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Abstract. We define and discuss various conceivable notions of inductive va-
lidity for first-order equational clauses. This is done within the framework of
constructor-based positive/negative conditional equational specifications which
permits to treat negation and incomplete function definitions in an adequate and
natural fashion. Moreover, we show that under some reasonable assumptions all
these notions are monotonic w. r. t. consistent extension, in contrast to the case
of inductive validity for initial semantics (of unconditional or positive conditional
equations). In particular from a practical point of view, this monotonicity property
is crucial since it allows for an incremental construction process of complex spec-
ifications where consistent extensions of specifications cannot destroy the validity
of (already proved) inductive properties. Finally we show how various notions of
inductive validity in the literature fit in or are related to our classification.

1 Introduction, Motivation, and Overview

Given some finite axiomatization R, e. g., by means of a set of equations or — more
generally — of first-order formulas, one is often not only interested in those properties
that are logical consequences of R, i. e. that hold in all models of R but also in properties
that only hold in some specific intended model (or class of models) specified by R.
Instead of restricting the class of models by some required property, one may also define
notions of validity by saying that a formula P(x) is to hold schematically in the sense
that it is to hold for certain sets of instantiations for the variables x of P(x).

Concerning the adequacy of a notion of inductive validity we think that there are at
least three important criteria.

Coincidence with intuition: It should capture the intention of the human specifier as
close as possible.

Monotonicity behaviour: Whenever we extend a specification in some consistent man-
ner then previously valid formulas should still be valid w. r. t. the extended specifi-
cation.
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Operational feasibility: It should be operationally feasible in the sense that there are
operational characterizations or at least sufficient operational criteria which provide
the basis for corresponding theorem proving techniques.

For specifications with unconditional (or positive conditional) equations it is well-
known how to obtain initial semantics and how to prove inductive theorems, i. e. equa-
tions that hold in the initial model (cf. e. g. [Bac88]). Consider for instance the follow-
ing specification R over the natural numbers where addition (+) is defined in terms of
zero (0) and successor (s).

R : 0+ y = y , s(x)+ y = s(x+ y) .

Here it is easy to show by standard techniques (cf. e. g. [BM79], [Bac88]) that

x+0 = x

is an inductive theorem, i. e. holds in the initial model. If we now enrich the above
specification by a subtraction operation (−) with

x−0 = x , s(x)− s(y) = x− y ,

yielding a new specification R′, then, unfortunately, x + 0 = x is no longer inductively
valid in the enriched specification (to wit, substitute 0− s(0) for x). Hence, initial se-
mantics does not enjoy the above-mentioned monotonicity property w. r. t. consistent
extension. The intuitive reason for that phenomenon is that by enriching our basic spec-
ification R as described above we have introduced new junk terms which should not
be considered for verification purposes. This intention will be formally reflected in our
approach by distinguishing between constructor and general variables which permits
to refine the class of (ground) instances of a theorem that we would like to hold.

Another crucial problem with initial semantics has to do with the way that negative
statements are interpreted. For instance, the negative equation

0− s(0) 6= 0

holds in the initial model of R′. But if we now complete the partial definition of sub-
traction in some consistent manner, e. g., by adding

0− s(y) = 0

yielding the new specification R′′, then 0− s(0) 6= 0 does not hold any more in the
initial model of R′′. Of course, also validity of conditional statements or general first-
order clauses is influenced by this phenomenon. One may argue now that in R′ we are
not yet sure whether 0− s(0) 6= 0 is to hold because it depends on the way we might
(consistently) complete the definition of ‘−’ later on in the specification process. Thus,
the existence of negative literals in formulas to be proved opens up — or even neces-
sarily entails — various ways of defining inductive validity, in particular if we want
to guarantee some reasonable monotonicity property w. r. t. consistent extension. Pio-
neering papers along this line of reasoning are [KM87] and [KM86] (cf. also [Zha88],
[ZKK88]). But whereas in these papers the specifications treated are systems of uncon-
ditional equations, and the formulas considered are pure equations, here we shall permit



general equational first-order clauses as formulas and, moreover, as specifications we
admit positive/negative conditional equational systems which naturally arise in many
cases.

Before going into details, let us give a rough idea of our underlying specification
formalism using constructor-based positive/negative conditional equations. The basic
characteristics of our approach (as developed in [WG93]) may be summarized as fol-
lows: The set of function symbols is partitioned into constructor and non-constructor
function symbols. The non-constructor function symbols can be used for (possibly par-
tially) defining functions on a domain of discourse supplied by the constructor (ground)
terms and called the constructor sub-universe. For such partial definitions of functions,
variables ranging only over the constructor terms are useful because sometimes the
specifier does not want to prescribe how the functions have to behave on objects that
are undefined in the sense that they do not belong to the domain of discourse. There-
fore, in addition to the usual general variables we also permit constructor variables. As
axiomatizations we consider sets of positive/negative conditional equations of the form

Vm
i=1(si = ti) ∧

Vn
j=1(u j 6= v j) ⇒ l = r .

In general, specifications with such positive/negative conditional equations lack a unique
minimal (i. e. an initial) model. In [Kap87] an operational semantics is developed
which — under some reasonable assumptions — distinguishes one of the minimal mod-
els by extracting control information from the equations (considered as rewrite rules).
In contrast to [Kap87] we use two syntactically expressible restrictions on the form of
the equations/rules in order to obtain an appropriate semantics: Namely, the terms in
the negative conditions must be defined and the constructor rules are required to have
Horn-form and to be constructor-preserving (see below). For such positive/negative
conditional rule systems a reduction relation can be defined which is monotonic w. r. t.
consistent extension and which provides an operational characterization of a unique
minimal model.

