (8) isprevented as none of its
principal literals is mandatory anymore. Instead, the firstliteral is handled by the
following rewrite step with Lemma (7), that introduces the first literal as the only
mandatory literal for the new condition subgoal. This single mandatory literal is used
in the rewrite step with Axiom (1). As this inference rule modifies the second literal of
the resulting rewrite subgoal, it is added to the set of mandatory literals. Analogously,
literal four is added to this set after the next rewrite step with Axiom (1). Finally,
the inference ruleompl-lit can be applied to the rewritten subgoal although not
both literals are mandatory. It suffices that one mandatory literal is principal for the
application. Note that all literals in the rewrite subgoal of the application of Lemma (8)
are mandatory since the goal is not an applicability subgoal(cf. Heuristics 7). This
is justified by the fact that an infinite loop of the same lemma application is already
avoided because the original goal is not contained in the newsubgoal. The relaxed
mandatory markings heuristics for rewrite subgoals is, forinstance, required for the
second application of Axiom (1): Otherwise,y 6= 0 would not stay mandatory after
the first rewrite step with Axiom (1) and the second application would not obey the
restrictions caused by the mandatory marking. 2

EXAMPLE 9. — As another example, we consider the defined operatorsless and+,
given by the following axioms:

(12) { less(0, s(y)) = true }

(13) { less(x , 0) = false }

(14) { less(s(x), s(y)) = less(x , y) }

(15) { +(x , 0) = x }

(16) { +(x , s(y)) = s(+(x , y)) }

Given the additional lemmas
(17) {def +(x , y) }

(18) {less(x , +(x , y)) = true,
y = 0 }

(19) {less(x , z) = true,less(x , y) 6= true,less(y , z) 6= true }



220 JANCL – 16/2006. Implementation of logics

we want to prove the inductive validity of the following goalby simplification:

(20) { less(x , +(y , z)) = true, less(x , y) 6= true }

For each of the axioms and lemmas, we choose the first literal as head literal for the
following reasons: The axioms define operatorsless and+ using the first literal as
rewrite rule from left to right. In Lemma (18), the left-handside of the first literal is
the only term that binds all variables of the lemma. In Lemma (19), the first literal is
the positive literal in a Horn clause.

{ less(x , +(y, z )) = true ,less(x , y) 6= true }lemma-rewrite (19)

{ def +(y, z ) ,less(x , +(y, z )) = true,less(x , y) 6= true }lemma-subs (17)

{ less(y, +(y, z )) = true ,

¬def +(y, z ) ,less(x , +(y, z )) = true,less(x , y) 6= true }lemma-rewrite (18)

{ z 6= 0 , less(y, +(y, z )) = true, ¬def +(y, z ),less(x , +(y, z )) = true, less(x , y) 6= true }
6=-unif

{ less(y, +(y, 0)) = true , ¬def +(y, 0) , less(x , +(y, 0)) = true , less(x , y) 6= true }axiom-rewrite (15)

{ less(y, y) = true , ¬def +(y, 0) , less(x , +(y, 0)) = true , less(x , y) 6= true }axiom-rewrite (15)

{ less(y, y) = true , ¬def +(y, 0) , less(x , y) = true , less(x , y) 6= true }ompl-lit

{ z = 0 , true = true , ¬def +(y, z ) ,less(x , +(y, z )) = true, less(x , y) 6= true }
=-deomp

{ less(y, +(y, z )) 6= true ,

¬def +(y, z ) ,true = true ,less(x , y) 6= true }
=-deomp

Figure 2. Proof state tree for Goal(20)of Example 9

Figure 2 contains the whole proof state tree for Goal (20) as it is created by our
novel heuristics with a mandatory marking. Again, mandatory literals are framed,
principal literals are underlined.

The proof starts at the root goal node with all literals marked as mandatory. The
root goal node is rewritten by the conditional Lemma (19) using the substitution
[z ← +(y, z )]. The substitution can be determined by using the first literal of the
root goal as focus literal and matching the head literal to the focus literal. The second
lemma literal is directly fulfilled by the second goal literal (binding the extra variable
y to itself). The application results in three new subgoals (from left to right): one
definedness subgoal, one condition subgoal and one rewrite subgoal. The definedness



Heuristics for conditional lemmas 221

subgoal has one mandatory literal—the first one—that is handled by the following
subsumption with Lemma (17). The mandatory literals of the condition subgoal are
the first two literals. Note that these mandatory literals prevent the repeated appli-
cation of Lemma (19). Instead, the first literal is handled bythe following rewrite
step with Lemma (18), that introduces the first literal as theonly mandatory literal
for the new condition subgoal. This single mandatory literal is used by the inference
rule 6=-unif. As this inference rule modifies the first three literals of the resulting
subgoal, they become the mandatory literals. The followingrewrite steps do not al-
ter the sets of mandatory literals as we do not start new sets for rewrite goals. This
results in one rewrite step that does not contribute to the proof. Finally, the inference
ruleompl-lit can be applied to the rewritten subgoal although not both literals are
mandatory. It suffices that one mandatory literal is principal for the application. 2

Examples 8 and 9 contain a basic proof pattern that cannot be proved with Contex-
tual Rewriting (cf. Section 3.3.1) but with our novel heuristics. This proof pattern is
illustrated in Example 10 in an abstract way. We use it for comparing our novel heuris-
tics (cf. Figure 3a described in Example 10) with ContextualRewriting (cf. Figure 3b
described in Example 15) and Case Rewriting according to [BOU 93] (cf. Figure 3c
described in Example 17).

EXAMPLE 10 ([ZHA 95], SIMPLIFIED). — Given three boolean valued constantsq1, q2, q3, we assume the activation of the following lemmas

(21) {q1 = true,q2 6= true }
(22) {q1 = true,q3 6= true }

(23) {q2 = true,q3 = true }

and want to prove the goal

(24) {q1 = true }

As Lemmas (21) and (22) are Horn clauses we use the first literal as head literal.
Lemma (23) does not suggest a head literal itself. We may use an arbitrary one or
both literals. Due to efficiency considerations and as the lemmas are symmetric inq2
andq3, we decide to choose just the first one.

