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1.8 Summary / Zusammenfassung

1.8.1 Summary

Unlike explicit induction, mathematical induction by descente infinie does not enforce an early
commitment (i.e. an eager strategy) to a fixed induction ordering and to a fixed set of induc-
tion hypotheses. The work schedule of the project Descente Infinie is to integrate utilities for
proof development by mathematical induction into the assistance system ΩMEGA,1 to evaluate
the feasibility of our approach to descente infinie,2 and to find the extensions necessary in prac-
tice. Regarding the development and presentation of complex induction proofs, the ultimate goal
of this integration is to demonstrate that computer assistance can not only satisfy the requirements
of a working mathematician on usability, flexibility, and modularity, but even improve the current
mathematical practice in certain aspects.

As complex induction proofs are only one of many challenging aspects of mathematical
activity tackled by the ΩMEGA research group,3 the project is to be scientifically and socially
embedded into a wider context. The vision of a powerful mathematical assistance environment
which provides computer-based support for most tasks of a mathematician has recently stimulated
new projects and international research networks across the disciplinary and systems boundaries.
Examples are the European CALCULEMUS4 and MKM5 initiatives, the EU projects MONET,6

OPENMATH,7 and MOWGLI,8 and the American QPQ9 repository of deductive software tools.

1.8.2 Zusammenfassung

Im Gegensatz zur expliziten Induktion zwingt die mathematische Induktion mittels Descente Infi-
nie nicht zur frühzeitigen Festlegung einer bestimmten Induktionsordnung und einer bestimmten
Auswahl an Induktionshypothesen. Das Arbeitsprogramm des Projektes Descente Infinie besteht
in der Integration von Dienstprogrammen zur Entwicklung von mathematischen Induktionsbe-
weisen in das Assistenzsystem ΩMEGA, der Evaluation der Umsetzbarkeit unseres Ansatzes zur
Behandlung der Descente Infinie und der Erforschung der in der Praxis erforderlichen Erweiterun-
gen. Bezüglich der Entwicklung und Repräsentation komplexer mathematischer Induktionsbe-
weise soll diese Integration schließlich nachweisen, dass eine Computer-Unterstützung nicht nur
die Anforderungen an Brauchbarkeit, Flexibilität und Modularität im mathematischen Alltag er-
füllen kann, sondern sogar in der Lage ist, die gegenwärtige mathematische Praxis in einigen
Punkten zu verbessern.

1http://www.coli.uni-sb.de/sfb378/projects.phtml?action=2&w=14
2Cf.. Wirth (2004a)
3http://www.ags.uni-sb.de/~omega/
4http://www.calculemus.org
5http://monet.nag.co.uk/mkm/index.html
6http://monet.nag.co.uk/cocoon/monet/index.html
7http://www.openmath.org/cocoon/openmath/index.html
8http://www.mowgli.cs.unibo.it/
9http://www.qpq.org
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2 State of the art, Own preliminary work

Building on the ΩMEGA proof assistant, currently under development at Saarland University, the
objective of the project is to investigate the realizability of computer-assistance (Section 2.1.1,
Section 2.2.1) for complex mathematical induction proofs (Section 2.1.2, Section 2.1.3, Section 2.2.2).

2.1 State of the art

2.1.1 Computer-Assisted Mathematical Theorem Proving

Many mathematicians use their computers just as improved typewriters, with the following ex-
ceptions, roughly arranged from successful to less successful computer support: typesetting, elec-
tronic publishing, information retrieval, numerical and computer algebra computation, mathema-
tical databases, theory development, and theorem proving.

The low acceptance of computer assistance in theorem proving among mathematicians sug-
gests to look at the situation from a mathematician’s point of view before we describe the state of
the art in more detail.

Theory Development10 Some mathematicians use typesetting systems to develop their theories
and proofs in more detail after a first raw pen and paper sketch, because they can replace names
and symbols systematically and document the development process—even if this may only mean
to keep a failed proof attempt or a previous version of a definition or theorem as a comment in the
LATEX source file. This may, however, be very time consuming when parts of the typesetting turn
out to be irrelevant for the final presentation. More crucially, however, mathematical theories,
notions, and proofs are not developed the way they are documented. This difference is not only
due to the iterative deepening of the development and the omission of easily reconstructible parts.
Also the global order of presentation in publication more often than not differs from the order of
development, resulting in the famous eureka steps, which puzzle the freshmen in mathematics.
This is not only the case for scientific publications where the succinct presentation of results may
justify this difference, but also for the vast majority of textbooks and lectures where the objective
should be to teach how to find proofs, notions, and theorems.

The whole development process can be improved. It should be possible to generate differ-
ent presentations for proof search, education, and succinct documentation for different purposes
from a general-purpose internal deep representation, from which the surface representation is
computed.

10Note that here we use the term “theory development” to refer to the development of new theories by a small group
of mathematicians and not to the encoding of existing theories for joint use of the whole mathematics community in
huge mathematical databases such as MBASE, cf. http://www.mathweb.org/mbase.
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Theorem Proving Very few mathematicians use proof checkers or interactive theorem provers
(with some degree of automation) for checking those parts of their proofs of important theorems
where soundness is a problem. Typically, these are the parts which are error-prone but rather
boring and complex, involving lengthy argumentation and complicated case analysis.

However, today’s theorem provers are not well integrated into the mathematician’s daily
work. Instead of supporting the mathematician, the mathematician has to support the system:
Strong automation support is inherently sensitive to syntactic presentation style. For the more
interactive large-scale organization of the proofs this situation has to be improved and our goal is
to satisfy the following requirements on computerized proofs:11

Modularization via small lemmas Instead of a single huge proof graph for a theorem, a work-
ing mathematician needs a forest where each lemma has its own proof tree and the trees are
connected by lemma applications. As mathematical practice shows, it should be irrelevant for
applying a lemma whether it already has a proof or whether it is still open and to be proved later.
Application of induction hypotheses must be possible in a similarly unrestricted fashion.

Overcoming Bourbakism Besides standard requirements on accessibility, the systems’ func-
tionality has to use the language of the working mathematician.12 While the vagueness of the
natural language of mathematical communication is an essential quality,13 the implementational
flavor14 of formal logic puts most mathematicians off.