As formulas to be proved we consider (implicitly universally quantified) first-order
clauses of the form A1 ∧ . . . ∧ Am −→ B1 ∨ . . . ∨ Bn
where the Ai’s and the B j’s are atoms over the predicate symbols ‘=’ (equality) and
‘Def ’ (definedness predicate) on terms (with general and constructor variables). Some
interesting types of inductive validity of such formulas w. r. t. a positive/negative con-
ditional rule system R are defined by restricting the class of models to be considered.
Other interesting types of inductive validity are defined by means of inductive substi-
tutions, i. e., substitutions that substitute constructor ground terms for constructor vari-
ables and leave general variables invariant. The latter invariance for general variables
corresponds to the intuition that general variables should be permitted to range not only
over the junk generated by general ground terms but also over additional junk, e. g., of
non-constructor symbols which might be introduced later on. Indeed, permitting this
additional junk is necessary for the intended monotonicity of the notions of inductive
validity w. r. t. consistent extension of the specification.

A more detailed discussion of the subject (as well as missing proofs which we have
to omit here due to lack of space) can be found in [WGKP93].



2 Preliminaries

2.1 Basic Notions and Notations

We assume familiarity with the basic notions and notations for syntax and seman-
tics of (conditional) term rewriting systems (cf. e. g. [DJ90]). Due to lack of space
and for the sake of readability we restrict our presentation to the one-sorted case (cf.
[WGKP93] for the more general many-sorted case). We will consider terms over a sig-
nature sig = (F,α) with sub-signature cons = (C,α|C) where the functions symbols
from C ⊆ F are constructor and those of F \C are non-constructor function symbols,
and where α denotes the corresponding arity function (all symbols are assumed to have
fixed arity). We consider two distinct types of variables corresponding to their intended
usage later on. Namely, VSIG and VCONS denote the set of general variables and of con-
structor variables, respectively. The set V of all variables is given by V:= VSIG]VCONS.
TSIG := T (sig,VSIG]VCONS) is the set of (variable-mixed) general terms, TCONS :=
T (cons,VCONS) the set of pure constructor terms, and T (cons,VSIG]VCONS) the set
of (variable-mixed) constructor terms. GT (cons) := T (cons, /0) denotes the set of all
constructor ground terms and GT (sig) := T (sig, /0) the set of all ground terms. To
avoid problems with empty domains we assume that GT (cons) is non-empty. In order
to avoid confusion note that we have TCONS ⊆ TSIG but VCONS∩VSIG = /0. Furthermore,
for X = XCONS]XSIG, XCONS ⊆ VCONS, XSIG ⊆ VSIG, and some set T = TCONS ∪TSIG
we define S UB(X,T ) := {σ : X→ T | ∀ζ ∈ {SIG,CONS} : ∀x ∈ Xζ : σ(x) ∈ Tζ}. For
a term t, we shall use postfix-notation tσ instead of σ(t).

Instead of the usual sig-algebras we deal with sig/cons-algebras with universe A(SIG)
and constructor sub-universe A(CONS) ⊆ A(SIG) which are defined as usual ex-
cept for the requirement cA [A(CONS)× . . .×A(CONS)] ⊆ A(CONS) (for c ∈ C). A
sig/cons-homomorphism h : A −→ B is a usual sig-homomorphism with the addi-
tional requirement h[A(CONS)] ⊆ B(CONS). For X ⊆ V we use T (X) to denote
the term algebra over X and sig/cons/V (where T (X)(SIG) := T (sig,X)∩TSIG and
T (X)(CONS) := T (sig,X)∩TCONS). For a sig/cons-algebra A and a sig-congruence
∼ on A(SIG), the factor algebra B of A modulo ∼ (denoted by A/∼) is given by
B(CONS) := { ∼ [{a}] | a ∈ A(CONS) } with B(SIG) and f B as usual (here,∼ [{a}]
denotes the ∼-congruence class of a). For a sig/cons-algebra A , an A-valuation κ of
X is an element of S UB(X,A). For DUNNO ∈ {SIG,CONS}, dunno ∈ {sig,cons}
a sig/cons-algebra A is called DUNNO:dunno-term-generated if the following holds:
∀a ∈ A(DUNNO) : ∃t ∈ GT (dunno) : A(t) = a. A is called dunno-term-generated if
it is SIG:dunno-term-generated. For K a class of sig/cons-algebras, A a sig/cons-
algebra, X ⊆ V and κ ∈ S UB(X,A) we need the following definitions: A is initial in
K if A ∈ K and for all B ∈ K there is a unique h : A → B . A is free for K over X
w. r. t. κ if for all B ∈ K and µ ∈ S UB(X,B) there is a unique h : A → B with µ = κh.
A is free in K over X w. r. t. κ if A ∈ K and A is free for K over X w. r. t. κ.

Note that our notion of sig/cons-algebras can be viewed as a very special (and
simple) case of order-sorted structures, e. g., in the sense of [SNGM89].