Using a mandatory marking, the proof is found automatically(cf. Figure 3a). In
the condition subgoal after applying Lemma (23), literalq1 = true can be used as
focus literal to rewriteq1 to true although this literal is not mandatory. This can be
done since the condition literal of the applied lemma is mandatory. 2

For an extensive relief test, the following property would be useful: If a goal can
be proved by simplification without any restrictions on the elements that can be used
then it can also be proved obeying the restrictions caused bya mandatory marking.
Unfortunately, this strong property does not hold as will beshown in Example 11, a
simple generalization of Example 10.

The interaction of head literals in lemma clauses and mandatory literals in goal
clauses restricts the search space of the simplification process very much: In most
cases, a lemma will be applied to a goal only if the head literal of the lemma is manda-
tory in the goal. The proof step then transfers the mandatorymarking from the head



222 JANCL – 16/2006. Implementation of logics

a) Rewriting with Mandatory Literals

{ q1 = true }lemma-rewrite (21)

{ q2 = true ,q1 = true }lemma-rewrite (23)

{ q3 6= true ,q2 = true,q1 = true }lemma-rewrite (22)

{ q3 6= true ,q2 = true,true = true }
=-deomp

{ q3 = true ,true = true ,q1 = true }
=-deomp

{ q2 6= true ,true = true }
=-deomp

b) Modeling Contextual Rewriting

{q1 = true }lemma-rewrite (21)

{q2 = true,q1 = true }lemma-rewrite (23)

{q3 6= true,q2 = true,q1 = true } {q3 = true,true = true,q1 = true }
=-deomp

{q2 6= true,true = true }
=-deomp

c) Modeling Case Rewriting of [BOU 93]

{q1 = true }lemma-rewrite (21)

{q2 = true,q1 = true }lemma-rewrite (22)

{q3 = true,q2 = true,q1 = true }lemma-subs (23)

{q3 6= true,q2 = true,true = true }
=-deomp

{q2 6= true,true = true }
=-deomp

Figure 3. Proof state trees for Example 10



Heuristics for conditional lemmas 223

literal to its condition literals. This direction can be inverted automatically only if the
gap between the head literal and one of the condition literals can be closed in one step
within the goal clause, i.e. if one condition literal is a mandatory literal of the goal
clause as in Example 10. Otherwise, we have to use auxiliary lemmas to bridge the
gap.

EXAMPLE 11. — Given five boolean valued constantsr1, . . . , r5, we assume the
activation of the following lemmas

(25) {r1 = true,r2 6= true }

(26) {r1 = true,r3 6= true }

(27) {r2 = true,r4 6= true }

(28) {r3 = true,r5 6= true }

(29) {r4 = true,r5 = true }

and want to prove the goal

(30) {r1 = true } r1 = truer2 = true r3 = truer4 = true r5 = true∨

∨

Figure 4. Illustration of Example 11

The specification is illustrated in Figure 4 by solid lines. We assume that the first
literal is used as head literal for each lemma. There is a gap of two steps e.g. betweenr1 = true andr5 = true that cannot be closed automatically. Using the mandatory
markings heuristics, our automatic proof control performstwo proof attempts which
are illustrated in Figure 5. None of the lemmas can be appliedto one of the two
open goals without violating the restrictions caused by themandatory marking. In the
open goal of the first proof attempt, for instance, only literal r5 = true is marked as
mandatory. Therefore, the only way to obey the restriction caused by the mandatory
marking would be to apply Lemma (29). But asr4 is not present in the goal, we cannot
apply the lemma for rewritingr4 as required by the activation. The same argument
holds true for the open goal of the second proof attempt, Lemma (28) and operatorr3
which is not present in the goal.

We can overcome this situation by introducing e.g. one of thefollowing auxiliary
lemmas (illustrated in Figure 4 by dashed lines):

(31) { r2 = true, r3 = true } (32) { r1 = true, r5 6= true }

Each of these lemmas as well as Goal (30) (after activating one of (31), (32)) can be
proved automatically. Goal (30), for instance, can be proved analogously to Goal (24)
in Example 10 if we activate Lemma (31) (cf. Figure 3a replacing qi with ri). If



224 JANCL – 16/2006. Implementation of logics

{ r1 = true }lemma-rewrite (26)

{ r3 = true ,r1 = true }lemma-rewrite (28)

{ r5 = true ,r3 = true,r1 = true } { r5 6= true ,true = true ,r1 = true }
=-deomp

{ r3 6= true ,true = true }
=-deomp

lemma-rewrite (25)

{ r2 = true ,r1 = true }lemma-rewrite (27)

{ r4 = true ,r2 = true,r1 = true }lemma-rewrite (29)

{ r5 6= true ,r4 = true,r2 = true,r1 = true } { r5 = true ,true = true ,r2 = true,r1 = true }
=-deomp

{ r4 6= true ,true = true ,r1 = true }
=-deomp

{ r2 6= true ,true = true }
=-deomp

Figure 5. Two failed proof attempts for Goal(30)of Example 11

we activate Lemma (32) we can prove the open goal of the secondproof attempt in
Figure 5. Thus, we can bridge the gap. 2

Theorem 12 states that we can always close gaps with auxiliary lemmas.

THEOREM 12. — If a goal can be proved by simplification without any restrictions
on the elements that can be used then it can also be proved witha mandatory marking
with the help of some auxiliary lemmas which themselves can be proved with a manda-
tory marking. More precisely, if a proof violates the restrictions atn goal nodes then
we need at mostn auxiliary lemmas.

PROOF. — A proof step that creates a subgoal that does not possess any new literal
cannot contribute to a proof. Hence, it can be eliminated from the proof. Thus, we
can assume that a proof contains at least one new literal in each subgoal. As we
mark at least one of the new literals as mandatory, each subgoal contains at least one
mandatory literal. If a goal in the proof violates the restrictions caused by a mandatory
marking we can introduce a new lemma consisting of this goal clause. As each proof
attempt for a new lemma starts with all literals marked as mandatory, the proof of
the lemma succeeds with a mandatory marking. Whatever head literal is chosen for
this lemma, it can be applied to prove the goal that formerly violated the restrictions
caused by a mandatory marking. The lemma is applicable because at least one literal
in the goal is mandatory. ■



Heuristics for conditional lemmas 225

Unfortunately, the required auxiliary lemmas cannot be calculated automatically.
In fact, the automatic generation of lemmas according to thelast proof would coun-
teract the mandatory marking because proof search would continue for the auxiliary
lemmas with all elements marked as mandatory again. Nevertheless, the auxiliary
lemmas may be manually extracted from failed proof attempts. In contrast to this,
Contextual Rewriting may not even be able to make use of auxiliary lemmas simply
because one cannot build a bridge when a bank is forbidden.