A mathematical proof is usually designed top-down and the refinement stops at different
levels, typically before reaching the level of a basic calculus. Such a design is not possible with
most theorem provers because they require some bottom-up over-formalized development in the
style of Bourbaki (1954). Obviously, a more flexible top-down proof development at abstract
levels would be more appropriate. Only for checking a proof with an external proof checker do
we have to go down to the level of a basic calculus and deal with all the tiny logical details when
automation fails.15

11I could not find information on the subject published by mathematicians who are not professionally occupied
with computers. Chang (2004), however, nicely describes the confusion about computer proofs in the mathematics
community. The listed requirements are based on my own experience and private discussions with many mathema-
ticians, theoretical computer scientists, logicians, system developers, and students.

12This language, for example, includes higher-order logic but does not apply the special logic jargon and notation
of the higher-order logic community.

13For example, mathematicians successfully use the language of set theory without specifying which axiomatiza-
tion of set theory they actually refer to.

14Formal logic and set theory were designed for formalization and consistency proofs. Thus, besides the structure,
the concrete implementation matters and isomorphic structures must not be identified in general, contrary to most
other areas of mathematics.

15In general, however, this is most expensive and too tedious to be accepted by mathematicians. To go down to
the level of a basic calculus for external proof checking may be appropriate in software verification. Even there, we
should be aware of the fact that epistemologically this procedure does not protect us from a possible inconsistency
of logical systems (cf. Gödel (1931), Wittgenstein (1939)) and practically the translation of the theorem and the
integration of the parts into a whole physical system is still a sufficient source for errors! Thus, the goal should be
to find as many errors as possible with the given resources. In mathematics, this has always been the objective and
the experienced mathematician knows very well how formal he has to get in which parts of his proofs. Actually,
this is one of the most astonishing abilities: to realize the point where the semantic view on the problem gains a
gestalt which makes further formalization superfluous. Thus, the inherent problem of high costs of stepping down
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Implicitness of calculi and proper notions of their completeness As logical calculi were
originally designed for defining theories, the standard notions of completeness are not sufficient
for proof search: It is not just the existence of some proof we are interested in, but exactly the
proof the mathematician has in mind must be realizable within the system in an appropriate and
recognizable form.

Moreover, we do not consider it to be appropriate that a mathematics assistance system
coerces working mathematicians into thinking explicitly in terms of formal logic calculi during
their meta-level proof constructions.

Systems Overview Already in the 1970s, Benthem Jutting (1977) formalized Landau (1930) (a
supplement to Calculus textbooks) and passed the code through the non-interactive proof checker
AUTOMATH.16 The main interactive systems in which substantial theories have been represented
are the following: The higher-order interactive theorem proving environment HOL17 in the log-
ical framework Isabelle.18 However, just like Mizar,19 they suffer from Bourbakism as described
above. PVS20 is very useful for program verification, but it is still too much oriented toward
implementation and its type system fascinates more the logicians than the mathematicians. The
intuitionistic logic systems Coq21 and Nuprl22 are not in the scope of two-valued logics used
exclusively by the vast majority of working mathematicians on the meta level. For a more de-
tailed discussion of these systems cf. Barendregt (2003). In any case, these systems are poor in
supporting top-down proof development and descente infinie.

2.1.2 Descente Infinie

In everyday mathematical practice of an advanced theoretical journal the frequent inductive ar-
guments are hardly ever carried out explicitly, but instead the proof just reads something like “by
structural induction on n, q.e.d.” or “by induction on

�
x � y � over � , q.e.d.”, expecting that the

mathematically educated reader could easily expand the proof if in doubt.

In contrast, very difficult inductive arguments, sometimes covering several pages, such as the
proofs of Hilbert’s first ε-theorem (Hilbert & Bernays (1968/70), Vol. II) or Gentzen’s Hauptsatz
(Gentzen (1935)), or confluence theorems like the one in Gramlich & Wirth (1996) still require
considerable ingenuity and will be carried out! The experienced mathematician engineers his
proof roughly according to the following pattern:

to the level of a basic calculus can be overcome for our project by relying on the mathematician’s abilities and not
enforcing a complete low-level logic formalization.

16http://www.cs.kun.nl/~freek/aut/
17http://www.cl.cam.ac.uk/Research/HVG/HOL/
18http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
19http://www.mizar.org
20http://pvs.csl.sri.com
21http://coq.inria.fr/
22http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html
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He starts with the conjecture and simplifies it by case analysis. When he realizes
that the current goal becomes similar to an instance of the conjecture, he applies
the instantiated conjecture just like a lemma, but keeps in mind that he has actually
applied an induction hypothesis. Finally, he searches for some wellfounded ordering
in which all the instances of the conjecture he has applied as an induction hypothesis
are smaller than the original conjecture itself.

The hard problems in these induction proofs are

(i) to find the numerous induction hypotheses (as, e.g., to eliminate the Cut in the proof of
Gentzen’s Hauptsatz) and

(ii) to construct a wellfounded ordering that satisfies the ordering constraints of all these induc-
tion hypotheses in parallel (which was, e.g., the hard part for Wilhelm Ackermann in the
elimination of the ε-formulas in the proof of the first ε-theorem).

The soundness of the above method for engineering hard induction proofs is easily seen when
the argument is structured as a proof by contradiction, assuming a counterexample. For Pierre
Fermat’s (1607?–1665) historic reinvention of the method, it is thus just natural that he developed
the method itself in terms of assumed counterexamples. He called it “descente infinie ou indéfinie”.
Here it is in modern language: A proposition Γ can be proved by descente infinie as follows:

Find a wellfounded ordering � and show that for each assumed counterexample of
Γ there is another counterexample of Γ that is smaller in � .

There is historic evidence on descente infinie being the standard induction method in mathe-
matics: The first known occurrence of descente infinie in history seems to be the proof of the
irrationality of the golden number 1

2

�
1 ��� 5 � by the Pythagorean mathematician Hippasos of

Metapont (Italy) in the middle of the 5 th century B.C., cf. Fritz (1945). Moreover, we find many
occurrences of descente infinie in the famous collection “Elements” of Euclid of Alexandria,
cf. Euclid (ca. 300 B.C.). The following eighteen centuries showed a comparatively low level
of creativity in mathematical theorem proving, but after Fermat’s reinvention of the Method of
Descente Infinie in the middle of the 17 th century, it remained the standard induction method of
working mathematicians until today.