2.2 Constructor-Based Positive/Negative Conditional Equational Specifications

Definition 1. (Positive/Negative Conditional Term Rewriting System)
A positive/negative conditional term rewriting system (PNCTRS for short) over
sig/cons/V is a set of rules2 of the form

Vm
i=1(si = ti) ∧

Vn
j=1(u j 6= v j) ∧

Vp
k=1(Def wk) ⇒ l = r

with all si, ti, u j, v j, wk in T (sig,VSIG]VCONS).

Definition 2. (Semantics of PNCTRSs)
If R is a PNCTRS over sig/cons/V then a sig/cons-algebra A is said to be a model of
R if we have:
∀(P⇒ l=r) ∈ R: ∀κ ∈ S UB(V,A): ((P is true w.r.t. Aκ) ⇒ Aκ(l) = Aκ(r))

where P is true w. r. t. Aκ if all its literals are true w. r. t. Aκ, i. e., Aκ(u) = Aκ(v) for
(u = v) in P, Aκ(u) 6= Aκ(v) for (u 6= v) in P, and Aκ(u) ∈ A(CONS) for (Def u) in P.

Definition 3. (Minimal and Minimum Model)
Let the quasi-orderings .H and .CONS on sig/cons-algebras be defined by: A .H B if
there exists a sig/cons-homomorphism from A to B . A .CONS B if there exists a cons-
homomorphism from A |C]{CONS} to B |C]{CONS}.3

A sig/cons-algebra A is a minimal model of a PNCTRS R if it is minimal w. r. t. .H in
the class M of all models of R. It is a constructor-minimal model of R if it is minimal
w. r. t. .CONS in M. A is a minimum model of R if it is a least model of R w. r. t. .H ,
and it is a constructor-minimum model of R if it is a least model of R w. r. t. .CONS .

Now, every PNCTRS possesses minimal models, but not necessarily a minimum model.
But as we shall see, under certain restrictions we are able to guarantee the existence of
a constructor-minimum model which can be constructed as a quotient term algebra.
To this end we have to define a reduction relation for PNCTRSs. This is only possi-
ble in a reasonable way — without assuming some termination ordering conditions as
in [Kap87] — by imposing additional restrictions on the structure of the rules. To be
precise, we require for every constructor rule of R, i. e., for every (P⇒ l=r) ∈ R with
l ∈ T (cons,VSIG]VCONS):

(1) There are no negative equations in P (constructor rules have “Horn”-form), and
(2) All terms in r and P are constructor terms, i. e., in T (cons,VSIG]VCONS), and all

variables of r and P occur in l (“constructor-preservation”).

PNCTRSs satisfying these conditions are called constructor-based. In the rest of the
paper all PNCTRSs are tacitly assumed to be constructor-based.

Now we are prepared to define the reduction relation.

2 We shall always use ‘=’ in equations or rules. The interpretation as ‘=’ or ‘→’ tacitly depends
on the context.

3 By the notation A|C]{CONS} we mean the cons-algebra of A with universe A(CONS).



Definition 4. (Reduction Relation)
Let R be a (constructor-based) PNCTRS over sig/cons/V and RC its subset of con-
structor rules.4 For X ⊆ V the reduction relation →R,X on T (sig,X) induced by R
is the smallest relation → satisfying → ∩(GT (cons)×TSIG) ⊆→RC,X,5 and s→ t if
s, t ∈ T (sig,X) and

∃(P⇒ l=r)∈R: ∃σ∈S UB(V,T (X)): ∃p ∈ POS (s):





s/p = lσ ∧
t = s[p← rσ] ∧
Pσ fulfilled w.r.t.→





where “Q is fulfilled w. r. t.→” is a shorthand for





∀(u = v) in Q : u ↓ v
∧ ∀(Def u) in Q : ∃û ∈ GT (cons) : u→∗ û
∧ ∀(u 6= v) in Q : ∃û, v̂ ∈ GT (cons) : u→∗ û-↓v̂←∗ v





The well-definedness of →R,X can be established by a double closure construction,
firstly for the constructor rules only (which is possible due to their required Horn-form),
and secondly for general rules knowing that the reduction relation on constructor ground
terms remains invariant (due to the required constructor-preservation property).

Note moreover that →R,X is stable under substitutions from S UB(V,T (X)). Fur-
thermore, for X⊆ Y, confluence of→R,Y implies confluence of→R,X.

In order to guarantee the existence of a constructor-minimum model of R we have
to require that the reduction relation is (ground) confluent6 and that the terms of the
negative equations in the conditions of R are “defined”.

Definition 5. (Def-Moderate PNCTRS)
A (constructor-based) PNCTRS is called Def-moderate (Def-MCTRS for short) if for
each rule (P⇒ l=r) ∈ R and each negative condition (u 6= v) in P we have that (Def u),
(Def v) are in P, too.

Theorem 6.(Existence and Characterization of a Constructor-Minimum Model)
Let R be a Def-MCTRS over sig/cons/V and K be the class of all constructor-minimal
models of R. Moreover, let X⊆V and κ be given by: x 7→↔∗R,X [{x}]. Then the following
holds:

4 i. e., RC is a positive conditional system consisting of those rules of R that do not involve
non-constructor function symbols.

5 This requirement ensures minimality of→ on the constructor (ground) terms.
6 Although many of our results do not depend on the (ground) confluence assumption, this prop-

erty is desirable anyway, since otherwise, for instance the congruence induced by the reduction
relation of some R need not yield a model of R in general.



