
AGS
2004

Proof Planning Limit Problems with Multiple
Strategies

Andreas Meier and Erica Melis
DFKI GmbH, 66041 Saarbrücken, Germany

E-Mail: {ameier|melis}@dfki.de
WWW:

http://www.ags.uni-sb.de/{~ameier|~melis}

SEKI Report SR–2004–04S
E
K

I-R
E

P
O

R
T

IS
S

N
14

37
-4

44
7

U
N

IV
E

R
S

IT
ÄT

D
E

S
S

A
A

R
LA

N
D

E
S

FA
C

H
R

IC
H

TU
N

G
IN

FO
R

M
AT

IK
D

–6
61

23
S

A
A

R
B

R
Ü

C
K

E
N

G
E

R
M

A
N

Y
W

W
W

:h
t
t
p
:
/
/
w
w
w
.
a
g
s
.
u
n
i
-
s
b
.
d
e
/

This SEKI Report was internally reviewed by:
Martin Pollet
FR Informatik, Universität des Saarlandes, D–66123 Saarbrücken, Germany
E-mail: pollet@ags.uni-sb.de
WWW: http://www.ags.uni-sb.de/~pollet

Editor of SEKI series:
Claus-Peter Wirth
FR Informatik, Universität des Saarlandes, D–66123 Saarbrücken, Germany
E-mail: cp@ags.uni-sb.de
WWW: http://www.ags.uni-sb.de/~cp/welcome.html

Proof Planning Limit Problems with Multiple Strategies

Andreas Meier and Erica Melis
DFKI GmbH, 66041 Saarbrücken, Germany

E-Mail: {ameier|melis}@dfki.de
WWW: http://www.ags.uni-sb.de/{~ameier|~melis}

September 18, 2004

Abstract

The development of proof planning in the ΩMEGA system was and is strongly influenced
by the still ongoing case study on limit problems. In this report we describe the application
of ΩMEGA’s recent proof planning approach, which is called proof planning with multiple
strategies, to problems from the limit domain. In particular, we point out how drawbacks
we encountered with the previous proof planner of ΩMEGA when applied to limit problems
motivated and influenced the development of proof planning with multiple strategies.

1

2

Contents

1 Introduction 3

2 Proof Planning 3
2.1 Basics of Proof Planning . 4

2.2 Methods and Control Rules . 5

2.3 From PLAN to MULTI . 8

3 The Limit Domain 14
3.1 Introduction . 14

3.2 Methods to Prove Limit Problems . 15

3.3 Proof Planning Limit Problems with PLAN 18

3.4 Drawbacks of PLAN . 20

3.4.1 Flexible Meta-Variable Instantiation . 20

3.4.2 Flexible Backtracking and Reasoning on Failures 21

4 ε-δ-Proof Plans with MULTI 23
4.1 The Strategies . 23

4.2 Cooperation of the Strategies . 25

4.3 The LIM+ Example . 26

4.4 Eager Instantiation . 29

5 Failure Reasoning in the Limit Domain 31
5.1 Guiding Case-Splits . 32

5.2 Lemma Speculation . 35

5.3 Goal-Directed Backtracking . 38

6 Results and Discussion 40
6.1 Related Work . 41

6.2 Failure Reasoning in CLAM . 42

6.3 Evaluation of the Proof Planning Approach 44

A Lim+ Example 50

B Limit Theorems 52

3

1 Introduction

Proof planning is an application of Artificial Intelligence planning techniques for automated theo-
rem proving at the abstract level of tactics. Proof planning was introduced by Bundy [10], in order
to avoid super-exponential search when proving theorems by induction. This proof planning for
inductive proofs is implemented in the proof planners CLAM [14] and λCLAM [39] in Edinburgh.

The research group developing the ΩMEGA proof development system in Saarbrücken ex-
tended Bundy’s proof planning approach such that proof planning can use domain knowledge in
order to plan proofs in different mathematical domains. The resulting proof planning approach
is called knowledge-based proof planning [36]. The scientific research in the ΩMEGA group was
and is driven by case studies. These case studies are used to evaluate former approaches and
their implementation, and the analysis of the case studies gives insights for the extension of an
approach and the development of new approaches. In addition, more often than not new applica-
tions give rise to new requirements which have to be integrated into the extended model.

The most influential case study for the development of proof planning in ΩMEGA is the case
study on proof planning limit problems. Theorems of the limit domain make statements about the
limit of functions and sequences as well as about continuity and the derivative of functions. Early
results about proof planning in the limit domain are reported in [31]. Following publications
point out the achieved progress in proof planning limit problems as well as the development of
ΩMEGA’s proof planning approach and their mutual influences and dependencies, for instance,
see [33, 32, 27, 36, 37, 35].

The recent proof planning approach in ΩMEGA is proof planning with multiple strategies [34].
The development of proof planning with multiple strategies was – among others – motivated and
strongly influenced by drawbacks we encountered with ΩMEGA’s previous proof planner, when
systematically tackling the limit problems from the analysis textbook [2]. In this report, we
describe the application of proof planning with multiple strategies to problems from the limit
domain. In particular, we discuss limit problems that can be solved by the new multiple-strategy
proof planner MULTI, while the previous proof planner of ΩMEGA fails to solve them, and point
out the reasons for MULTI’s success.

The structure of the report is as follows: We first describe the basics of proof planning in
ΩMEGA in section 2. This section contains brief descriptions of MULTI and ΩMEGA’s previ-
ous proof planner. In the subsequent section, we introduce the limit domain and explain how
ΩMEGA’s previous proof planner solves problems from the limit domain. The next two sections
then discuss the application of MULTI to limit problems: whereas section 4 gives a general ac-
count, section 5 is devoted to the realization of failure reasoning in MULTI to solve limit problems.
The report concludes in section 6 with the discussion of the results and related work.