2.1.3 Automated Theorem Proving by Induction

In the 1970s, the school of Explicit Induction was formed by computer scientists working on
the automation of inductive theorem proving. Inspired by J. Alan Robinson’s resolution method
(Robinson (1965)), they tried to solve problems of logical inference via reduction to machine-
oriented inference systems. Instead of implementing more advanced mathematical induction
techniques, they decided to reduce the second-order Theorem of Nötherian Induction and the
inductive Method of Descente Infinie to first-order induction axioms and purely deductive first-
order reasoning. The so-called “waterfall”-method of the pioneers of this approach (Boyer &
Moore (1979)) refines this process into a fascinating heuristic, and the powerful inductive theorem
proving system NQTHM (Boyer & Moore (1988)) shows the success of this reduction approach.
For comprehensive surveys on explicit induction cf. Walther (1994) and Bundy (2001).
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Alternative approaches to automation of mathematical induction evolved from the Knuth–
Bendix Completion Procedure and were summarized in the school of Implicit Induction, which
comprises Proof by Consistency (Inductionless Induction), descente infinie and syntactical in-
duction orderings. While we are not going to discuss implicit induction here (cf., however, Wirth
(2005) for a survey), it seems to be necessary to distinguish descente infinie from the mainstream
work on explicit induction.

Modern explicit induction systems such as INKA (Autexier &al. (1999)) or ACL2 (Kaufmann
&al. (2000)) easily outperform even a good mathematician on the typical inductive proof prob-
lems that arise in his daily work or as subtasks in software verification. However, although explicit
induction has become a standard in education (cf. the � ERIFUN project,23 Walther & Schweizer
(2003)) and there is still evidence for considerable improvements over the years (cf. Hutter &
Bundy (1999)), these methods and systems do not seem to scale up to hard mathematical prob-
lems, and we believe that there are principle reasons for this shortcoming.

Explicit induction unfortunately must solve the hard problems (i) and (ii) mentioned above
already before the proof has actually started. A proper induction axiom must be generated without
any information on the structural difficulties that may arise in the proof later on. For this reason,
it is hard for an explicit-induction procedure to guess the right induction axioms for very difficult
proofs in advance. Although the techniques for guessing the right induction axiom by an analysis
of the syntax of the conjecture and of the recursive definitions are perhaps the most developed
and fascinating applications of heuristic knowledge in artificial intelligence and computer science,
even the disciples of explicit induction admit the limitations of this recursion analysis. In Protzen
(1994), p. 43, we find not only small verification examples already showing these limits, but also
the conclusion:

“We claim that computing the hypotheses before the proof is not a solution to the
problem and so the central idea for the lazy method is to postpone the generation of
hypotheses until it is evident which hypotheses are required for the proof.”

This “lazy method” and the label “lazy induction” that was coined in this context are nothing but
a reinvention of Fermat’s descente infinie by the explicit-induction community.

Descente infinie and explicit induction do not differ in the task (establishing inductive va-
lidity) but in the way the proof search is organized. For simple proofs there is always a straight-
forward translation between the two. The difference becomes obvious only for proofs of difficult
theorems. While explicit induction remains the method of choice for routine tasks, it is an obsta-
cle to progress in the automation of difficult proofs, where the proper induction axioms cannot be
guessed in advance.

23http://www.inferenzsysteme.informatik.tu-darmstadt.de/verifun/
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2.2 Own preliminary work

2.2.1 Computer-Assisted Mathematical Theorem Proving

Theory Development This is the subject of collaboration between the TEXMACS project24 of
Joris van der Hoeven and the ΩMEGA group, cf. Fiedler (2004). Although this collaboration is
not an immediate part of our project Descente Infinie, it will easily provide a powerful graphical
user interface to our system and, vice versa, our system is to provide data on proof states and
proof histories for each of the required presentation styles, namely for proof search, education,
and succinct presentation.

Modularization via small lemmas This modularization—as described in Section 2.1.1
—is already implemented in the QUODLIBET system,25 cf. Avenhaus &al. (2003), but restricted
to first-order clausal logic and tactic-based automation. For the more general proof-planning
framework of the ΩMEGA system, cf. Siekmann &al. (2002), the theoretical problems are solved
in Wirth (2004a) and for the practical and heuristic problems a task interface has been proposed
in the ΩMEGA group, cf. Wirth &al. (2004).

Overcoming Bourbakism Last winter we gave an introduction to human-oriented theorem
proving in a lecture course (cf. Wirth &al. (2003)) with the explicit goal to overcome the logic
jargons of the various research communities and their traditional formalist presentation. This has
attracted excellent master’s students to the ΩMEGA group and the experience and material will
serve as a source for tutorials and guidelines for system interfaces.

Proof development in the ΩMEGA system, cf. Siekmann &al. (2002), follows the top-down
development approach of the working mathematician and does not enforce a complete low-level
logic formalization.

Implicitness of calculi and proper notions of their completeness The design of human-
oriented calculi for proof search is a more recent development, cf. e.g. Wirth (1997), Giese
(1998), Kühler (2000), Autexier (2003), Wirth (2004a), Wirth (2004e). Cf. Section 3.2.2 for more
on this.