3.3. Simulating approaches from the literature with forbidden markings in goals

Other approaches known from the literature perform the relief test in such a way
that certain elements are excluded from the generated subgoals. In these approaches,
excluded elements are completely eliminated from the subgoals, resulting in unsafe
lemma applications. Within our flexible framework, we modelthese approaches in a
safe way by introducing a forbidden marking in goals.

RESTRICTION13 (CAUSED BY FORBIDDEN MARKING). — An inference rule may
be applied to a goalG with a forbidden markingonly if all forbidden elements that
are principal in this proof step are cut-off elements. 2

We account for the elimination of forbidden elements in the approaches known
from the literature in the following way: Once an element is marked as forbidden in
a goalG, it remains forbidden in the whole proof attempt forG. Our modeling with
a forbidden marking improves the versions in the literatureinsofar as forbidden ele-
ments may serve as cut-off elements. LetG be a goal with a forbidden marking and
G′ be the goal derived fromG by eliminating all forbidden elements. Roughly speak-
ing, since forbidden elements must not be principal (unlessthey are cut-off elements),
the same inference rules are applicable toG andG′. The applications result basically
in the same subgoals. Therefore, proof search is essentially the same in both cases
except that the approaches that eliminate forbidden elements have to prove

– additional subgoals that are cut off by the forbidden elements;

– stronger goals since conditions in form of forbidden elements are missing. This
may even cause a failure of a proof attempt because of a subgoal which is, in fact,
trivial if we do not eliminate forbidden elements.

Thus, we consider the use of a forbidden marking as an adequate and safe alternative
for modeling previous approaches from the literature. The additional cut-off elements
do not change the search space, but relax the success criterion of our proof search.
In Section 4, we perform case studies to validate the adequacy of our modeling of
Contextual Rewriting and to demonstrate the additional benefits of using forbidden
elements as cut-off elements.

3.3.1. Contextual rewriting

Contextual Rewriting in the narrower sense is used e.g. inNQTHM [BOY 88], ACL2
[KAU 00], RRL [ZHA 95], and more recently inRDL [ARM 03]. These approaches



226 JANCL – 16/2006. Implementation of logics

vastly differ in their simplification process e.g. in the waythey use equality informa-
tion. NQTHM [BOY 88] andACL2 [KAU 00] use the cross fertilization technique whileRRL [ZHA 95] uses a constant congruence closure algorithm. InRDL [ARM 03], deci-
sion procedures can be used by the simplification process. Nevertheless, they use the
same literals to perform the relief test: The focus literal in the applicability subgoals as
well as all downfolded literals are marked as forbidden. On the one hand, Contextual
Rewriting is not very restrictive because it admits non-contributing proof steps. On
the other hand, it is often too restrictive as can be seen in our examples:

EXAMPLE 14 (8 CONTINUED). — The second application of Axiom (1) in Figure 1
rewrites a literal initially used as focus literal. Thus, Contextual Rewriting fails. 2

EXAMPLE 15 (10CONTINUED). — Two lemmas have to be applied to the same goal
literal to perform a successful proof. But after applying one lemma, the focus literal
is forbidden for the rest of the proof attempt. This situation is depicted for one proof
attempt in Figure 3b where forbidden literals are marked by crossing them out. The
proof attempt fails at the left-most leaf asq1 = true cannot be used anymore. It is
not possible to overcome this situation with auxiliary lemmas. 2

Not surprisingly, Example 11—a generalization of Example 10—cannot be proved
with Contextual Rewriting either. Nevertheless, a slight modification changes the ex-
ample in such a way that it can be proved with Contextual Rewriting but not with
our novel heuristics with a mandatory marking (in the simpleform presented in Sec-
tion 3.2 and without auxiliary lemmas).

EXAMPLE 16. — Given six boolean valued constantss1, . . . , s6, we assume the ac-
tivation of the following lemmas

(33) {s1 = true,s3 6= true }

(34) {s2 = true,s4 6= true }

(35) {s3 = true,s5 6= true }

(36) {s4 = true,s6 6= true }

(37) {s5 = true,s6 = true }

and want to prove the goal

(38) {s1 = true,s2 = true } s1 = true, s2 = trues3 = true s4 = trues5 = true s6 = true∨

Figure 6. Illustration of Example 16

The specification is illustrated in Figure 6. We assume that the first literal is used
as head literal for each lemma. Whereas Contextual Rewriting can apply Lemmas (33)



Heuristics for conditional lemmas 227

to (37) one after the other, our heuristics based on mandatory markings cannot close
the gap without auxiliary lemmas or generous literals (cf. Sections 3.2 and 3.5). 2

3.3.2. Case rewriting

Case Rewriting tries to overcome the difficulties of Contextual Rewriting by a
special treatment of lemmas that can be applied to rewrite the same redex alternatively,
such as e.g. Lemmas (21) and (22) in Example 10. In this sense,our approach with a
mandatory marking is a novel form of Case Rewriting. There are at least two further
approaches known from the literature [BOU 93, KOU 90].

The approach for Case Rewriting proposed in [KOU 90] restricts the relief test by
order constraints which we cannot use in general for our application domain as we
allow non-terminating operator definitions.

In the approach of Case Rewriting in [BOU 93], a term is rewritten by a set of
n lemmas resulting inn + 1 new subgoals: For each lemma one rewrite subgoal is
created; additionally onewell-coverednesssubgoal is produced. This last subgoal is
to guarantee the completeness of the case split w.r.t. the given lemmas.

EXAMPLE 17 (15CONTINUED). — For the specification of Example 10, this Case
Rewriting approach can be modeled by applying the two lemmasin succession as
depicted in Figure 3c. In the well-coveredness goal—i.e. the left-most goal—only the
condition literals may be used. As the case split for Lemmas (21) and (22) is complete
according to Lemma (23), the proof can be completed. 2

The approach of [BOU 93] seems to have the following limitations: The set of
lemmas applied depends only on the focus literal but not on the context. A single
well-coveredness goal is sufficient only if all lemmas differ only in a single condition
literal. The well-coveredness goal cannot be proved if the case split is incomplete.