• If→R, /0 is confluent then T (X)/↔∗R,X is free for K over X w. r. t. κ.
• If→R,X is confluent and X⊆VSIG, then T (X)/↔∗R,X is a minimal model of R which

is free in K over X w. r. t. κ and which is moreover a constructor-minimum model
of R.

Corollary 7. If R is a Def-MCTRS such that →R, /0 is confluent then GT /↔∗R, /0 is a
minimal model of R which is initial in the class of all constructor-minimal models of
R and which is the (up to isomorphism) unique .H-minimum of all sig-term-generated
constructor-minimal models of R.

Hence, for confluent →R, /0 the factor algebra GT /↔∗R, /0 provides us with a construc-
tive operational characterization of the intended unique minimal model. Moreover, the
reduction relation is monotonic w. r. t. consistent extension in the following sense.

Theorem 8. (Monotonicity of→R,X w. r. t. Consistent Extension)
Let R be a PNCTRS over sig/cons/V and let R′ be another PNCTRS over sig′/cons′/V′

with
sig′=(F′,α′) F⊆ F′ R⊆ R′

cons′=(C′,α′|C′) C = C′ X⊆ X′

V′=V α⊆ α′
.

Moreover assume that no new (i. e., of a rule from R′ \R) left-hand side is a constructor
term. Then the following properties hold:

• The reduction relations→R,X and→R′,X′ coincide for constructor terms, i. e.: ∀s ∈
T (cons,X) : ∀t : (s→∗R′,X′ t ⇔ s→∗R,X t ⇔ s→∗RC,X t).

• The reduction relation→R,X is monotonic in X and R: →R,X ⊆→R′,X′ .

In [WG93] we have developed a couple of confluence criteria for PNCTRSs as well
as some slightly extended “decreasingness”-notions which generalize known results for
positive conditional rewrite systems (e. g., of [DOS88]). For related work on PNCTRSs
see also [AB92], [Bec93].

3 Inductive Validity: Notions and Interrelations

Definition 9. (Syntax of Formulas)
Let X ⊆ V. The set of formulas (or Gentzen clauses) over sig,X is defined to be
FORM(sig,X) := ATOM(sig,X)∗ ×ATOM(sig,X)∗, where ATOM(sig,X) is the set
of atoms over the predicate symbols ‘=’ and ‘Def’ on terms from T (sig,X). A formula
(Γ,∆) will also be denoted by Γ−→∆. For the special cases of −→∆ and (s = t)−→
we also write ∆ and (s 6= t) , respectively.

Definition 10. (Validity of Formulas in Algebras)
Let X⊆ V, A be a sig/cons-algebra, and κ ∈ S UB(X,A).
An atom (u = v) ∈ ATOM(sig,X) is true w. r. t. Aκ if Aκ(u) = Aκ(v).
An atom (Def u) ∈ ATOM(sig,X) is true w. r. t. Aκ if Aκ(u) ∈ A(CONS).
A formula (Γ−→∆) ∈ FORM(sig,X) is valid in A if ∀κ ∈ S UB(X,A):

(∀A in Γ: (A is true w. r. t. Aκ) ⇒ ∃B in ∆: (B is true w. r. t. Aκ)).



Next we introduce a notion for substitutions that replace constructor variables by con-
structor ground terms and leave the general variables invariant.

Definition 11. (Inductive Substitutions)
The set of inductive substitutions is defined by: INDSUB(V,cons)
:= {τ∈S UB(V,T (VSIG)) | τ[VCONS]⊆ GT (cons)∧ τ|VSIG=id|VSIG}.

Definition 12. (Type-A / B′ / B / C / D′ / D / E Inductive Validity)
Let R be a PNCTRS over sig/cons/V, let M be the class of all models of R and K be the
class of all constructor-minimal models of R. Then a formula (Γ−→∆)∈ FORM(sig,V)
is said to be
— type-A inductively valid w. r. t. R, denoted by R |=A

ind Γ−→∆, if
∀A∈M: ∀τ ∈ INDSUB(V,cons): (Γ−→∆)τ is valid in A .

— type-B′ inductively valid w. r. t. R, denoted by R |=B′
ind Γ−→∆, if

∀A∈M: ((A is CONS:cons-term-generated) ⇒ (Γ−→∆) is valid in A).
— type-B inductively valid w. r. t. R, denoted by R |=B

ind Γ−→∆, if
∀A∈K: ∀τ ∈ INDSUB(V,cons): (Γ−→∆)τ is valid in A .

— type-C inductively valid w. r. t. R, denoted by R |=C
ind Γ−→∆, if

∀A∈K: ((A is CONS:cons-term-generated) ⇒ (Γ−→∆) is valid in A).

— type-D′ inductively valid w. r. t. R, denoted by R |=D′
ind Γ−→∆, if

∀A∈K: ((A is SIG:cons-term-generated) ⇒ (Γ−→∆) is valid in A).
— type-D inductively valid w. r. t. R, denoted by R |=D

ind Γ−→∆, if
(Γ−→∆) is valid in T (VSIG)/

∗
↔R,VSIG .

— type-E inductively valid w. r. t. R, denoted by R |=E
ind Γ−→∆, if

(Γ−→∆) is valid in GT /
∗
↔R, /0.