24http://www.texmacs.org/index.php3
25The current version of QUODLIBET can be obtained from http://agent.informatik.uni-kl.de.

quodlibet.html
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2.2.2 Descente Infinie

Looking for a formal inductive calculus for descente infinie, the “implicit induction” of Bach-
mair (1988) (as implemented in UNICOM, Gramlich & Lindner (1991)) was a starting point for
us, because it includes an explicit step for lazy induction-hypothesis application; but its calcu-
lus is machine-oriented and restricted to first-order universally quantified unconditional equa-
tions. These limitations were so severe in practice that we decided to stop the development of
UNICOM and use this experience for the development of the QUODLIBET system based on a
human-oriented inductive calculus for first-order universally quantified clausal logic, cf. Wirth
(1997), Kühler (2000), Avenhaus &al. (2003). We have used QUODLIBET for proofs on natu-
ral numbers (non-terminating specification of division), sorting algorithms on lists (bubble-sort,
insertion-sort, merge-sort, quick-sort), binary search trees (cf. Kühler (2000)), orderings (lexico-
graphic path ordering), and the irrationality of � 2 in the style of Hippasos of Metapont. Note that
the latter two examples cannot be appropriately handled with systems based on explicit induction,
such as INKA and ACL2; indeed, the first involves complex mutual inductions over an ambiguous
and non-terminating defining case analysis, and the second applies a descente infinie which does
not rely on recursion analysis at all. In Kühler (2000), the concepts and the implementation of
the QUODLIBET system are presented in detail. Very recently, the underlying standard tactics
were again considerably improved, cf. Schmidt-Samoa (2004). An intelligent and flexible com-
bination with decision procedures is in progress at the University of Kaiserslautern. Disregarding
run times and decision procedures, the QUODLIBET system has about the same level of automa-
tion by recursion analysis as the leading explicit induction systems; and indeed, all the heuristic
knowledge and automatization of the field of explicit induction are still applicable and indispens-
able in our framework of descente infinie. The possibility to be lazy, however, simplifies things
when different induction schemes are in conflict (compare Walther (1992) with Kühler (2000),
Section 8.3). Another advantage is that—when automation fails—QUODLIBET stops early and
presents the state of the proof attempt in a human-oriented form. For the project Descente Infi-
nie, it is important that the whole set of standard tactics for automation and recursion analysis is
available in the higher-level tactic programming language QML (QUODLIBET Meta Language).

In Wirth (2004a) we have shown how to integrate descente infinie into state-of-the-art free-
variable sequent and tableau calculi which are well-suited for an efficient interplay of human
interaction and automation. The semantical requirements are satisfied for a variety of two-valued
logics, such as clausal logic, classical first-order logic, and higher-order modal logic. This new
formal basis can provide a flexible support for a mathematician searching for hard induction
proofs.26

26For example, our comprehensive integration of descente infinie differs from the “lean” calculus of Baaz &al.
(1997) in the following aspects: We can have mutual induction and variable induction orderings. Our induction
hypotheses can be arbitrary sequents instead of a single preset literal. Finally, we can also generate induction hypo-
theses eagerly in the style of explicit induction, which enables goal-directedness w.r.t. induction hypotheses.
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3 Goals and Work Schedule

The work schedule of the project Descente Infinie is to integrate utilities for proof development
by mathematical induction into the assistance system ΩMEGA,27 to evaluate the feasibility of our
approach to descente infinie,28 and to find the extensions necessary in practice. Regarding the
development and presentation of complex induction proofs, the ultimate goal of this integration
is to demonstrate that computer assistance can not only satisfy the requirements of a working
mathematician on usability, flexibility, and modularity, but even improve the current mathematical
practice in certain aspects.

3.1 Goals

To achieve a practically useful mathematics assistance system we aim at an interactive system
with a high degree of automated support. To combine interaction and automation into a syner-
getic interplay is a very difficult and complex task. It requires sophisticated achievements from
logic, tactics programming, proof planning, agent-based approaches from artificial intelligence,
graphical user interfaces, and connection to external reasoning tools on the one hand, and a deeper
experience in informal and formal human proof development on the other hand. Obviously, the
development of a state-of-the-art mathematics assistance system is a huge enterprise, requiring
expertise from many different fields. This enterprise is approached by a functional extension of
the current ΩMEGA system and by a re-implementation of its logic engine within the OMEGA
project of the Collaborative Research Center SFB 378 “Resource-Adaptive Cognitive Processes”,
cf. Wirth (2004c). Very recently, this project has been evaluated successfully for a final funding
period.

Although encoding of proofs by mathematical induction is possible in any higher-order logic
system such as the simply-typed λ-calculus of Alonzo Church used in the ΩMEGA system, neither
the current ΩMEGA system nor its planned extension include any convenient support for the actual
development of proofs by mathematical induction.

Why does a higher-order theorem prover (such as the ΩMEGA system) need this additional
support for mathematical induction?

Inductive theorem proving (typically in the form of explicit induction) has been a standard
extension to first-order deductive theorem proving for a third of a century now. Obviously, the
notions of wellfoundedness and inductive definition, Peano’s axioms and similar axioms for struc-
tural induction, and the Theorem of Nötherian induction are all of second order. This seems to be
the origin of the popular belief that higher-order theorem proving does not need to be augmented
with special features for inductive theorem proving. It is already a motivation for higher-order
theorem proving in addition to first-order theorem proving, however, that the existence of some
encoding for any possible proof 29 is insufficient. Instead, the two following essential require-
ments on proof development are to be respected:

27http://www.coli.uni-sb.de/sfb378/projects.phtml?action=2&w=14
28Cf.. Wirth (2004a)
29Note that this does not mean completeness w.r.t. a semantics but only completeness w.r.t. other calculi.
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(A) For the human-assisted actual construction of proofs, the proofs have to exist in the special
informal structure intended by the users of the system.

(B) For a high level of automation support, the proofs have to exist in the special syntactical
forms needed to represent the data structures of the heuristic procedures.

In spite of the more expressive language, the requirements (A) and (B) apply to proof construction
in higher-order logic just as in first-order logic. Therefore—as induction proofs are ubiquitous in
mathematics—a special support for induction in higher-order theorem-proving systems is indis-
pensable for their successful application to mathematical practice.

Luckily, our approach to inductive theorem proving by descente infinie is mostly orthogonal
to the approach to deductive theorem proving pursued in the new logic engine of the ΩMEGA

system; and the overlapping parts are closely matching each other.30 Moreover, it is advantageous
that COMMON LISP is the common implementation language of ΩMEGA, CORE, and QUOD-
LIBET.