2 Proof Planning

Proof planning was originally conceived as an extension of tactical theorem proving to enable
automated theorem proving at the abstract level of tactics. BUNDY’s key idea in [10] is to aug-
ment individual tactics with pre- and postconditions. This results in planning operators, so-called
methods. In the ΩMEGA [42] system the traditional proof planning approach is enriched by in-
corporating mathematical knowledge into the planning process (see [36]) and the introduction of

4

strategies (see [34]).

Domain-specific knowledge can be encoded in methods, in control rules, and in external
systems such as computer algebra systems or constraint solvers. Methods can encode not only
general proving steps but also steps particular to a mathematical domain. Control rules enable
meta-level reasoning about the current proof planning state as well as about the entire history of
the proof planning process in order to guide the search. The recent development of proof planning
with multiple-strategies introduces strategies and their heuristic control as another hierarchical
level, which provides the possibility to encode (mathematical) domain knowledge.

In the following, we briefly introduce the basics of proof planning in ΩMEGA and sketch the
two planners of the ΩMEGA system, the simple planner PLAN and the multiple-strategy planner
MULTI. A detailed description of the planners is given in [30].

2.1 Basics of Proof Planning

Proof planning in ΩMEGA considers mathematical theorems as planning problems.1 The initial
state of a proof planning problem consists of the proof assumptions and the goal description
consists of the theorem. Methods are the operators of proof planning, where methods are tactics
known from tactical theorem proving augmented with pre- and postconditions in order to derive
operators for AI-planning. Proof planning searches for a solution plan, i.e., a sequence of instan-
tiated methods that transforms the initial state into a state in which the theorem holds. In order to
find a solution plan, it searches for applicable methods and applies the instantiated methods. Sim-
ilar to AI-planning we call the instantiation of a method (i.e., the instantiation of a proof planning
operator) an action.

The effects and the preconditions of actions as well as the initial proof planning problem in
ΩMEGA consist of proof lines as used in [1]. A proof line is of the form L. ∆`F (R), where
L is a unique label, ∆`F a sequent denoting that the formula F can be derived from the set of
hypotheses ∆, and (R) is a justification expressing how the line was derived. Lines that are not
yet derived from other lines are called open lines and have an open justification. A line that is
not open is called a closed line. During the proof planning process all constructed proof lines are
stored in a data-structure called PDS [15]. For instance, the initial PDS for the proof problem
with theorem Thm and assumptions Ass1, . . . , Assn is:

LAss1
. LAss1

`Ass1 (Hyp)
...

LAssn . LAssn `Assn (Hyp)

LThm. LAss1
, . . . , LAssn `Thm (Open)

When a new action is added, then the new lines derived by this action are added into the PDS.
Moreover, all effect lines of the action are justified by an application of the method of the action
to the premises of the action. For instance, if an action of method M has the premise lines L1

and L2 and the effect line L3, then L3 becomes justified in the PDS by (M L1 L2). Since an
action justifies its effect lines, a closed PDS , i.e., a PDS without open lines, also forms a tactic-
level proof. Expansions of the actions, which correspond to tactic applications, can result in a

1See [48, 40] for introductions to AI-planning.

5

proof in ΩMEGA’s underlying higher-order natural deduction (ND) calculus [19]. However, in
the remainder of the report we will focus on the creation of abstract proof objects at the planning
level and not on the expansion to the ND calculus.

Central during the proof planning process are so-called tasks, which express which proof
lines (closed and open) can be used to construct a subplan for an open line. A task is a pair
(Lopen,SUPPSLopen

) where Lopen is an open line and SUPPSLopen
is a set of lines. The first

element of a task is called the task line or the goal of the task and the second element is called the
support lines or supports. The formula of the goal is also called task formula. A task with goal
Lopen and supports SUPPSLopen

is written as Lopen J SUPPSLopen
. During the planning pro-

cess a list of all current tasks is stored in a so-called agenda. For a problem with theorem Thm and
assumptions Ass1, . . . , Assn the initial agenda consists of the task LThm J {LAss1

, . . . , LAssn
}.

2.2 Methods and Control Rules

Methods
Methods encode the knowledge of the relevant proof steps of mathematical domains. Tech-

nically, a method in ΩMEGA is a frame data structure with the slots premises, conclusions, application

conditions, and proof schema.

The premises and conclusions of a method specify the preconditions and the effects of the
method. The conclusions should be logically inferable from the premises. The union of conclu-
sions and premises is called the outline of a method. Declarative descriptions of the formulas of
the outline can be given in the proof schema, which also provides the schematic or procedural
expansion information.

Premises and conclusions may be annotated with ⊕ and 	. The annotations are needed to
indicate whether a method is used for forward or backward search. As opposed to AI-planning,
where operators typically can be applied for both forward search and backward search, a method
in ΩMEGA is either used in forward search or in backward search. This is because methods
typically comprise complex computations that are reasonable either in one direction or in the
other direction.