Type-A formulates the idea that (constructor) variables are meant to denote objects de-
noted by (constructor) ground terms. However, contrary to all other types, type-A does
not restrict the models of the specification that have to be considered, but considers only
instances of formulas obtained by inductive substitutions. Type-B′ forbids junk in the
constructor sub-universe (i. e. the domain of interest), which makes inductive substitu-
tions redundant. Type-B forbids unnecessary confusion in the constructor sub-universe.
Type-C combines both restrictions, which is appealing if one wants to prescribe a pre-
cise and fixed knowledge on the basic objects for computation. Type-D′ corresponds to
the philosophy that a partially defined function is to be interpreted as the set of all pos-
sible complete and consistent extensions. Type-D and E finally fix one specific unique
minimal model which has neither junk nor confusion in the constructor sub-universe
and which can be described constructively in terms of the factor algebra of the term
algebra modulo the congruence induced by the reduction relation (provided the latter is
confluent). Type-E uses the ground term algebra GT , which is only adequate (cf. The-
orem 17 and Example 14) when no general variables occur in the formula. Therefore,
Type-D uses the term algebra T (VSIG) over VSIG. In a sense, type-D means inductive
semantics for VCONS and free semantics for VSIG. The notations of the types of inductive
validity are motivated by the following result:



Lemma 13. (From Type-A down to Type-E)
Let R be a PNCTRS over sig/cons/V and Γ−→∆ ∈ FORM(sig,V).

(a) If R |=A
ind Γ−→∆ , then R |=B

ind Γ−→∆ and R |=B′
ind Γ−→∆ .

(b) If R |=B
ind Γ−→∆ or R |=B′

ind Γ−→∆ , then R |=C
ind Γ−→∆ .

(c) If R |=C
ind Γ −→ ∆ , then R |=D′

ind Γ −→ ∆ and even
R |=D′

ind Γ′−→∆ where Γ′ results form Γ by deleting (some) Def-atoms.
(d) If R is a Def-MCTRS,→R,VSIG is confluent, and R |=C

ind Γ−→∆ , then R |=D
ind

Γ−→∆ .
(e) If R |=D

ind Γ−→∆ , then R |=E
ind Γ−→∆ .

(f) If R is a Def-MCTRS, →R, /0 is confluent, and R |=C
ind Γ−→∆ , then R |=E

ind
Γ−→∆ .

(g) Under the restrictive condition of sufficient completeness of →R, /0
(i. e.: ∀s∈GT (sig): ∃t∈GT (cons): s→∗R, /0 t) the following holds:
If R is a Def-MCTRS and→R, /0 is confluent, then we get:
R |=D′

ind Γ−→∆ ⇔ R |=E
ind Γ−→∆ .

The basic characteristics of and the relations between these notions of inductive validity
are illustrated in Figure 1 below where implications are indicated by arrows. Missing
arrows indicate non-implications as shown by Example 14 below.

no confusion & no junk

no confusion & and no junk for CONS,

for CONS

no confusion for SIG, and A(SIG) = GT (sig)/↔∗R, /0

no junk for SIG, and

A(SIG) = A[GT (cons)]

no confusion & no junk for CONS,

A

B′B

C

D D′

E

no confusion
for CONS

no junk for CONS,

no confusion &

A(SIG) = T (sig,VSIG)/↔∗R,VSIG

no confusion for SIG, and

for CONS

no junk

Figure 1

Example 14. Let us return to the specification on natural numbers from section 1 and
start with F := C := {s,0} and R := /0. Then we have

R |=B
ind s(0) 6= 0 , but R 6|=A

ind s(0) 6= 0 ,
since 0 and s(0) are interpreted as distinct objects in any constructor-minimal model of
R, and since s(0) 6= 0 does not hold for instance in the trivial model of R which identifies
everything. Furthermore, for the same reason we have



R |=C
ind s(0) 6= 0 , but R 6|=B′

ind s(0) 6= 0 .
Keeping C′ := C, let us add two non-constructor symbols + and ω, yielding F′ :=
{+, ω}]C, with the rules

R′: 0+ y = y, s(x)+ y = s(x+ y),
where it does not matter whether x,y are from VSIG or VCONS. Then we have

R′ |=C
ind (Def ω)−→ (ω+0 = ω) , but R′ 6|=B

ind (Def ω)−→ (ω+0 = ω) ,

since if (Def ω) is valid in some CONS:cons-term-generated model then ω can be de-
noted by some constructor ground term si(0), and since for type-B inductive valid-
ity we also have to consider (constructor-minimal) models containing constructor ob-
jects that are not denoted by some term of the form si(0), e. g. GT ′/↔∗R′, /0 where
GT ′ differs from GT only in the constructor sub-universe given as GT ′(CONS) :=
GT (SIG). Note that GT ′/↔∗R′, /0 is constructor-minimal indeed, due to GT ′/↔∗R′, /0
.CONS GT /↔∗R′, /0 . Furthermore, for the same reason we have

R′ |=B′
ind (Def ω)−→ (ω+0 = ω) , but R′ 6|=A

ind (Def ω)−→ (ω+0 = ω) .