EXAMPLE 18 (14CONTINUED). — The applications of Lemma (8) and Axiom (1) in
Figure 1 do not form a complete case split. Actually, they even do not rewrite the same
redex. Thus, Case Rewriting according to [BOU 93] cannot be applied. Moreover, in
contrast to [BOU 93], our approach with a mandatory marking can make use of other
goal literals to prove the well-coveredness subgoal. 2

3.4. Enhancing the efficiency with obligatory markings in lemmas

On the one hand, the use of a mandatory marking as explained inSection 3.2 re-
sults in anextensiverelief test. But as we call the simplification process recursively
for any condition subgoal whose condition literal is not directly fulfilled in the goal,
it may be very time-consuming. On the other hand, using only directly applicable
lemmas is a veryefficientbut not extensive relief test because it checks only syntactic
equality. As a compromise, we introduce an obligatory marking in lemmas that re-
stricts the relief test for obligatory elements to the efficient syntactic test. This guides
the proof search in a user-defined way, manually controllingthe degree of extent and
efficiency for each lemma separately.



228 JANCL – 16/2006. Implementation of logics

RESTRICTION 19 (CAUSED BY OBLIGATORY MARKING). — A lemma with an
obligatory markingmay be applied to a goalG only if all obligatory elements are
directly fulfilled in the goal. 2

Thus, a lemma with an obligatory marking is only applicable if the instantiated
obligatory elements are present in the goal. Therefore, we may interpret the obligatory
marking as a user-defined means to extend the principal part in the goal w.r.t. the
applied lemma.

By marking elements as obligatory, we restrict proof search. In doing so, we may
prevent the automatic derivation of proofs. Thus, elementsareautomaticallymarked
as obligatory only if the head literal of the lemma is an equation that is used as rewrite
rule with ageneral termas left-hand side, i.e. a term of the formf(x1, . . . , xn) in
which thexi are pairwise different variables. Without obligatory elements, the relief
test would be invoked too often in this case, most of the time unsuccessfully.

HEURISTICS20 (FOR MARKING ELEMENTS AS OBLIGATORY). — Our automatic
default heuristics chooses one obligatory element if the lemma is used as rewrite rule
with a general term as left-hand side. 2

EXAMPLE 21. — If we use the first literal of the trichotomy of less

(39) { less(x , y) = true, less(y, x ) = true, x = y }
as head literal then it is activated as rewrite rule for operator less with a general
term as left-hand side. When applying this lemma, the relieftest reduces the question
whetherx is less thany to the question whethery is not less thanx and whether they
are unequal. But this relief test is in most cases not simplerthan the original problem.
In Example 9, the activation of Lemma (39) would increase thenumber of inference
steps from 9 to 12. But if the context says that neitherx is less thany nor y is less
thanx then we can derive thatx is equal toy by Lemma (39). Thus, we may prove the
remaining literals of the clause in the possibly very usefulcontext thatx is equal to
y. Therefore, the automatic application of the lemma should be restricted by marking
the second lemma literal as obligatory. 2

EXAMPLE 22. — Another example is given by the axioms of a division operator:

(40) {div1(x , y , u, v) = u,

x 6= v }
(41) {div1(x , y , u, v) = div1(x , y , s(u), +(v , y)),

x = v }

Without marking literals as obligatory the relief test illustrated in Figure 7 does not
terminate. During the relief test for Axiom (40), Axiom (41)can be applied for rewrit-
ing because the mandatory literal directly fulfills the condition literal of Axiom (41).
Since the rewriting changes the second goal literal it becomes mandatory and thus can
be used for further rewrite steps with the axioms. If the conditions of the axioms are
marked as obligatory, already the first relief test is prevented. 2



Heuristics for conditional lemmas 229

{ div1(x , y, 0, 0) = . . . }axiom-rewrite (40)

{ x = 0 , div1(x , y, 0, 0) = . . . }axiom-rewrite (41)

{ x = 0 , div1(x , y, s(0), +(0, y)) = . . . }axiom-rewrite (40)

...

{ x 6= 0 , 0 = . . . }

Figure 7. Non-terminating relief test in Example 22

3.5. Enhancing the extent with generous markings in lemmas

The efficiency of the relief test can be improved and manuallycontrolled with
obligatory markings. To enhance the extent of the relief test based on a mandatory
marking in a user-defined way, we now introduce generous markings in lemmas.

The idea of our mandatory markings is to prefer (locally) contributing proof steps,
and, therefore, to prevent non-contributing proof steps. But as explained in Example 6,
applying only those proof steps that locally contribute to aproof, restricts proof search
too much and prevents too many proofs where all proof steps are contributing but some
of them do not locally contribute to the proof. Therefore, our default Heuristics 7 for
marking mandatory elements in subgoals appliesstrict or relaxedmandatory marking
heuristics depending on the type of the subgoal, i.e. whether it is an applicability
subgoal, an order subgoal or another subgoal. But even with this default Heuristics 7,
proof search is restricted in such a way that we may require auxiliary lemmas just to
compensate for the restrictions caused by our mandatory markings (cf. Example 11
and Theorem 12). Auxiliary lemmas may be required for two reasons:

1) to find a proof at all (cf. Example 11); or

2) to improve the efficiency of proof search by introducing shortcuts in the search
space. With auxiliary lemmas, proof search may be guided on afine-grained level.
But this burdens the user with having to pick suitable auxiliary lemmas.

Instead of introducing auxiliary lemmas that just compensate for the restrictions caused
by mandatory markings, we may vary the mandatory markings heuristics. On the one
hand, if we use only the strict mandatory markings heuristics, all proof steps locally
contribute to the proof. On the other hand, if we use only the relaxed mandatory mark-
ings heuristics, we do not pose any restrictions on proof search at all. As a compro-
mise, we introduce generous markings. With generous elements the default behavior



230 JANCL – 16/2006. Implementation of logics

for marking mandatory elements in the subgoals as describedin Heuristics 7 can be
changed in a flexible way.

RESTRICTION23 (CAUSED BY GENEROUSMARKING). — If a lemma with agen-
erous markingis applied to a goalG, it causes the following restriction on the manda-
tory marking of a condition or rewrite subgoalSG:

If SG is generated from a generous element, then the mandatory marking of SG

is inherited fromG and supplemented with all the new elements ofSG. Thus, the
marking is generated with the relaxed marking heuristics used for rewrite subgoals in
Heuristics 7.