Backward and forward methods are specified as follows: A backward method has 	 con-
clusions and ⊕ premises as well as 	 premises and blank premises. To compute an action of
the method, one of the 	 conclusions is matched with the goal of a given task and both, the
	 premises and the blank premises, are matched with supports of the task. When the resulting
action is introduced into the proof plan, then the goal is closed in the PDS and the ⊕ premises
are added to the PDS and become goals of new tasks. These new tasks inherit the supports of
the initial task except that the 	 premises are removed. The blank premises are not affected. A
forward method has ⊕ conclusions as well as 	 premises and blank premises. To compute an
action of the method, the 	 premises and the blank premises are matched with the support lines of
a given task. When the resulting action is introduced into the proof plan, then the ⊕ conclusions
are added to the PDS and become new support lines of the task. Moreover, the 	 premises are
removed from the supports of the task. Again, the blank premises are not affected.

Consider the method =SUBST-B, given in Figure 1, which can be used in all domains that
employ the equality .

=. Essentially, the method performs an equality substitution. It has two

6

Method: =SUBST-B
premises ⊕L2, L1

conclusions 	L3

appl. conds.

(1) valid-position-p(f ,pos)
(2) [term-at-position(f ,pos) = t ∨

term-at-position(f ,pos) = t′]

proof schema

L1. ∆ ` t
.
=t′ ()

L2. ∆ ` f ′ (Open)

L4. ∆ `∀Pαo P (tf ′) ⇒ P (tf) (≡E
.
=)

L5. ∆ ` (λf)(tf ′) ⇒ (λf)(tf) (∀E L4 λf)

L6. ∆ ` f [tf ′] ⇒ f [tf] (λ↔ L5)

L3. ∆ ` f (⇒E L2 L6)

Figure 1: The =SUBST-B method.

preconditions L1 and L2, where the proof schema determines L1 to be an equation. The only
conclusion is L3. =SUBST-B is a backward method. The introduction of an action of =SUBST-B
closes a task line whose formula matches with the formula of L3 and introduces a new task whose
goal is the instantiation of L2. That is, the formula of the new goal results from the formula of the
initial goal by substitution with the equation, which is the formula of a support of the initial task
that matched with L1. For instance, =SUBST-B applied to the task even(a + 1) J {a = 1, . . .}2

introduces the new goal even(1 + 1).

The application conditions of a method are meta-level descriptions that restrict the applicabil-
ity of a method. The application conditions can consist of arbitrary LISP functions. The method
=SUBST-B has two application conditions: (1) the position pos has to be a valid position in the
formula f and (2) the subterm in f at the position pos is t or t′. Note that application conditions
reason only about whether the application of a method is valid in a certain situation; they do not
reason about whether the application is useful.

The proof schema of a method is a declarative description of the outline of a method. More-
over, it describes the expansion of actions of the method, which corresponds to both tactic ex-
pansions and expansions of HTN-planning [45]. When an action of a method is expanded, then
for each conclusion a new subproof is introduced into the PDS . For instance, the proof schema
of =SUBST-B specifies that the defined concept .

= in the premise is replaced by its definition
(i.e., the Leibniz-Equality definition). Then, some calculus rules ∀E , λ↔, and ⇒E are applied to
derive the conclusion of the method.

Generally, proof construction may require to construct mathematical objects, for instance, if
a method has to instantiate existentially quantified variables by witness terms. A witness term
has to be a concrete term. However, if the method is applied at an early stage of the proof, the
planner generally has no knowledge of the witness term. Therefore, the actual instantiation of
witnesses can be postponed; rather, methods can introduce so-called meta-variables as temporary
substitutes for the actual witness terms, which will be determined at a later point in the planning
process and subsequently instantiated.

2To simplify this example, we just write the formulas of the goal and the support line instead of the whole proof
lines.

7

Further methods relevant for proof planning limit problems are discussed in section 3.2.

Notation In this report, we write mv for meta-variables. If several meta-variables occur, we
attach subscripts to mv in order to distinguish the meta-variables. We either use the variable for
whose instantiation the meta-variable is a substitute as subscript (e.g., we write mvx if mv is a
substitute for the instantiation of the variable x) or we use numbers. If the decomposition of a
quantified formula results in the introduction of a constant, then we write c for this constant. Sim-
ilar to the notation for meta-variables, we use either the initial variable or numbers as subscripts
to distinguish several occurring constants.

Notation Methods are written in TEXT SMALL CAPITAL FONT (e.g., =SUBST-B). The name of
backward methods ends with -B and the name of forward methods ends with -F.

Control Rules
Control rules provide guidance of the proof planning process by declaratively representing

heuristical knowledge that corresponds to mathematical intuition about how to prove a goal in a
certain situation. In particular, these rules provide the basis for meta-level reasoning and a global
guidance since they can express conditions for a decision that depends on all available knowledge
about the proof planning process so far. The control rules used in ΩMEGA’s proof planning were
adopted from the control rule approach of the AI-planner PRODIGY [47],

In the planning process control rules guide decisions at choice points, e.g., which task to
tackle next or which method to apply next. They achieve this by reasoning about the heuristic
utility of different alternatives3 in order to promote the alternatives that seem to suit best in the
current situation, where ‘situation’ comprises all available information on the current status such
as the current tasks, their supports, the planning history, failed attempts, etc. To manipulate an
alternative list control rules can remove elements, prefer certain elements, or add new elements.
This way, the ranking of alternatives is dynamically changed. This can help to prune the search
space or to promote certain promising search paths.

Technically, control rules consist of an IF- and a THEN-part. The IF-part is a predicate on the
current proof planning ‘situation’, whereas in the THEN-part modifications of alternative lists are
stated. Moreover, each control rules specifies its kind, i.e., the choice point in the proof planning
process it guides.