Again keeping C′′ := C, let us add a non-constructor symbol−, yielding F′′ := {−}]C,
with the rules

R′′: x−0 = x, s(x)− s(y) = x− y,
where it does not matter whether x,y are from VSIG or VCONS. Then we have

R′′ |=D
ind 0− s(0) 6= 0 , but R′′ 6|=D′

ind 0− s(0) 6= 0
because 0−s(0) 6= 0 does not hold in the SIG:cons-term-generated constructor-minimal
model obtained by identifying 0− y with 0. Furthermore,

R′′ |=D′
ind (0− s(0))− (0− s(0)) = 0 , but R′′ 6|=E

ind (0− s(0))− (0− s(0)) = 0

because a SIG:cons-term-generated model must satisfy 0− s(0) = si(0) for some i, but
(0−s(0))− (0−s(0)) 6↔∗R′′, /0 0 (i. e., (0−s(0))− (0−s(0)) = 0 does not hold in the
CONS:cons-term-generated, constructor-minimal model GT /↔∗R′′, /0 of R′′).
Finally, keeping C′′′ := C and choosing F′′′ := {+}]C, for X ∈ VSIG we have R′ |=E

ind
X+0 = X (which is not the case for the consistent extension via F′′′ := F′), but R′ 6|=D

ind X+0 =
X , since ∀t∈GT (sig): t +0 ↔∗R′, /0 t but not X+0 ↔∗R′,VSIG

X .

While the example has shown that the reverse of each implication depicted in the figure
does not hold in general, the following lemma gives sufficient conditions.

Lemma 15. (From Type-E up to Type-A)
Let R be a PNCTRS over sig/cons/V and Γ−→∆ ∈ FORM(sig,V).
(a) If Γ−→∆ does not contain variables from VSIG, then we get:

R |=E
ind Γ−→∆ ⇒ R |=D

ind Γ−→∆ .
(b) If R is a Def-MCTRS,→R, /0 is confluent, and if for all (top level) terms u of atoms

in Γ we have R |=D
ind (Def u), then we get:

R |=D
ind Γ−→∆ ⇒ R |=C

ind Γ−→∆ .
(c) If for each atom (Def u) in Γ we have R |=C

ind (Def u),7 then we get:
R |=C

ind Γ−→∆ ⇒ R |=B
ind Γ−→∆ .

If for each atom (Def u) in Γ we have R |=B′
ind (Def u),7 then we get:

R |=B′
ind Γ−→∆ ⇒ R |=A

ind Γ−→∆ .



(d) If no rule in R has a negative condition (like u 6= v), then we get:
R |=C

ind ∆ ⇒ R |=A
ind ∆ .

Note that (by Lemma 13) Lemma 15 also permits to conclude from type-C to B′ (via
A), from type-B to A (via C), and from type-D′ to C (via E, D).

Lemma 16. (Operational Characterization of Type-D Inductive Validity)
Let R be a PNCTRS over sig/cons/V and Γ−→∆ ∈ FORM(sig,V).
Then R |=D

ind Γ−→∆ is equivalent to ∀τ ∈ S UB(V,T (VSIG)):




∀(u=v) in Γ: uτ↔∗R,VSIG
vτ ∧ ∀(Def u) in Γ: ∃û∈GT (cons): uτ↔∗R,VSIG

û
⇒

∃(u=v) in ∆: uτ↔∗R,VSIG
vτ ∨ ∃(Def u) in ∆: ∃û∈GT (cons): uτ↔∗R,VSIG

û





Finally we show that (under some reasonable assumptions) all defined notions of in-
ductive validity are monotonic w. r. t. consistent extension.

Theorem 17. (Monotonicity of Inductive Validity w. r. t. Consistent Extension)

Let R be a PNCTRS over sig/cons/V and let R′ be another PNCTRS over sig′/cons′/V′

with8
sig′=(F′,α′) F⊆ F′ R⊆ R′

cons′=(C′,α′|C′) C = C′ X⊆ X′

V′=V α⊆ α′
.

Moreover assume that
(∗) →R′, /0 is confluent

and that the following condition for the new left hand sides holds:

(∗∗) ∀ (C⇒ l=r) ∈ R′ \R: l 6∈ T (cons,VSIG ]VCONS).

Then, for any clause Γ−→∆ ∈ FORM(sig,V) we have:

(A) R |=A
ind Γ−→∆ ⇒ R′ |=A

ind Γ−→∆ (even without assuming (∗), (∗∗)).
(B′) R |=B′

ind Γ−→∆ ⇒ R′ |=B′
ind Γ−→∆ (even without assuming (∗), (∗∗)).

(B) If R′ is Def-moderate then we get: R |=B
ind Γ−→∆ ⇒ R′ |=B

ind Γ−→∆.
(C) If R′ is Def-moderate then we get: R |=C

ind Γ−→∆ ⇒ R′ |=C
ind Γ−→∆.

(D′) If R′ is Def-moderate then we get: R |=D′
ind Γ−→∆ ⇒ R′ |=D′

ind Γ−→∆.
(D) If for all (top level) terms u of atoms in Γ we have R |=D

ind (Def u),
then we get: R |=D

ind Γ−→∆ ⇒ R′ |=D
ind Γ−→∆.

(E) If Γ−→∆ does not contain variables from VSIG,
and if for all (top level) terms u of atoms in Γ we have R |=E

ind (Def u),
then we get: R |=E

ind Γ−→∆ ⇒ R′ |=E
ind Γ−→∆.

7 Even if this condition is not satisfied, the following equivalence transformation for type-B′, C,
D′, D, and E validity (but not for A and B) may help to apply the Lemma : Γ,(Def u),Γ′ −→ ∆
is equivalent to Γ,(x=u),Γ′ −→ ∆ for a fresh (i. e. not occurring in Γ, u, Γ′, ∆) constructor
variable x.