3.2 Work Schedule

From the discussion in the previous section it should have become clear that the features for
adding descente infinie to the logic engine of the ΩMEGA system can and have to be realized
within our project Descente Infinie in close cooperation with the specification (Work Package I,
ca. 2 months) and the re-implementation (Work Package II, ca. 18 months) of the logic engine for
the deductive system parts of the ΩMEGA system in the OMEGA project. The inclusion into
the graphical user interface (Work Package III, ca. 4 months) is to be supported by the collabo-
ration between the OMEGA and the TEXMACS project, where the project Descente Infinie has
to provide the different presentation forms of induction proofs in the form of a logical history.
During the second year of the application period (2 years) we want to start modeling complex
induction proofs with our system (Work Package IV) and to integrate natural language into our
formulas, profiting from the DIALOG project of the Collaborative Research Center SFB 378
“Resource-Adaptive Cognitive Processes”, cf. Wirth (2004c). Very recently, also this project has
been evaluated successfully for a final funding period. In the second period (another 2 years), the
feasibility of our approach to descente infinie is to be evaluated and the extensions necessary in
practice have to be found and realized. Finally, proof planning methods for descente infinie have
to capture the experience and the knowledge gained by the system developers.

30Note that it would be very difficult to realize our modeling of descente infinie within the current ΩMEGA system
due to its natural deduction calculus, which does not provide the flexibility we need and whose concept of assumption
is in conflict with our concept of induction hypothesis. The reason that the planned new logic engine fits descente
infinie much better than the old system is partly due to a very close collaboration during the last three years. More-
over, comparing Wallen (1990), Giese (1998), Wirth (1999), Kühler (2000), and Autexier (2003), it seems that the
experience with the design of theorem provers that are capable of realizing non-automatable complex proofs evokes
similar concepts and solutions in researchers with different background and different focus.
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3.2.1 Work Package I: Task Interface

A task can be seen as a proof obligation, a proof line with logical context, a sequent, or a lemma
we want to prove from a set of assumptions. A task may contain different kinds of free variables
to be instantiated appropriately during the proof construction. It is only via the rigid instantiation
of these free variables that a task interacts with or threatens other parallel tasks. Thus, a task can
be seen as a somewhat independent proof goal.

The task interface is going to be a major interface in the running re-implementation of the
logic engine of ΩMEGA system, cf. Wirth &al. (2004). Roughly speaking, it is to separate the
heuristic part of the theorem prover from its high-level logic engine in the broader sense. The
heuristic part consists of user interaction, reasoning agents, tacticals, and proof planning. The
logic engine is the part that executes proof steps in the proof forest and reports and keeps track of
the justifications and soundness conditions of these steps. Thus, all actions in proof construction
and presentation have to communicate with the logic engine via this interface.

The task interface is a non-trivial software engineering problem: The central role of this
interface in the new ΩMEGA system requires a high degree of stability and, for its definition, the
expertise of the whole ΩMEGA group.

Descente Infinie For proof construction and presentation by descente infinie the planned task
interface of the ΩMEGA system has to be extended with the possibility to apply induction hypo-
theses. This basically means the addition of

(1) a weight term to each task,

(2) a new action to apply tasks as induction hypotheses to other tasks, and

(3) a decision algorithm for the inductive closedness of a proof tree in a proof forest.

For (1) we have to extend the task data structure with a higher-order free γ-variable (or “meta-
variable”) of variable result type which gets the free δ 	 -variables of the task as arguments. The
action for (2) is similar to lemma application but generates additional subgoals that guarantee the
termination of the inductive reasoning cycles. Finally, the realization of (3) in Work Package II
will be quite complex as our proof trees are and-or trees and we have to check for the existence of
an acyclic justification for closedness. The decision procedure is described in Wirth &al. (2004)
and its run-time behavior turned out to be uncritical in the QUODLIBET system. For the general
details cf. Wirth (2004a).

Liberalized δ-rule and Hilbert’s epsilon Another extension of ΩMEGA’s task interface to be
realized within our project Descente Infinie is the addition of free δ 
 -variables to the logic lan-
guage with the following two objectives.

On the one hand, these free δ 
 -variables will enable the ΩMEGA system to apply liberal-
ized δ-steps (δ 
 -steps, cf. Hähnle & Schmitt (1994)) according to the classification of Smullyan
(1968). Contrary to black-box automated theorem proving, our motivation for δ 
 -steps is not
so much the existence of non-elementarily shorter proofs due to smaller variable-conditions and
a more careful consideration of the dependency of variables. Instead, our motivation is that
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δ 
 -steps frequently occur in the proofs of working mathematicians: Humans typically do not
increase multiplicity or apply a lemma more often than necessary just to compensate for a sloppy
dependency consideration. Indeed, sophisticated lazy dependency considerations are a standard
element of mathematical proofs, typically starting with a sentence such as “Finally, we have to
show that it is possible to choose a independently from b and c.”

On the other hand, the free δ 
 -variables will supply the ΩMEGA system with a powerful
choice operator, namely our new variant of Hilbert’s ε-operator, cf. Wirth (2002). Of all known
variants, this one is best-suited for proof search because a free δ 
 -variable representing a commit-
ted choice for an ε-term can be globally replaced with any term satisfying the choice-condition.
In this aspect of proof search, the free δ 
 -variables behave similarly to the free γ-variables (or
“meta”-variables). Moreover, our ε-operator comes for free with our approach to descente infinie
and the liberalized δ-rule, its descriptive power offers a multitude of additional applications, and
its operationalization is closely integrated into the logical system.

For more details cf. Wirth (2002) and Wirth (2004a).

3.2.2 Work Package II: Logic Engine

The logic engine is to be a high-level human-oriented inference engine in the wider sense, real-
izing the task interface of Work Package I. It executes proof steps in the proof forest and reports
and keeps track of the justifications and conditions on soundness and safeness of these steps.
Moreover, it provides the information on the current state, focus, and context of the proofs and
the possible proof steps to the calling programs and human users.

The basis of the logic engine is a high-level human-oriented calculus for proof search with
strong automation support. The call for and development of such calculi has occurred only
quite recently, cf. e.g. Wirth (1997), Giese (1998), Kühler (2000), Autexier (2003), Wirth (2004a),
Wirth (2004e). These calculi are to overcome the following two problems:

� A low-level standard calculus which is not optimized for proof search tends to export low-
level tasks to higher levels of abstraction. These low-level tasks have turned out to be prob-
lematic in practice because they can neither be ignored nor properly treated on the higher
levels. For example, the proof planning (high level) in the old ΩMEGA system severely
suffers from its commonplace natural deduction calculus (low level) in many aspects.