(control-rule prove-inequality
(kind methods)
(IF (and (goal-matches (REL A B))

(in REL {<, >,≤,≥})))
(THEN (prefer (TELLCS-B TELLCS-F ASKCS-B SIMPLIFY-B

SIMPLIFY-F SOLVE*-B COMPLEXESTIMATE-B
FACTORIALESTIMATE-B SETFOCUS-B))))

Figure 2: The control rule prove-inequality.

Figure 2 gives as example the control rule prove-inequality, which is evaluated during
the selection of the next method to apply. In its IF-part prove-inequality checks whether

3As opposed to application conditions of methods, which reason about the legal feasibility of applications of
methods (see last section).

8

the current goal is an inequality. If this is the case, it prefers the methods TELLCS-B, TELLCS-F,
ASKCS-B, SIMPLIFY-B, SIMPLIFY-F, SOLVE*-B, COMPLEXESTIMATE-B, FACTORIALESTIMATE-
B, and SETFOCUS-B in this order (these methods are explained in section 3.2). The prefer states
that the methods specified in the control rule are preferred before all other methods, i.e., the spec-
ified methods are ordered in front of the resulting alternative list. Other possible modifications
of alternative lists are select, reject, defer, and order-in-front. select states that all other methods
except those specified in the control rule are eliminated from the list of alternative methods. re-
ject removes all alternatives specified in the control rule from a given alternative list, the latter
two manipulations reorder the alternative list. defer orders all specified alternatives at the end
of the alternative list, and order-in-front orders specified alternatives in front of other specified
alternatives. Finally, there is the insert modification. It allows to introduce new elements in an
alternative list. A typical situation for using an insert control rule is when a general control rule
– which is applied first – removes some elements from the alternative list, which are needed in
a particular situation. Then a more specific insert control rule, which is applied later on, can
introduce the needed elements again.

Notation Control rules are denoted in typewriter font (e.g., prove-inequality).
Technically, control rules are frame data structures. Since they are considerably simpler as, for
instance, methods, we do not present them in the data structure fashion (as we do with methods)
rather we give their LISP encoding. That is, the content of Figure 2 is the specification of the
control rule prove-inequality as it is in ΩMEGA’s data base.

2.3 From PLAN to MULTI

PLAN is ΩMEGA’s simple proof planner. It proceeds by successively computing and introducing
actions into a proof plan under construction. Table 1 shows the outline of PLAN’s algorithm.
First, PLAN selects a task to work on. Then, it computes actions for this task and selects one
action, which it introduces into the proof plan under construction. This results in new tasks on
which PLAN continues. If PLAN fails to compute an action for a selected task, then it performs
backtracking. Although actions can perform both, forward reasoning and backward reasoning, an
action is always chosen with respect to a task in order to close or to reduce the gap between the
goal and the supports of the task.

1. When the current agenda is empty and the current PDS is closed, then apply external con-
straint solvers to compute variable instantiations consistent with the collected constraints
and terminate.

2. Select a task T from the agenda.

3. Compute and select an action A with respect to T .

4. If an action A could be computed for T , then introduce A. Goto step 1.

5. If no action A could be computed for T , then backtrack the action whose introduction
created the task T . Goto step 1.

Table 1: Cycle of PLAN.

9

Some decisions in PLAN can be guided by control rules, for instance, the selection of the
next task and the selection of the next action. Other decisions, however, are hard-coded into the
system. For instance, PLAN employs backtracking if and only if it tackles a task, for which it fails
to compute an action. Moreover, it employs external constraint solvers to obtain instantiations for
meta-variables if and only if the agenda is empty and the PDS is closed.

When we extended the exploration of the limit domain and when we explored further do-
mains we encountered problems of the simple proof planning approach realized in PLAN (see
section 3.4 for the discussion of several problems) that caused us to reconsider ΩMEGA’s proof
planning approach and gave rise to the development of multi-strategy proof planning, which we
realized in the MULTI system.

Proof planning with multiple strategies decomposes the previous monolithic proof planning
process and replaces it by separated parameterized algorithms as well as different instances of
these algorithms, so-called strategies. The strategies, which specify different behaviors of the
algorithms, are the basic elements for proof construction in multiple-strategy proof planning. That
is, the goal of multiple-strategy proof planning is to compute a sequence of strategy applications
that derives a given theorem from a given set of assumptions. The decision on when to apply a
strategy is not encoded once and forever into the system but rather is determined by meta-level
reasoning using heuristic control knowledge of strategies and their combination.

Algorithms
MULTI enables the incorporation of heterogeneous, parameterized algorithms for different

kinds of proof plan refinements and modifications. Currently, MULTI employs the following
algorithms:

PPLANNER refines a proof plan by introducing new actions.

INSTMETA refines a proof plan by instantiating meta-variables.

BACKTRACK modifies a proof plan by removing refinements of other algorithms.

EXP refines a proof plan by expanding complex steps.

ATP refines a proof plan by solving subproblems with traditional machine-oriented automated
theorem provers.

CPLANNER refines a proof plan by transferring steps from a source proof plan or fragment.

The decomposition of the previous monolithic proof planner of ΩMEGA allows to extend and
generalize the functionalities of its subcomponents. This results in the independent and parame-
terized algorithms PPLANNER , INSTMETA , and BACKTRACK for action introduction, meta-variable
instantiation, and backtracking. EXP, ATP, and CPLANNER integrate new refinements of the proof
plan.

Strategies
Instances of these algorithms can be specified in different strategies. Technically, a strategy is

a condition-action pair. The condition part states when the strategy is applicable. The action part

10

consists of a modification or refinement algorithm and an instantiation of its parameters. Similar
to the knowledge of the applicability of methods we separate the legal and heuristic knowledge
of the applicability of strategies. The condition part of a strategy states the legal conditions that
have to be satisfied in order for the strategy to be applicable, whereas strategic control rules
reason about the heuristic utility of the application of strategies.