8 In a sorted framework one may even add new constructor symbols for new sorts and permit
new rules with left-hand sides that are new (but not old) constructor terms.



Proof. Let A ′ be some sig′/cons′-algebra. We define the sig/cons-algebra A by
A := A ′|F]{SIG,CONS}. Now an “old” formula Γ−→∆ ∈ FORM(sig,V) is valid in A
if and only if it is valid in A ′. Its inductive instances (Γ−→∆)τ do not differ for
τ ∈ INDSUB(V,cons) and τ ∈ INDSUB(V′,cons′) due to GT (cons) = GT (cons′).
Furthermore, if A ′ is CONS:cons′-term-generated (or even SIG:cons′-term-generated),
then A is CONS:cons-term-generated (or even SIG:cons-term-generated). Thus for
proving (A), (B′ ), [and (B), (C), (D′),] it suffices to show the following claim: (∗∗∗) If
A ′ is a [constructor-minimal] model of R′, then A is a [constructor-minimal] model of
R.

Proof of (∗∗∗): Assume that A ′ is a model of R′. Then A , as defined above, is a
model of R since each rule from R can be translated into an “old” formula (on which
A and A ′ do not differ). Let us now assume that R′ is Def-moderate and that A ′ is
constructor-minimal. Let GT ′ and GT (cons) denote the ground term algebra over
sig′/cons′ and cons, respectively. By (∗) and Theorem 6, GT ′/↔∗R′, /0 is a constructor-
minimum model of R′ w. r. t. sig′/cons′. Thus, A ′ must be a constructor-minimum
model of R′ w. r. t. sig′/cons′, too. Hence, there exists some cons′-homomorphism h′ :
A ′|C′]{CONS} → (GT ′/↔∗R′, /0)|C′]{CONS}. By defining h(a) := h′(a)∩GT (cons) (for
a ∈ A(CONS)), we get a cons-homomorphism h : A |C]{CONS} → GT (cons)/(↔∗R′, /0
∩ (GT (cons)×GT (cons))). By confluence of →R′, /0 and Theorem 8 we get (↔∗R′, /0
∩ (GT (cons)×GT (cons))) ⊆ (↓R′, /0 ∩ (GT (cons)×GT (cons))) ⊆ ↓RC, /0 ⊆ ↔

∗
RC, /0 ⊆

ker(B) for the kernel of any model B of R, and by the Homomorphism-Theorem we
then get A .CONSB . Thus, A is not only a model of R, but also a constructor-minimal
one.

Proof of (D): We use the operational version of type-D inductive validity given in
Lemma 16. Let τ′ ∈ S UB(V′,T ′(VSIG

′)) and assume the condition of the implica-
tion of Lemma 16 to hold for this τ′. There exist τ ∈ INDSUB(V′,cons′) and σ ∈
S UB(V′SIG,T ′(VSIG

′)) such that τ′ = τσ and τ|V ∈ S UB(V,T (VSIG)). By assumption
we know that for each atom (u = v) in Γ the formulas (Def u) and (Def v) are valid in
T (VSIG)/↔∗R,VSIG

. Thus there exist û, v̂∈GT (cons) with uτ↔∗R,VSIG
û and vτ↔∗R,VSIG

v̂.
By Theorem 8 we obtain uτ↔∗R′,VSIG

′ û and vτ↔∗R′,VSIG
′ v̂. Together with uτ′↔∗R′,VSIG

′

vτ′, which holds by assumption, this yields (exploiting stability of →R,X) û↔∗R′,VSIG
′

uτσ↔∗R′,VSIG
′ vτσ↔∗R′,VSIG

′ v̂. Thus (since↔∗R,X ∩ (GT (cons)×GT (cons)) = ↔∗R, /0)
we get û↔∗R′, /0 v̂ which, due to confluence of→R′, /0, implies û ↓R′, /0 v̂. Theorem 8 yields
û ↓R, /0 v̂, hence (by monotonicity of →R,X in X (Theorem 8)) uτ ↔∗R,VSIG

û ↔∗R,VSIG
v̂↔∗R,VSIG

vτ. Furthermore, for each atom (Def u) in Γ we have assumed that (Def u)
is valid in T (VSIG)/↔∗R,VSIG

. Thus there exists some û ∈ GT (cons) with uτ↔∗R,VSIG
û.

Because of R |=D
ind Γ−→∆ we can conclude that there is an atom (u = v) ∈ ∆ with

uτ↔∗R,VSIG
vτ or an atom (Def u)∈ ∆ with uτ↔∗R,VSIG

û for some û∈GT (cons). Appli-
cation of Theorem 8 yields uτ↔∗R′,VSIG

′ vτ or uτ↔∗R′,VSIG
′ û, respectively. Finally, due

to τ′ = τσ (and stability of→R,X) we obtain uτ′↔∗R′,VSIG
′ vτ′ or uτ′↔∗R′,VSIG

′ û, respec-
tively, as desired. Summarizing, we can conclude R′ |=D

ind Γ−→∆ as was to be shown.

Proof of (E): By Lemma 15(a), (D), Lemma 13(e).



4 Discussion and Related Work

4.1 Advantages/Disadvantages

As shown above, all our notions of inductive validity have the desired monotonic be-
haviour w. r. t. consistent extension (under reasonable assumptions).