� If automation fails on the lowest level, the human user must be given a fair chance to deal
with the basic calculus and to understand what the problem is.
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In the field of human-oriented calculi for proof search the design goals are the following:

1. compliance with natural human proof techniques,

2. support of the user in stating his proof ideas, and

3. no difficulties in understanding and searching for proofs represented with the system at any
level.

Automation will fail from time to time even on the deepest logic level. Thus, even the deepest
level within the system has to be based on a human-oriented calculus, such as the ones in Autexier
(2003), Wirth (2004a). Note that—contrary to popular belief that nomen est omen—we do not
consider natural deduction calculi for classical logic to be human-oriented. As explained in
Wirth (2004a), they are not particularly well-designed w.r.t. the design goals listed above and not
well-suited for the application of induction hypotheses.

The human-oriented calculi for descente infinie in two-valued logics of Wirth (2004a) pro-
vide inference rules for all natural proof steps and combine a homogeneous representation of all
proof tasks with a natural flow of information in the sense that a decision can be delayed or a
commitment deferred, until the state of the proof attempt provides sufficient information for a
successful choice. The calculus complies with natural human proof techniques. It supports the
human users in stating their proof ideas and in understanding and searching for proofs represented
in the calculus.

The CORE system of Autexier (2003) (developed for the running re-implementation of the
logic engine of the ΩMEGA system) goes one crucial step ahead of this in the following aspect: It
basically frees the users from thinking in terms of any calculus at all: A semantic understanding
of the language together with the idea of rewriting equals by equals is sufficient to control the
proof search interactively. A more sequent-based solution to interaction without awareness of a
calculus is sketched in Wirth (2004e) and has the advantage that it might simplify the migration
of heuristic knowledge from the sequent-based QUODLIBET system.

Technically, the CORE system combines a matrix calculus for two-valued logics based on
indexed formula trees in the style of Wallen (1990) with window-based focusing techniques à
la Monk (1988), Robinson & Staples (1993). The human user can set a focus on the crucial
subformula and the logical context is provided in the form of a set of rewrite rules. Thereby it
is—at least interactively—possible to model the experienced working mathematician’s practice
to jump immediately in medias res (i.e. to the crucial middle part of a typical calculus proof) and
to defer the less crucial decisions to later refinement. For example, the lim � -example (limit of
sums is sum of limits) in Wirth &al. (2003) shows how indexed formula trees admit to start with
the crucial estimate by the inequation before choosing the only successful β-step sequencing.
In any tableau calculus this has to be done in the reverse order, which means blind guessing
and typically wrong commitments, cf. Wirth &al. (2003). While means to find the proper β-
sequencing and -downfolding are still lacking in the ΩMEGA system, the proof plan it currently
constructs for lim � concentrates on the estimate and—just as a working mathematician—defers
the β-sequencing and -downfolding, which is the second main part of the high-level mathematical
problem besides the estimate.

In close cooperation and collaboration with Serge Autexier regarding the implementation of
the new ΩMEGA system in the OMEGA project, we want to change the current implementation
of the CORE system in the following aspects:
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(1) Add the weights required for descente infinie as indicated in the previous section.

(2) Replace the current representation of the proof state in two indexed formula trees with a
representation in a single indexed formula tree. This is to be achieved by switching from
the variable-conditions of Wallen (1990) to the state-of-the-art ones of Wirth (2004a).

(3) Split this huge single indexed formula tree into several small ones, one for each single task.

(4) Connect these small indexed formula trees with links for application of axioms, lemmas,
and induction hypotheses.

(5) Enable the bound δ 	 - and γ-variables to act as free δ 	 - and γ-variables for inter-task and
external systems communication.

(6) Improve the facilities to exploit the advantage of matrix over sequent or tableau calculi to
find the proper order of β-steps and the proper β-downfolding directions.

(7) Add the free δ 
 -variables with the functionality described in the previous section by a
general mechanism enabling the addition of further conditioned variables for capturing the
semantics and operationalization of reference constructs in natural language.

(8) Improve the rewrite-rule presentation of the context information provided for the subfor-
mula focused on.

(9) Add an interface realizing the QUODLIBET inference machine.

Contrary to Work Package I, most of these items are research problems and no engineering tasks.
Thus, it may well be that we fail to solve them in time and have to look for alternative solutions.
While it is not possible to discuss the planned alternative solutions in detail here, let us have a
closer look at the most problematic item:

Although the considerations in Wirth (2004e) may help, it is unclear how to simulate nav-
igation in sequent-calculus proof trees in indexed formula trees. This problem has to be solved
for (9), the realization of the QUODLIBET inference machine. As its roughly forty functions
provide the whole functionality required by the library of tactics in QUODLIBET meta language
after compilation, this realization would immediately provide us with a state-of-the-art automa-
tion support based on advanced recursion analysis. Moreover, we believe that this is also the right
level of integration: Naïvely, one would realize the tactics for automation by recursion analysis on
ΩMEGA’s proof planning level to take advantage from a declarative description and a synergetic
interplay with other methods for proof planning. The experience gained from investigations to
improve recursion analysis such as Walther (1992), Schmidt-Samoa (2004) is, however, that the
practical testing finally shows that the procedural character of this heuristic knowledge cannot be
successfully captured by abstraction and declarative description. It is also for this reason, that
the proof planning approach of the OYSTER-CLAM system (cf. Bundy &al. (1990)) fundamentally
differs by its more procedural character from the knowledge-based proof planning of the ΩMEGA

system (cf. Melis & Siekmann (1999)).

If we do not succeed in realizing the QUODLIBET inference machine as an interface to the
CORE system, the best alternative is to write a new compiler for QUODLIBET meta language
based on the refined CORE system. Although—exactly for this reason—the QUODLIBET meta
language has been designed to be very simple, the procedural character of the heuristic knowledge
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may not admit of such a compiler. In that case, we can either complete the rudimental integration
of the explicit-induction theorem prover INKA (cf. Autexier &al. (1999)) into CORE, or otherwise
loosely integrate QUODLIBET or INKA into the new ΩMEGA system using ΩMEGA’s standard
integration mechanisms for external systems.