To execute or to apply a strategy means to apply its algorithm to the current proof planning
state with respect to the parameter instantiation specified by the strategy. For instance, the pa-
rameters of PPLANNER are a set of methods, a list of control rules, and a termination condition.
When MULTI executes a PPLANNER strategy, the PPLANNER algorithm introduces only actions
that use the methods specified in the strategy. PPLANNER evaluates the control rules specified
by the strategy during the computation and selection of actions. The application of the strategy
terminates, when its termination condition is satisfied. Hence, different strategies of PPLANNER
provide a means to structure the method and control rule knowledge. Both algorithms, INSTMETA
and BACKTRACK , have one parameter. The parameter of INSTMETA is a function that determines
how the instantiation for a meta-variable is computed. If MULTI applies a INSTMETA strategy with
respect to a meta-variable mv, and if the computation function of the strategy yields a term t
for mv, then INSTMETA substitutes mv by t in the proof plan. The parameter of BACKTRACK is
a function that computes a set of refinement steps of other algorithms that have to be deleted.
When MULTI applies a BACKTRACK strategy, then BACKTRACK removes all refinement steps that
are computed by the function of the strategy as well as all steps that depend from these steps.
Examples of strategies are introduced and discussed in section 4.1.

Notation Strategies are denoted in the sans serif font (e.g., NormalizeLineTask, UnwrapHyp).

Tasks
MULTI extends the task concept of PLAN. Since MULTI employs further kinds of tasks, the

tasks used in PLAN (i.e., a pair consisting of an open line and its supports) are called line-tasks
in MULTI. Another kind of tasks are instantiation-tasks. The introduction of a meta-variable
into the plan results in an instantiation-task, that is, the task to instantiate this meta-variable. The
instantiation task for meta-variable mv is written as mv|Inst.

Different tasks can be tackled by different algorithms and strategies. For instance, since strate-
gies of INSTMETA introduce instantiations for meta-variables they can tackle instantiation-tasks,
whereas strategies of PPLANNER or ATP can tackle line-tasks. A strategy checks in its condition
part whether it is applicable to a particular task. That is, the condition of a strategy is a predicate
on tasks. To apply a strategy to a task means to execute the strategy with respect to the task.

MULTI

When we designed proof planning with multiple strategies, we aimed at a system that allows
for the flexible cooperation of independent components for proof plan refinement and modifica-
tion, guided by meta-reasoning. For the implementation we decided to use a blackboard architec-
ture because this is an established means to organize the cooperation of independent components
for solving a complex problem.

MULTI’s architecture is displayed in Figure 3. In this figure dashed arrows indicate informa-
tion flow whereas solid arrows indicate that a knowledge source changes the content of the re-

11

Memory

SolveLinearInequality

NormalizeTask

InstIfDetermined

BackTrackActionToTask

MetaReasoner

Blackboard

Job Offers

Demands

Control

Blackboard
Proof

Scheduler

ST
R

A
T

E
G

IE
S

Strategic
Proof Plan:

− Sequence of Actions
− Agenda
− PDS

History

− Sequence of
binding stores

Figure 3: MULTI’s blackboard architecture.

spective blackboard. MULTI’s architecture is similar to the HEARSAY-III [18] and the BB1 [21]
blackboard systems in that it employs two blackboards, the so-called proof blackboard and the
control blackboard.

We decided for a two-blackboard architecture to emphasize the importance of both the solu-
tion of the proof planning problem whose status is stored on the proof blackboard and the solution
of the control problem, that is, which possible strategy should the system perform next. The proof
blackboard contains the current strategic proof plan, which consists of a sequence of actions, an
agenda, a PDS , and a sequence of binding stores, which store the collected instantiations of
meta-variables, as well as the strategic history. The control blackboard contains three repositories
to store information relevant for the control problem: job offers, demands, and a memory.

Corresponding to the two blackboards, there are also two sets of knowledge sources shown
in Figure 3 that work on these blackboards. The strategies are the knowledge sources that work
on the proof blackboard. A strategy can change the proof blackboard by refining or modifying
the agenda, the PDS , and bindings of the meta-variables. Moreover, each strategy application
is recorded in the history of strategies. The strategy component contains all the strategies that
can be used. If a strategy’s condition part is satisfied with respect to a certain task in the agenda,
then the strategy posts its applicability with respect to this task as a job offer onto the control
blackboard. Technically, a job offer is a pair (S, T) with a strategy S and a task T , which signs
that T satisfies the condition of S. That is, in the terminology of blackboard systems, a task that
satisfies the condition of a strategy is the event that triggers the strategy. The MetaReasoner is
the knowledge source working on the control blackboard. It evaluates strategic control knowledge

12

represented by strategic control rules in order to rank the job offers. The architecture contains a
scheduler that checks the control blackboard, for its highest ranked job offer. Then, it executes
the strategy of the job offer with respect to the task specified in the job offer. In a nutshell, MULTI
operates according to the cycle in Figure 4, which passes the following steps:

Job Offer Strategies whose condition is true put a job offer onto the control blackboard.

Guidance The MetaReasoner evaluates the strategic control rules to order the job offers on the
control blackboard.

Invocation A scheduler invokes the strategy who posed the highest ranked job offer.

Execution The algorithm of the invoked strategy is executed with respect to the parameter in-
stantiation specified by the strategy.

Execution Guidance

Invocation

Job Offer

Figure 4: Cycle of MULTI.