If the corresponding element is not generous, then a new set of mandatory elements
is introduced forSG consisting exactly of the new elements inSG. In this case, the
marking is generated with the strict marking heuristics used for condition subgoals in
Heuristics 7. 2

HEURISTICS 24 (FOR MARKING ELEMENTS AS GENEROUS). — Our automatic
default heuristics marks exactly the head literal of every rewrite lemma as generous.

2

Note that, with Heuristics 24, the mandatory marking Heuristics 7 in Section 3.2
now works exactly as without a generous marking before.

Generous elements relax the restrictions caused by a mandatory marking. There-
fore, we may avoid some auxiliary lemmas.

EXAMPLE 25 (11CONTINUED). — If all literals in Lemmas (25) and (26) are gen-
erous, we may first apply these two lemmas. This results in thefollowing clause:

(42) { r2 = true, r3 = true, r1 = true }

Due to the generous marking, all literals in this clause are mandatory. Therefore, we
can prove this clause in the same way as Lemma (31). 2

Using the relaxed mandatory markings heuristics for generous elements clearly ex-
tends the search space. Therefore, one would expect that we get a less efficient relief
test. Often, this holds true but, in general, it is not that easy to analyze the effects of
generous elements on proof search. Generous elements enable more proof steps that
do not locally contribute to the proof. For these proof steps, we do not know whether
they contribute to the proof. Often, they are non-contributing. But, sometimes, they
may enable additional proof steps that introduce shortcutsduring proof search. They
may avoid many failed proof attempts resulting in improved efficiency. Thus, gener-
ous elements may have similar effects on proof search as auxiliary lemmas: They may
enable a proof at all and they may increase the efficiency of proof search. But they
also extend the search space—just as auxiliary lemmas do—which may decrease the
efficiency of proof search as well.

In general, the introduction of auxiliary lemmas allows us to guide proof search
on a more fine-grained level than this can be done by marking elements as generous.
In the former case, we may introduce just the lemma instance required for closing the



Heuristics for conditional lemmas 231

proof state tree, whereas, in the latter case, many lemmas may become applicable—
most of them resulting in unsuccessful proof attempts. Therefore, auxiliary lemmas
do not extend the search space as much as generous markings do. Thus, for efficiency
reasons it is advantageous to use auxiliary lemmas. But generous markings relieve the
user of the burden of picking these auxiliary lemmas. Thus, we recommend their use
in a limited way for complicated proofs.

Often, the coarse-grained extension of the search space caused by generous ele-
ments introduces too many non-contributing proof steps which contain unnecessary
proof obligations in terms of open goal nodes. These additional proof obligations
countervail the benefits of the generous markings in such a way that, actually, the ef-
ficiency of proof search decreases when using generous markings on their own. As
mentioned in Section 3.1, we may analyze and prune a performed proof by eliminating
non-contributing proof steps with hindsight. The combination of generous markings
with this pruning technique allows us

1) to search for a proof performing proof steps that do not locally contribute; and

2) to eliminate proof obligations of non-contributing proof steps.

Only in this combination, generous markings can display their full power. As the
pruning techniques are outside the scope of this paper, we donot consider generous
markings in more detail. Instead, we refer to [SCH 06].

Even in combination with pruning, generous markings shouldbe used with cau-
tion. We recommend their use if a lemma (or a literal in a goal)is expected to be
essential for the proof, i.e. a proof cannot be found withoutusing the lemma (or the
literal in the goal), and the proof itself is expected to be easy but not necessarily linear.
Usually, we assume that these properties hold true for goalscontaining definedness
atoms which are proved by applying corresponding domain lemmas. Therefore, we
usually mark as generous:

– negated definedness atoms in all lemmas because they generate definedness
atoms in the corresponding condition subgoals; and

– all literals in domain lemmas.

Furthermore, if an operatorf is defined in terms of other function symbols using
defining rules which are not recursive, we may decide to reduce terms containing
operatorf with its defining rules in any case. Then, the literals in the defining rules of
operatorf should be marked as generous.

3.6. Further heuristics for guiding proof search

To increase the performance of our proof control we apply further heuristics (cf.
[BOY 88]):

– We prevent repeated applications of the same inference rule with the same princi-
pal literals within one proof attempt (disregarding cut-off literals): For the application



232 JANCL – 16/2006. Implementation of logics

of an inference ruleI to a goalG, we inspect all the applications on the branch of the
proof state tree from the root goal toG.

In particular, when using generous markings for condition literals in lemmas, this
mechanism is required for avoiding trivial rewrite loops: As the condition subgoal
generated from a generous condition literal inherits the mandatory marking from its
parent goal, the same inference step is applicable again.

– We do not apply lemmas that apparently do not support the proof of the goal.
There may be two reasons for this: Firstly, the conditions ofthe lemma and the context
of the goal are inconsistent, i.e. the context contains the negation of one condition.
Secondly, the focus literal of the goal is rewritten to an obviously unsatisfiable literal
as e.g.t 6= t.

– During an automatic proof attempt, we do not want to guess any instantiations of
lemma variables. Thus,extravariables—i.e. variables that are not bound by matching
the head literal to the focus literal—must be instantiated by matching condition literals
to context literals.

– Permutativelemmas as e.g. the commutativity of+ are applied only w.r.t. a fixed
wellfounded total term order. By this, we hope to prevent infinite rewrite chains with
permutative lemmas.

– To prevent infinite loops when proving applicability subgoals, the maximal re-
cursion depth can be restricted.

4. Case studies

In this paper, we have presented novel heuristics to restrict the relief test for con-
ditional lemmas. To validate our novel heuristics on some real case studies, we have
to integrate them into an inductive proof process. We want tostudy solely the effects
on proof search caused by the different heuristics based on markings. Therefore, we
compare the different heuristics with as few differences aspossible. Instead of com-
paring different systems that implement the various heuristics, we use the same proof
process as well as the same specifications within a single system. Thus, we realize
Contextual Rewriting as explained in Section 3.3.1. At the end of this section we will
also point out how the results obtained by our simulations carry over to other provers.