3.2.3 Work Package III: Integration into User Interfaces

The modeling of complex induction proofs requires a sophisticated graphical user interface. This
is not only the case for the development of proof planning methods and the evaluation of our
approach to descente infinie by confronting working mathematicians with the system in a second
period, but already for the realization of the system developer’s paradigmatic examples of Work
Package IV. The example proof of the generalized Newman Lemma in Section 3.4 of Wirth
(2004a) is nearly the limit of complexity we can handle without a system support besides LATEX.31

Nevertheless, experience gained with the QUODLIBET system is that the possibility of modeling
proofs with a command or task interface is hardly possible and even the developers of the interface
themselves get hopelessly lost in counting term positions of bigger terms.

The current graphical user interfaces of the ΩMEGA (LΩUI) and the QUODLIBET system
are a great help in this context. But from our experience with them it has become clear that they
still fall short of what is needed for a system to be really useful in practice. The development of
a better graphical user interface is the subject of collaboration between the TEXMACS project32

of Joris van der Hoeven and the ΩMEGA group, cf. Fiedler (2004). The TEXMACS system—soon
to be adapted by major publishing companies such as Springer—improves the already very high
typesetting standard achieved in TEX. Moreover, the user communicates with the TEXMACS sys-
tem over a WYSIWYG graphical user interface. Important in our context is that, while TEX
carefully models the human typesetting process, TEXMACS focuses on the logical structure of
information, no matter whether this information comes from the users or from a program. Af-
ter adding the missing features for sophisticated communication with mathematics assistance
systems TEXMACS system, the ΩMEGA system will have an excellent graphical user interface
realized with the TEXMACS system by the end of next year. Although the construction of this
graphical user interface is not part of our project Descente Infinie, it will be a simple standard
programming task to include the basic features for descente infinie into this new interface.

The structured proof presentation achieved by this will be sufficient for inspecting states of
proof attempts in proof search and for interactive teaching. For the succinct presentation of proofs
in mathematical proceedings and journals (which is the ultimate goal of the TEXMACS / OMEGA
cooperation), this form of presentation is inappropriate. For example, the structure of the final
presentation of the complex induction proof of Gramlich & Wirth (1996) does not at all reflect
its development history. The presentation in the proceedings not only omits irrelevant trials and
easily reconstructible parts, but also starts with the presentation of the induction ordering in an
eureka step, which was the very last step in the development history of the proof. Contrary to the
encoding of mathematical induction in higher-order logic formulas, with our direct approach to
model the descente infinie of a working mathematician we can easily perform such proof history

31Note, however, that in Section 3.4 of Wirth (2004a) we had to go down to the level of the basic calculus to show
its human-orientedness. For the modeling of the proofs within our project Descente Infinie this will not be a must.

32http://www.texmacs.org/index.php3
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transformations and will present the results to the TEXMACS system in the format of the successor
to the P.rex system of Armin Fiedler, cf. Fiedler (2001a), Fiedler (2001b), Fiedler (2004).

3.2.4 Work Package IV: Modeling Complex Induction Proofs

Proof development in the ΩMEGA system, cf. Siekmann &al. (2002), follows the top-down devel-
opment approach of the working mathematician and does not enforce a complete low-level logic
formalization. The vagueness of mathematical argumentation (stated in Section 2.1.1 on page 4
as an essential property of high-level mathematical communication) is to be approached with the
following two means:

(1) The ΩMEGA system admits arbitrary COMMON LISP expressions as justifications for tasks
(or proof steps). These justifications can span a large variation in reliability, ranging from
“verified by the logic engine” over “computed by an external system” to “conjectured by a
mathematician”. Indeed—at the highest level of abstraction—the latter justification can be
a meaningful representation of knowledge, even if we have to take the task to which it is
assigned as a black box at first because we fail to analyze its semantics.

(2) A lazy approach to the task structure proposed in Wirth &al. (2004) will enable the working
mathematician to start with a restricted form of natural language and—if intended—end up
in sequents of strongly typed higher-order formulas. To be able to mix formal with informal
elements in a mutual recursion, we will initially represent parts marked as natural language
(possibly containing parts marked as formal language) as undefined functors.

During the second year of the application period (2 years) we will start modeling complex in-
duction proofs such as Hilbert’s first ε-theorem and the confluence theorem of Gramlich & Wirth
(1996).33

In the second funding period—provided that the first phase is successfully evaluated—we
want to complete the modeling of the above theorems and then go on with the ones of Wirth
(1995), which fall into the class of important34 inductive theorems with rather boring and complex
proofs. As already indicated in Section 2.1.1 on page 4, this class constitutes a typical area of
application of computer-assisted inductive theorem proving.

To improve the pragmatic treatment of natural language as a black box with holes, we shall
profit from the semantic analysis of a mixture of formulas and natural language as proposed in

33 Contrary to a partial analysis of natural language, there is no way to defer this to a second funding period.
It is even not adequate to wait for the completion of Work Packages II and III before starting the modeling of
complex induction proofs: Although the modeling will be very troublesome and awkward without the interfaces
being completed, it already has to accompany the realization of Work Package II because a practical solution to its
research tasks is not possible without some paradigmatic examples. Moreover, note that these paradigmatic examples
must not be simple: Otherwise the advantage of descente infinie over explicit induction cannot be realized. As our
example proofs already exist in a well-written but highly abstract form, it will be possible to have the coding executed
by students of mathematics. This has the additional advantage to give us a first early feedback on our goal of human-
orientedness. Nevertheless—just as the implementation tasks of Work Packages II and III—the experiments for Work
Package IV will result in a very high workload on the students’ side of our project Descente Infinie.