The choice of a job offer can depend on particular demand information issued by strategies
onto the control blackboard and the content of the memory. An executed strategy can reason on
whether it should interrupt. This can be sensible if the strategy is stuck or if it turns out that
it should not proceed before another strategy is executed. Then, the execution of a strategy in-
terrupts itself, places demands for other strategies onto the control blackboard, and stores a pair
consisting of its execution status and the demands it posed in the memory. Interrupted executions
of a strategy stored in the memory place job offers for their re-invocation onto the control black-
board. A job offer from the memory consists just of a pointer to the memory entry that posed this
job offer. If such a job offer is scheduled, the interrupted strategy execution is re-invoked from
the memory.

By posing demands and interrupting strategies particularly desired cooperations between
strategies can be realized. For instance, in order to enable a flexible instantiation of meta-variables
during the proof planning process (as opposed to PLAN’s approach) PPLANNER strategies and
INSTMETA strategies have to cooperate (see section 4.2). This cooperation works as follows: The
PPLANNER strategy contains some control rules, which check whether instantiations of meta-
variables should be introduced before the execution of the PPLANNER strategy continues. If this
is the case, such a control rule causes the interruption of the PPLANNER strategy and poses the
demand that an INSTMETA strategy should be applied with respect to the instantiation-task of the
meta-variable. This is possible, since interruption is an explicit choice point in the PPLANNER
algorithm. The status of the interrupted PPLANNER strategy is stored in the memory from where

13

it can be reinvoked as soon as the posed demand is satisfied by an application of an INSTMETA
strategy.

MULTI allows to reason on existing meta-variables and possible instantiations for them. An
equation of the form mvα:=b tα where mvα is a meta-variable and tα is a term of the same type
α is called a binding. t is called the instantiation of the binding for mv. During the strategic
proof planning process the current set of bindings is stored in a so-called binding store. MULTI
constructs a sequence of binding stores in order to keep track of the dependencies between the
changing bindings and the introduced actions. The introduction of a new binding creates a new
binding store in the sequence. All following steps are performed with respect to this current
binding store. See [30] for the technical details how bindings are backtracked and how the back-
tracking of bindings changes the strategic proof plan under construction.

Reasoning at the Strategy-Level
In the MULTI system, no order or combination of refinements or modifications on the proof

blackboard is pre-defined. The choice of strategy applications results from meta-reasoning at the
strategy-level that is conducted by the MetaReasoner, which evaluates the strategic control rules
on the job offers on the control blackboard. Strategic control rules are formulated in the same
control rule language as control rules on tasks, methods, supports and parameters, and actions
(see section 2.2). They can reason about all information stored on the control blackboard and the
proof blackboard (i.e., about the proof plan constructed so far and the plan process history) as
well as about the mathematical domain of the proof planning problem.

The advantage of this knowledge-based control approach is that the control of MULTI can
be easily extended and changed by modifying the strategic control rules. In contrast, when the
combination of integrated components of a system is hard-coded into a control procedure, then
each extension or change requires re-implementation of parts of the main control procedure.

The backbone of the strategic control in MULTI are the strategic control rules prefer-
demand-satisfying-offers,prefer-memory-offers,defer-memory-offers,
prefer-
backtrack-if-failure, and reject-applied-offers. The former three rules re-
alize the use of demands and the memory in MULTI for the goal-directed cooperation of strate-
gies. prefer-demand-satisfying-offers states that, if a job offer on the control black-
board satisfies a demand on the control blackboard, then this job offer is preferred. Similarly,
prefer-memory-offers states that, if there is a job offer from an interrupted strategy exe-
cution in the memory and all demands of this strategy execution are already satisfied, then this job
offer should be preferred. defer-memory-offers defers job offers from interrupted strategy
executions, if they have still unsatisfied demands.

The rules prefer-backtrack-if-failure and reject-applied-offers real-
ize a basic failure reasoning and the rejection of already applied strategies. The purpose of
prefer-backtrack-if-failure is to integrate backtracking with strategies of PPLANNER .
When a PPLANNER strategy runs into a failure, that is, it encounters a line-task for which it
finds no applicable action, then it interrupts and stores the status of its execution in the mem-
ory. prefer-backtrack-if-failure causes backtracking by preferring a job offer of
the a BACKTRACK strategy with the line-task on which the execution of the PPLANNER strategy
failed. Afterwards, the interrupted strategy execution can be re-invoked on the changed proof
blackboard. The idea behind reject-applied-offers is that a strategy that failed on a

14

task should not be tried again on this task (although it is still applicable to the task, and, thus, it
places a job offer onto the control blackboard). reject-applied-offers checks whether a
job offer corresponds to a strategy execution that has already been tried but was backtracked later
on. In this case, reject-applied-offers rejects the job offer.

The priority4 of these control rules increases in the following order: prefer-demand-
satisfying-offers,prefer-memory-offers,defer-memory-offers,reject-applied-
offers, prefer-backtrack-if-failure. Although these control rules are the back-
bone of MULTI’s control, they realize only a default behavior and can be excluded by the user of
MULTI or can be overridden by other strategic control rules with higher priority. For instance, in
section 5.1 we shall see how more specific control rules enable an elaborate failure reasoning.