We choose our inductive theorem prover QUODL IBET [AVE 03] to perform our
simulations. It provides the following advantages: QUODL IBET strictly separates the
automatic proof control implemented by tactics from the logic engine given by an
inference system. The flexibility of the inference rules enables the simulation of the
different heuristics easily. Note that systems based on Contextual Rewriting eliminate
the focus literal from the condition subgoals. Thus, their underlying inference sys-
tems would have to be changed to simulate our novel heuristics. Last but not least,
QUODL IBET provides various statistics to compare the different heuristics.

We summarize our inductive proof process that is influenced by [BOY 88]: The
whole proof process is controlled by a so-calleddatabase. It stores information about



Heuristics for conditional lemmas 233

theanalysisof defined operators and theactivated lemmas. The analysis of a defined
operator is used for performing an inductive case split automatically; instead of gen-
erating induction hypotheses at the beginning of the proof as in explicit induction, we
may apply lemmas as induction hypotheses. These applications create an additional
order subgoal to guarantee the wellfoundedness of the induction scheme. Only acti-
vated lemmas may be used within the simplification process. During the activation
of a lemma the user may provide the head and the obligatory andgenerous literals
of the lemma. Otherwise, they are determined by some heuristics (cf. Section 3.4 for
obligatory, Section 3.5 for generous, and [SCH 04] for head literals).

The simplification process is divided into phases: The first phase proves simple
tautologies, the second removes redundant literals, the third applies directly applica-
ble lemmas, the fourth decomposes literals and applies lemmas even if they are not
directly applicable, the fifth uses equalities forcross-fertilization[BOY 88]. During
each phase the tactics use each literalsuccessivelyas focus literal. This is justified
since all inference rules add literals only to thefront of the goal. Lemmas are tested
in reverse activation order, which may be changed to influence the proof search. If
a head literal is an equation (whose left-hand side is not a variable), it is used for
rewriting; otherwise, forsubsumption. Subsumption is checked for first; then the
subterms of the focus literal are tested for rewriting, using an innermost left-to-right
strategy. If a lemma can be applied and all its applicabilitysubgoals can be proved,
its application will not be deleted anymore. Thus, no alternative proof attempts for
successful applications will be tried out during this tactic execution. Contrariwise, a
lemma application—together with all proof attempts of the applicability subgoals—is
deleted if the relief test fails. This results in a backtracking step. Further details can
be found in [SCH 04].

For a fair evaluation of forbidden literals, we have slightly modified the automatic
application of axioms during our simplification process when using forbidden literals:
If axioms can be applied to the same redex alternatively (such as the axioms of thegd in Example 1) a Cut with the condition literal(s) will be performed automatically.
This then enables the application of all axioms. Otherwise,already the second appli-
cation would be prevented because the rewrite literal becomes forbidden after the first
application. This simulates theoperator unfoldingoperation in systems likeNQTHM
where all axioms are given in one operator definition. Together with the additional
admission of forbidden literals as cut-off literals, this results in a modeling where
Contextual Rewriting can display its full power.

We compare the different heuristics in the following case studies whose details can
be found at [SCH 05a]:sortalgos This case study contains a collection of sorting algorithmssuch as bub-

blesort, insertionsort, mergesort and quicksort. We provethat the sorting algo-
rithms return an ordered list which is a permutation of the input list.



234 JANCL – 16/2006. Implementation of logics

Table 1. Complexity of the case studies

Example Lemmas Man. Interact. Autom. Appl. Del. Fin. P. Runtimesortalgosgdsqrt (H)sqrt (E)exp-exhelpLpo 111
85
51
38
27

154

1 + 0
8 + 2

11 + 1
2 + 0
0 + 6
5 + 67

2233
1114
1062
529

1278
5458

40
13
14
2

116
404

2193
1101
1048
527

1162
5054

5.95
2.92
5.91
1.46
7.22

36.89gd In this case study, we prove that the greatest common divisorof two natural
numbers is associative, commutative and idempotent. For the proofs, we exploit
dependencies between divisibility and order relations.sqrt We prove that

√
2 is irrational, based on the ideas of Hippasus of Metapontum

(H) and Euclid of Alexandria (E), respectively. In [WIE 03],the proof of the
irrationality of

√
2 is used as a challenging problem for comparing 15 different

theorem provers w.r.t. their ability to formalize and provemathematics.exp-exhelp This case study is taken from [KAP 96]. It states the equivalence of
call-by-value and call-by-name evaluations for simple arithmetic expressions
containing function calls.Lpo In this case study, we prove that the lexicographic path order [KAM 80] is a sim-
plification order [DER 87]. Furthermore, we prove the equivalence of different
implementations of theLpo [LÖC 04].

The last two examples are challenging as they contain mutually recursive operators.
Table 1 illustrates the complexity of the examples. It contains in column

Lemmas the number of lemmas (constant for all heuristics); and

for our novel heuristics with mandatory and obligatory literals, in column

Man. Interact. the number of manual interactions (manually applied inference rules
+ manually chosen induction order);

Autom. Appl. the numberi of automatically applied inference rules (including the
later deleted ones);

Del. the numberd of deleted inference rules due to a failed relief test;

Fin. P. the number of inference rules in the final proof, i.e.i− d; and



Heuristics for conditional lemmas 235

Table 2. Comparison of the different heuristics

Heur. Open Lemmas Autom. Appl. Del. Fin. P. Runtime

Examplesortalgos
∅

{o}
{m}

{m,o}
{f}

{f,o}

2
0
0
0
0
0

2348
2143
2072
2007
2354
2168

143
19

107
40

234
60

2205
2124
1965
1967
2120
2108

6.77
5.56
5.53
5.09
6.31
5.13

Examplegd
∅

{o}
{m}

{m,o}
{f}

{f,o}

—
0
—
0
—
9

—
911
—

893
—

974

—
5

—
9

—
18

—
906
—

884
—

956

—
2.13

—
2.14

—
2.07

Examplesqrt (H)
∅

{o}
{m}

{m,o}
{f}

{f,o}

1
0
0
0
0
0

2008
1059
1064
1046
1021
980

969
26
31
13
60
25

1039
1033
1033
1033
961
955

16.11
5.98
6.22
5.85
5.40
5.28

Examplesqrt (E)
∅

{o}
{m}

{m,o}
{f}

{f,o}

0
0
0
0
3
3

477
471
477
471
483
467

4
0
4
0

16
0

473
471
473
471
467
467

1.24
1.18
1.24
1.25
1.27
1.26

Exampleexp-exhelp
∅

{o}
{m}

{m,o}
{f}

{f,o}

0
0
0
0
0
0

3290
3290
1278
1278
1342
1342

9
9

116
116
204
204

3281
3281
1162
1162
1138
1138

299.28
298.90

7.26
7.22
7.85
7.77

ExampleLpo
∅

{o}
{m}

{m,o}
{f}

{f,o}

1
0
0
0
1
1

11125
7621
5746
4988

32946
8050

1089
848
971
330

26667
2135

10036
6773
4775
4658
6279
5915

291.37
153.85
46.44
31.28

370.79
50.89



236 JANCL – 16/2006. Implementation of logics

Runtime the runtime in seconds measured by a CMU COMMON L ISP system on a
machine with a 1 GHz Intel III processor and 4 GB RAM.