Concerning operational feasibility of the different types of inductive validity, the
following can be said. Type-A can be approached by usual first-order theorem prov-
ing via induction schemes relying on the fact that only the validity of the inductive
instances has to be considered. For type-B, C, and D we are and will be investigating
inductive theorem proving techniques which are supported by a confluent rewriting re-
lation. Lemma 16 allows us to develop powerful inference rules for type-D, some of
which are not applicable for type-C (and B), which is no surprise since less formulas
are of these types. Such an approach is more powerful than presenting an inference
system for type-D only and then to approach type-C (and B) via Lemma 15(b) (and
(c)). To see this, consider the specification with constructor constants a,b,c and non-
constructor function symbol h with partial specification h(a) = b, h(b) = a. Now the
formula Def h(c)−→ h(h(h(c))) = h(c) is type-C valid which cannot be inferred via
Lemma 15(b). It is, however, easy to show its type-C validity via a type-C equivalence
transformation into x = h(c) −→ h(h(h(c))) = h(c) (for x∈VCONS) and subsequent
case analysis (via a “covering set” of substitutions for x) followed by “contextual rewrit-
ing”. Note that the formula h(h(h(c))) = h(c) is of type-D′ only. In fact, there are ex-
amples for type-D′ that require inferences of this kind which are far more complicated
since they may not allow for a finite argumentation. Therefore, we suspect that it will
be difficult to develop a prover that can effectively show those type-D′ inductively valid
formulas that do not result from type-C valid formulas Γ−→∆ by deleting Def-atoms
in Γ (cf. Lemma 13(c)).

4.2 Special Cases

In the sequel we will assume R to be a Def-MCTRS and→R,VSIG to be confluent.
Let us first consider the special case that cons = sig and that no variables from

VSIG occur in formulas. Note that, for cons = sig, our requirement of being constructor-
based permits positive conditional equations only. In this case (disregarding formulas
that involve Def-literals) type-A and B′ validity are validity in all (cons=sig )-term-
generated models. Furthermore, Type-B, C, D′, D, and E coincide with validity in the
unique minimal term-generated model (i. e. the initial model). Hence, we obtain classic
initial semantics (for positive conditional equational specifications) as a special case of
our general framework.

Still not permitting general variables in formulas, another important special case is
that of sufficient completeness (cf. Lemma 13(g)), where type-C, D′, D, and E again co-
incide, and where the model GT /

∗
↔R, /0 (which establishes type-E) is cons-isomorphic

to GT (cons)/↔∗RC, /0 (cf. Definition 4).
Let us finally restrict to positive formulas−→∆. Here type-A and B′ coincide. So do

B, C, and D. Furthermore, these two groups coincide when no rule in R has a negative
condition (cf. Lemma 15(d)).



4.3 Related Work

Let us now have a brief look at notions of inductive validity in the literature, most
of which can be described as specializations within our framework. If we consider all
symbols to be constructor symbols (and, consequently, forbid negative conditions in
the rules), then we find type-A in [KR90] as well as in [BKR92]. The crucial idea of
requiring the values of variables in formulas to be defined, i. e., to be substituted by
constructor ground terms only, seems to appear first in [Zha88], [ZKK88]. The “con-
structor models” of [Zha88], [ZKK88], which are not models in the usual algebraic
sense since functions are allowed to be partially interpreted, are consistently formalized
in our framework by introducing the simple (order-sorted) notion of sig/cons-algebras.
The notion of inductive validity of [ZKK88], [Zha88] can be described as type-A by
implicitly interpreting all variables in rules as general variables and all variables in for-
mulas as constructor variables. In [GS92] inductive validity is defined to be validity
in the perfect model as introduced in [BG91]. This approach has a more general spec-
ification formalism permitting sets of first-order clauses instead of constructor-based
PNCTRSs. The perfect model is determined as the least term-generated model w. r. t.
some ground-total reduction ordering. The perfect model semantics, however, lacks the
discussed monotonicity property. In [Pad90], [BL90], [KR88] and [BR93] we find the
usual validity in the initial model which is like our type-E, assuming again all sym-
bols to be constructor symbols and forbidding negative conditions in the rules. Kapur
and Musser ([KM87], [KM86]) consider only unconditional equations and only con-
gruences on ground terms (i. e. term-generated models) for validity, namely those that
are maximally enlarged by random identification of undefined terms with defined ones
(i. e. constructor ground terms) as long as this identification does not identify distinct
constructor ground terms. Their intended congruence is then the intersection of all those
maximally enlarged congruences. In [KM87] the maximal congruences are allowed to
have some undefined terms left (accounting for the fact that the constructor-minimality
requirement may forbid any further identification from some point on). The resulting
“inductive models”, however, lack the discussed monotonicity property, cf. [WGKP93]
for an example. Therefore, in [KM86] the intersection is formed only over those congru-
ences that have no undefined ground terms left. While we have no notion of inductive
validity corresponding to that of [KM87], inductive validity in [KM86] coincides with
type-D′. Finally, the problems due to not yet known or incompletely specified function
symbols are also discussed in [Wal94], mainly along the lines of [KM86].

5 Conclusion

We have shown that considering inductive validity of first-order equational clauses in-
stead of pure unconditional equations gives rise to various conceivable notions of in-
ductive validity. Within the framework of constructor-based positive/negative condi-
tional equational specifications (which provides an adequate unique model semantics)
we have demonstrated that all these notions enjoy a desirable monotonic behaviour
w. r. t. consistent extension, which is not the case for classic initial or perfect model
validity.
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