3 The Limit Domain

3.1 Introduction

Theorems of the limit domain make statements about the limit lim
x→a

f(x) of a function f at a point
a, about the limit limseq X of a sequence X , about the continuity of a function f at a point a, and
about the derivative of a function f at a point a. Since the standard definitions of limit, continuity,
and derivative are

lim ≡
λf λa λl ∀ε (0 < ε ⇒

∃δ (0 < δ ∧ ∀x (|x − a| > 0 ∧ |x − a| < δ ⇒ |f(x) − l| < ε)))
limseq ≡ λX λl ∀ε (0 < ε ⇒ ∃k (k ∈ IN ∧ ∀n (n ∈ IN ∧ n > k ⇒ |(X n) − l| < ε)))
cont ≡ λf λa ∀ε (0 < ε ⇒ ∃δ (0 < δ ∧ ∀x (|x − a| < δ ⇒ |f(x) − f(a)| < ε)))

deriv ≡ λf λa λf ′ lim
x→a

f(x)−f(c)
x−c

.

The proofs of these theorems are so-called ε-δ-proofs, i.e., proofs that postulate the existence
of a δ such that a conjecture of the form . . . |X| < ε is proved under assumptions of the form
. . . |Y | < δ.

Notation Instead of the formula lim(fνν , aν, lν) we henceforth write the more common equa-
tion expression lim

x→a
f(x) = l. Analogously, we write limseq X = l instead of limseq(Xνν , lν)

and deriv(f, a) = f ′ instead of deriv(fνν, aν, f
′
ν).

An example theorem from the limit domain is LIM+ that states that the limit of the sum of
two functions f and g equals the sum of their limits; that is, if lim

x→a
f(x) = l1 and lim

x→a
g(x) = l2

then lim
x→a

(f(x) + g(x)) = l1 + l2. When the definition of lim
x→a

is expanded, the corresponding
planning problem consists of two assumptions

∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧ ∀x1 (|x1 − a| > 0 ∧ |x1 − a| < δ1 ⇒ |f(x1) − l1| < ε1)))
and

4The MetaReasoner evaluates first the strategic control rules with lower priority. Since they are evaluated later
on, the strategic control rules with higher priority cause the final changes of the alternative list of job offers.

15

∀ε2 (0 < ε2 ⇒ ∃δ2 (0 < δ2 ∧ ∀x2 (|x2 − a| > 0 ∧ |x2 − a| < δ2 ⇒ |g(x2) − l2| < ε2))).

And the theorem becomes

∀ε (0 < ε ⇒ ∃δ (0 < δ∧∀x (|x−a| > 0∧ |x−a| < δ ⇒ |(f(x)+ g(x))− (l1 + l2)| < ε))).

Similar theorems in this class are LIM- and LIM* for the difference and the product of limits
of functions. Moreover, there are corresponding theorems about continuity. Continuous+ states
that the sum of two continuous functions is continuous, and Continuous- and Continuous* make
similar statements for the difference and product of continuous functions. We shall introduce
some further examples from the limit domain in the remainder of the report.

When proving a limit theorem like LIM+, a δ has to be constructed that depends on an ε
such that certain estimations hold. This is a non-trivial task for students as well as for traditional
automated theorem provers.5 The typical way a mathematician discovers a suitable δ is by in-
crementally restricting the possible values of δ. When proof planning limit theorems, PLAN
adapts this approach by cooperating with the constraint solver CoSIE [37], a constraint solver
for inequalities and equations over the field of real numbers: (in)equality tasks that are simple
enough for CoSIE (i.e., tasks that are in the input language for CoSIE) are passed to CoSIE and
CoSIE provides suitable instantiations for δ, when solutions for meta-variables are computed and
inserted into the final proof plan.

3.2 Methods to Prove Limit Problems

For finding ε-δ-proofs, among others, the general methods ∃I-B, ∃E-F, ∀I-B, ∀E-F, ∧I-B, ∧E-F,
⇒I-B, ⇒E-F, SETFOCUS-B, and =SUBST-B and the domain-specific methods
TELLCS-B, TELLCS-F, ASKCS-B, SOLVE*-B, FACTORIALESTIMATE-B, SIMPLIFY-B, SIMPLIFY-F,
and COMPLEXESTIMATE-B are required. We start with a brief explanation of the general meth-
ods and then discuss the domain-specific methods with more details. =SUBST-B is explained
already in section 2.2.

Actions of the methods ∀I-B, ∃E-F, ∃I-B, ∀E-F, ∧I-B, ∧E-F, ⇒I-B, and ⇒E-F apply
certain natural deduction rules. Actions of ∀I-B perform backward applications of the ND-rule
∀I by reducing a goal with formula ∀x P [x] to a new goal with formula P [c], where the variable
x is replaced by a constant c. Similarly, actions of ∀E-F perform a forward ∀E step and derive
a new support P [mv] with a new meta-variable mv from a given support ∀x P [x]. Actions of
∃I-B perform a backward ∃I step. They close a goal with formula ∃x P [x] and introduce a goal
with the formula P [mv] in which x is replaced by a new meta-variable mv. Actions of the ∃E-F
method perform a forward step with the ∃E rule. They introduce a new hypothesis P [c] for a
support ∃x P [x], where the variable x is replaced by a constant c, and thereby also reduce a goal
to a new goal with the new hypothesis. Actions of ∧I-B perform a backward ∧I step and reduce a
task whose goal has the formula A1 ∧A2 to new tasks whose goals have the formulas A1 and A2.
Actions of ∧E-F perform the corresponding forward ∧E decompositions on conjunctive support

5BLEDSOE proposed in 1990 several versions of LIM+ as a challenge problem for automated theorem proving [6].
The simplest versions of LIM+ (problem 1 and 2 in [6]) are at the edge of the capabilities of traditional automated
theorem provers but LIM* is certainly beyond their capabilities.