Table 2 contains for each example and each heuristics based on a combination of
obligatory, mandatory andforbidden markings the following statistics: in column
“Open Lemmas”, the number of proof state trees that cannot beclosed with this heuris-
tics; the entries in the other columns take into account onlythose proof state trees that
are closed withall heuristics. We do not count applications and deletions of inference
steps of open proof state trees because failed proof attempts tend to create large proof
state trees, tampering our results.

From the statistics in Table 2, we draw the following conclusions:

– Since the specification ofgd contains non-terminating rewrite rules, it can be
performed only with anobligatorymarking. For the other examples, obligatory mark-
ings restrict the search space without influencing the resulting proofs very much: The
number of inference steps in the final proof is nearly the sameregardless of the usage
of obligatory markings.

– Thebest heuristics w.r.t. efficiency(as underlined in the table) use a combination
of mandatory/obligatory{m,o} and forbidden/obligatory{f,o} markings, respectively.
As the same simplification process is used, these two heuristics can differ only if a
proof step cannot be applied due to the restrictions caused by mandatory or forbidden
markings. Only for theLpo example, a major advantage in efficiency can be deter-
mined, favoring our novel{m,o} heuristics.

– As printed in bold in the table, of 466 lemmas in total13 lemmas cannot be
provedwith {f,o} , but our novel{m,o} heuristics proves all of them.

Note that in our modeling of Contextual Rewriting with{f,o}, 13528 subgoals are
created, but 1296 definedness and 648 condition subgoals—aswell as the proof trees
rooted in them—are cut-off by using forbidden literals as cut-off literals.

Finally, to answer the question about the adequacy of our simulation of Contextual
Rewriting, we converted one of our case studies into a proof script for a prover based
on Contextual Rewriting. We chose thegd example as it contains most failed proof
attempts with a forbidden marking. As prover we usedNQTHM [BOY 88] because we
did not want to use the decision procedures for linear arithmetics integrated inACL2.7

Instead, we used theshellprinciple to define our own type for natural numbers. We
applied the following transformations to the original proof script: The specification
style is changed from constructor to destructor recursion.Partial definitions are sim-
ulated usingF as undefined value. AsNQTHM is untyped, we explicitly restrict all
lemmas to natural numbers only. These transformations werequite easy. Addition-
ally, we added one operator definition just to provide a suitable induction scheme for
the proof of one lemma as well as four auxiliary lemmas to enable the proof of two

7. Our marking techniques are also well suited for the integration of decision procedures
[SCH 05b]. But in this paper, we focus on the application of conditional lemmas. Therefore,
we have performed our case studies without considering decision procedures.



Heuristics for conditional lemmas 237

lemmas—namely Lemma (7) of Example 1 and a similar lemma thatare proved in
QUODL IBET by mutual induction. These are two of the nine lemmas that failed with
our simulation of{f,o} in QUODL IBET. From the remaining seven lemmas, only two
are not proved automatically. Note that this is not a weakness of our simulation of
Contextual Rewriting. Instead, the difference is caused bydifferent induction princi-
ples: NQTHM uses explicit induction. Thus, it does not apply lemmas inductively but
splits, at the beginning of a proof, the induction steps of conditional lemmas in differ-
ent cases and immediately adds a promising induction hypothesis. In contrast to this,
we use descente infinie (cf. [WIR 04]). Therefore, we have to use the relief test more
often in QUODL IBET. Beside the failed proofs in the statistics, two lemmas proved by
our novel heuristics with simplification are proved by induction in NQTHM. Thus, these
proofs are more complex inNQTHM.

5. Conclusion

Rewriting with conditional lemmas is at the heart of many (inductive) theorem
provers. Especially for interactive theorem provers, it isessential not only to prove as
many lemmas automatically as possible but also to restrict proof search in a suitable
way such that the proof process stops within a reasonable amount of time.

In this paper, we have developed a framework that allows us torestrict proof search
in a flexible way using heuristics based on markings in goals and lemmas. Within
our framework we can simulate Case Rewriting and ContextualRewriting with a for-
bidden marking in goals. The adequacy of our simulation of Contextual Rewriting
is demonstrated by carrying over a case study toNQTHM. Furthermore, we have de-
veloped a novel heuristics{m,o} based on the orthogonal concepts of a mandatory
marking in the goals and an obligatory marking in the lemmas.For the comparison
of the heuristics we chose the well established applicationdomain of rewrite-based
simplification in inductive theorem proving. Our simulation of Contextual Rewriting
{f,o} is competitive with our novel heuristics{m,o} regarding efficiency but not regard-
ing extent. Nevertheless, the benefits of our novel heuristics are slightly decreased in
theorem provers using explicit induction because they do not perform a relief test for
induction hypotheses.

Neither Case Rewriting nor Contextual Rewriting nor our novel heuristics are per-
fect. For all of them, we have identified proof patterns that cannot be handled with
the basic version of these heuristics. For our novel heuristics, we can always over-
come these difficulties using auxiliary lemmas or a generousmarking in the lemmas
relaxing the restrictions caused by a mandatory marking. This is not possible e.g. for
Contextual Rewriting. Furthermore, our framework allows us to choose between the
different heuristics and to combine them easily. With obligatory and generous mark-
ings in lemmas we can fine-tune the degree of extent and efficiency of the proof search
manually.