34The theorems in Wirth (1995) are the basis for the very weak admissibility conditions for specifications in
the QUODLIBET system, admitting partial, ambiguous, and non-terminating function definitions without sacrific-
ing powerful recursion analysis.
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Wirth (2004c) for the very recently successfully evaluated DIALOG project in the Collaborative
Research Center SFB 378 “Resource-Adaptive Cognitive Processes”. Moreover, our approach to
descente infinie (cf. Wirth (2004a)) includes a choice operator, namely a version of Hilbert’s ε-
operator, cf. Wirth (2002). Together with its extensible technique of realization by free variables
associated with conditions (as planned in step (7) of Work Package II), we hope it to be useful in
capturing the referential interpretation of articles and anaphoric pronouns, cf. Heusinger (1997).35

3.3 Human Experiments

None.

3.4 Animal Experiments

None.

3.5 Experiments with Recombinant DNA

None.

35As our setting, however, is less ambiguous than the DIALOG project’s tutorial setting and includes neither di-
alogs nor proofs but only tasks, applying some solutions of Zinn (2003) may be more appropriate in our context. Note
we are not going to do research in natural language understanding, but only want to apply the results pragmatically
in a very restrictive setting, possibly contributing our versions of Hilbert’s ε.
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4 Beantragte Mittel / Funds Requested

While the scientific parts of this proposal are written in English for communication with our inter-
national partners, the administrative sections are in German (according to private communication
with Dr. Gerit P. Sonntag of DFG).

4.1 Personalkosten / Staff

1. Ein wissenschaftlicher Mitarbeiter BAT IIa über die gesamte Förderperiode.

2. Eine wissenschaftliche Hilfskraft (mit Abschluss) (19 h) über die gesamte Förderperiode
zur Unterstützung der schwierigen Implementierungsarbeiten des Work Package II.

3. Eine studentische Hilfskraft (ohne Abschluss) (19 h) (Informatikstudent) über die gesamte
Förderperiode zur Implementation, zum Testen, zur Dokumentation und zur organisatorischen
Unterstützung.

4. Drei studentische Hilfskräfte (ohne Abschluss) (19 h) (Mathematikstudenten) für das zweite
Jahr der Förderperiode zur Unterstützung der Implementierungsarbeiten von Work Pack-
age III und zur Beweismodellierung innerhalb des Work Package IV. Zur Begründung
dieses besonderen Bedarfs siehe Fußnote 33.

4.2 Wissenschaftliche Geräte / Scientific Instrumentation

Keine.

4.3 Verbrauchsmaterial / Consumables

Keine. (Grundausstattung Prof. Dr. Jörg H. Siekmann)

4.4 Reisen / Travel Expenses

Die folgenden Zahlen beziehen sich auf zwei Jahre insgesamt.

Teilnahme an int. wissenschaftlichen Konferenzen (CADE,
IJCAI, IJCAR, TABLEAU, TPHOLs, &c.) (4 x 1300 � ) 5200 �

Konferenzgebühren (4 x 600 � ) 2400 �
Besuche bei Kooperationspartnern 2500 �
Einladung Gastwissenschaftler 1000 �
Summe 4.4 11100 �

4.5 Publikationskosten / Publication Costs

Keine.

4.6 Sonstige Kosten / Other Costs

Keine.
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5 Preconditions of the Project

5.1 Team

Dr. Serge Autexier DFKI and Universität des Saarlandes
Dr. Christoph Benzmüller assistant professor (C2), Universität des Saarlandes
Dr. Henri Lesourd wissenschaftliche Hilfskraft, Universität des Saarlandes
Prof. Dr. Jörg H. Siekmann full professor (C4), Universität des Saarlandes
Dr. Claus-Peter Wirth project leader, Universität des Saarlandes

5.2 Cooperation with other Scientists

� Prof. Dr. Jürgen Avenhaus, Prof. Dr. Klaus Madlener, Tobias Schmidt-Samoa, Fachbereich
Informatik, Universität Kaiserslautern, D–67663 Kaiserslautern, Germany, w.r.t. QUOD-
LIBET.

� Prof. Dr. Alan R. Bundy, Centre for Intelligent Systems and their Applications, School of
Informatics, University of Edinburgh, Appleton Tower, Crichton St, Edinburgh EH8 9LE,
Scotland, w.r.t. proof planning in inductive theorem proving and analysis of mathematical
discourse.

� Dr. Joris van der Hoeven, Département de Mathématiques, Université Paris-Sud, 91405
Orsay Cedex, France, w.r.t. TEXMACS.

� Dr. Dieter Hutter, DFKI GmbH Deduction and Multi-Agent-Systems Stuhlsatzenhausweg
3, D–66123 Saarbrücken, Germany, w.r.t. INKA and induction in general.

� Dr. Ulrich Kühler, sd&m AG, Am Schimmersfeld 7a, D-40880 Ratingen, Germany, w.r.t.
QUODLIBET.

5.3 Foreign Contacts and Cooperations

See the previous section. Besides these, the project Descente Infinie will profit from the excellent
and manifold international connections of the ΩMEGA group.

5.4 Available Equipment

The hardware equipment will be covered by the Grundausstattung of Prof. Dr. Jörg H. Siekmann.

5.5 Saarland University’s General Contribution

The general contribution for consumables from the Saarland University via the Grundausstattung
of Prof. Dr. Jörg H. Siekmann will be approximately 1000 � .
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5.6 Other Requirements

None.

6 Erklärungen / Declarations

6.1

Ein Antrag auf Finanzierung dieses Vorhabens wurde bei keiner anderen Stelle eingereicht. Wenn
ich einen solchen Antrag stelle, werde ich die Deutsche Forschungsgemeinschaft unverzüglich
benachrichtigen.

6.2

Der DFG-Vertrauensdozent der Universität des Saarlandes, Prof. Dr. Hartmut Janocha, wurde
von dieser Antragstellung unterrichtet.

7 Unterschrift(en) / Signature(s)

Saarbrücken, den 30. Juni 2004

(Dr. Claus-Peter Wirth)

8 Verzeichnis der Anlagen / List of Enclosures

1. CV des Antragstellers inkl. Publikationsliste

2. Aktuelle Publikation des Antragstellers: Wirth (2004a)

Alle Anlagen zum Verbleib.

Acknowledgments: I would like to thank Serge Autexier, Armin Fiedler, Jörg H. Siekmann and
Magdalena A. M. Wolska for most useful advice, and Tobias Schmidt-Samoa for some hints.
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