Our framework depends only on the partitioning of goals intoprincipal part, cut-
off part and context according to the inference rule applied. The basic distinction



238 JANCL – 16/2006. Implementation of logics

between principal part and context was already introduced in Gentzen’s seminal work
on sequent calculi [GEN 35]. Therefore, this partitioning (and also the refinement with
cut-off formulas) should pose no problems for inference systems based on sequent
calculi. Indeed, a similar form of lemma application occursin all practice-oriented
mathematical assistance systems and the concepts behind our marking as mandatory,
forbidden, obligatory, and generous are all in great demandand applicable, provided
that we extend the inheritance procedures to the new inference rules in a meaningful
way. As explained in Section 4, systems based on Contextual Rewriting eliminate the
focus literal from the condition subgoals. Thus, their underlying inference systems
have to be changed as a prerequisite for the integration of our marking techniques.
This may require significant technical effort. Then, the marking techniques may be
realized using wrapper functions for the inference rules asit is done in QUODL IBET.

The partitioning of a goal into a principal part, a cut-off part and a context can be
further exploited to determine the contribution of performed proofs. We elaborate on
this topic in [SCH 06]. The information about the contribution of a proof can be used
for extracting a pruned proof, determining superfluous literals in goals, and enhancing
the reusability of subproofs. In the future, we will investigate the combination of the
different marking heuristics and the pruning methods in more detail. The combination
should lead to a more extensive relief test. In this way, we hope to reduce the number
of auxiliary lemmas and backtracking steps required. The pruning techniques made
available by the contribution of proofs enhance efficiency by eliminating superfluous
proof steps.

Acknowledgements

First of all, I would like to thank Claus-Peter Wirth for encouraging me to write
this paper, for his patience and the effort he made by proof-reading and improving
numerous versions of this paper. I owe more to Claus-Peter than I can express here.
Furthermore, I would like to thank Jürgen Avenhaus for improving the readability
of the paper with his suggestions, Bernd Löchner and the anonymous referees for
helpful comments on earlier drafts of this paper, and my wifeKatja for pointing this
interesting special issue out to me.

6. References

[ARM 03] A RMANDO A., RANISE S., “Constraint contextual rewriting”,J. Symb. Comput.,
vol. 36, num. 1-2, 2003, p. 193–216.

[AVE 03] AVENHAUS J., KÜHLER U., SCHMIDT-SAMOA T., WIRTH C.-P., “How to Prove
Inductive Theorems? QUODL IBET!”, B AADER F., Ed., CADE, vol. 2741 ofLNCS,
Springer, 2003, p. 328–333.

[BOU 93] BOUHOULA A., RUSINOWITCH M., “Automatic Case Analysis in Proof by Induc-
tion”, IJCAI, 1993, p. 88–94.



Heuristics for conditional lemmas 239

[BOY 88] BOYER R. S., MOORE J. S.,A Computational Logic Handbook, Academic Press
Professional, Inc., 1988.

[BUN 93] BUNDY A., STEVENS A., VAN HARMELEN F., IRELAND A., SMAILL A., “Rip-
pling: A Heuristic for Guiding Inductive Proofs”,Artif. Intell., vol. 62, num. 2, 1993,
p. 185–253.

[DER 87] DERSHOWITZN., “Termination of Rewriting”,J. Symb. Comput., vol. 3, num. 1/2,
1987, p. 69–116.

[GEN 35] GENTZEN G., “Untersuchungen über das logische Schließen”,Mathematische
Zeitschrift, vol. 39, 1934/35, p. 176–210 and 405–431.

[KAM 80] K AMIN S., LEVI J.-J., “Two generalizations of the recursive path ordering”, report
, 1980, Dep. of Computer Science, University of Illinois, Urbana, IL, Unpublished note.

[KAP 96] KAPUR D., SUBRAMANIAM M., “Automating Induction over Mutually Recursive
Functions”, WIRSING M., NIVAT M., Eds.,AMAST, vol. 1101 ofLNCS, Springer, 1996,
p. 117–131.

[KAU 00] K AUFMANN M., MANOLIOS P., MOORE J. S.,Computer-Aided Reasoning: An
Approach, Kluwer Academic Publishers, 2000.

[KOU 90] KOUNALIS E., RUSINOWITCH M., “Mechanizing Inductive Reasoning”,AAAI,
1990, p. 240–245.

[LÖC 04] LÖCHNER B., “Things to know when implementing LPO”, SCHULZ S., SUT-
CLIFFE G., TAMMET T., Eds.,Proceedings of the 1st Workshop on Empirically Successful
First Order Reasoning (ESFOR ’04), ENTCS, Elsevier, 2004, Extended version to appear
in International Journal on Artificial Intelligence Tools.

[SCH 04] SCHMIDT-SAMOA T., The New Standard Tactics of the Inductive Theorem Prover
QUODL IBET, SEKI-Report SR–2004–01 (ISSN 1437–4447), SEKI, SaarlandUniv., 2004,http://www.ags.uni-sb.de/~p/p/sr200401/welome.html.

[SCH 05a] SCHMIDT-SAMOA T., “How to Prove Inductive Theorems? QUODL IBET!”,www-avenhaus.informatik.uni-kl.de/quodlibet/, 1999–2005, Homepage of the
inductive theorem prover QUODL IBET.

[SCH 05b] SCHMIDT-SAMOA T., “An Even Closer Integration of Linear Arithmetic into In-
ductive Theorem Proving”, CARETTE J., FARMER W. M., Eds.,Calculemus, ENTCS,
2005, To appear.

[SCH 06] SCHMIDT-SAMOA T., “Flexible Heuristic Control for Combining Automation and
User-Interaction in Inductive Theorem Proving”, PhD thesis, Tech. Univ. Kaiserslautern,
2006, submitted.

[WIE 03] WIEDIJK F., “Comparing Mathematical Provers”, ASPERTIA., BUCHBERGERB.,
DAVENPORT J. H., Eds.,MKM, vol. 2594 ofLNCS, Springer, 2003, p. 188–202.

[WIR 04] WIRTH C.-P., “Descente Infinie + Deduction”,Logic Journal of the IGPL, vol. 12,
num. 1, 2004, p. 1–96, Oxford University Press,http://www.ags.uni-sb.de/~p/p/d/welome.html.

[ZHA 95] ZHANG H., “Contextual Rewriting in Automated Reasoning”,Fundam. Inform.,
vol. 24, num. 1/2, 1995, p. 107–123.