16

lines. Actions of ⇒I-B perform a backward ⇒I step and reduce a task with goal A ⇒ B to a
new task whose goal has the formula B and A as additional hypothesis. Moreover, A becomes the
formula of a new support for this task. Actions of ⇒E-F perform an ⇒E step. When applied to a
task with goal C and an support with formula A ⇒ B they introduce two new tasks: a task with
goal C, which contains also a new support with B as formula, and a task with goal A. Actions of
SETFOCUS-B highlight a subformula in a support.

Figure 5 and Figure 6 show the two methods COMPLEXESTIMATE-B and TELLCS-B whose
application conditions comprise calls to external systems, respectively. Both methods are central
for planning limit problems.

Method: COMPLEXESTIMATE-B
premises L1, ⊕L2, ⊕L4, ⊕L5, ⊕L6, ⊕L7

conclusions 	L9

appl. conds. linearextract(a, b, l, k, σ)

proof schema

L1. ∆ ` |a| < ε′ ()

L2. ∆ ` ε′σ < εσ
2∗mv

(Open)

L3. ∆ ` |aσ| < εσ
2∗mv

(< trans L1 L2)

L4. ∆ ` |kσ| ≤ mv (Open)

L5. ∆ ` |lσ| < εσ
2

(Open)

L6. ∆ ` 0 < mv (Open)

L7. ∆ ` conjunct (Open)

L8. ∆ ` bσ
.
=kσ ∗ aσ + lσ (CAS)

L9. ∆ ` |b| < ε (fix L3 L4 L5 L6 L7 L8)

Figure 5: The COMPLEXESTIMATE-B method.

COMPLEXESTIMATE-B is a method for estimating the magnitude of the absolute value of
complex terms.6 COMPLEXESTIMATE-B is applicable to tasks whose goal has the formula
|b| < ε (corresponding to line L9 in Figure 5) and that have supports with formula |a| < ε′

(corresponding to line L1 in Figure 5). In its application conditions COMPLEXESTIMATE-B uses
the function linearextract . When applied to a and b linearextract employs the computer algebra sys-
tem MAPLE [38] to compute suitable terms k and l such that b = k ∗ a + l holds. linearextract

also computes a substitution σ such that bσ = kσ ∗ aσ + lσ holds (where bσ, kσ, lσ result from
b, k, l by the application of the substitution σ, respectively). Thereby, the substitution σ maps
meta-variables in a, b to terms. COMPLEXESTIMATE-B is applicable only, if MAPLE provides k
and l such that linearextract evaluates to true. If this is the case, the application of a corresponding
action of the method reduces the original task to five tasks whose goals correspond to the lines
L2, L4, L5, L6, L7 in Figure 5. L7 has the formula conjunct. This formula is the conjunction
of the mappings of the substitution σ. That is, if σ maps the meta-variables mv1, . . . , mvn to
the terms t1, . . . , tn, respectively, then conjunct has the form mv1

.
=t1 ∧ . . . ∧ mvn

.
=tn. If σ is

empty, then conjunct is simply True, the primitive truth. The justification fix for L9 in the proof
schema is only an abbreviation that stands for a sequence of about 20 tactic steps that comprises,
in particular, an application of the triangle inequality. The application of MAPLE is reflected in
line L8 of the proof schema, which is justified by the tactic CAS. When this tactic is expanded,

6COMPLEXESTIMATE-B essentially is a reconstruction (see [32]) of BLEDSOE’S limit heuristic that was used in
a special-purpose program [7].

17

it employs the SAPPER [43] system to obtain a formal proof of the statement bσ = kσ ∗ aσ + lσ
suggested by MAPLE.

For instance, when applied to a task with formula |(f(cx) − g(cx)) − (l1 − l2)| < ε and a
support with formula |f(mvx)− l1| < ε′ with a meta-variable mvx, then linearextract succeeds and
provides k = 1, l = g(cx) − l2, and a substitution σ that maps mvx to cx. The application of a
corresponding action of COMPLEXESTIMATE-B reduces the given task to new tasks whose goals
are |1| ≤ mv, ε′ < ε

2∗mv
, |g(cx) − L2| < ε

2
, 0 < mv, and mvx

.
=cx.

Method: TELLCS-B
premises

conclusions 	L1

appl. conds.
(1) metavar-in (a) ∨ metavar-in (b)
(2) test-CS (CoSIE ,a rel b)

proof schema L1. ∆ ` reloνν(aν , bν) (ProveCS)

Figure 6: The TELLCS-B method.

The method TELLCS-B realizes an interface to CoSIE . TELLCS-B is applicable to tasks
with formulas rel(a, b) where rel is a binary predicate. Examples of matching predicates are, for
instance, <,≤. In its application conditions TELLCS-B first tests whether a or b contain some
meta-variables. If this is the case, rel(a, b) is interpreted as a constraint on these meta-variables.
TELLCS-B applies then the function test-CS that connects to CoSIE to test (1) whether rel(a, b) is
a syntactically valid constraint for CoSIE (in particular, rel has to be <,≤, >,≥,

.
=, or 6=) and (2)

whether rel(a, b) is not inconsistent with the current constraint store of CoSIE . If this is the case,
TELLCS-B is applicable. The introduction of the corresponding action of TELLCS-B closes the
goal without producing further subtasks and passes rel(a, b) as new constraint to CoSIE .

CoSIE can provide instantiations of the constrained meta-variables that are consistent with
the collected constraints. For instance, suppose during the proof planning process there are three
tasks whose goals have the formulas 0 < mvD, mvD ≤ δ1, mvD ≤ δ2, which all contain the
meta-variable mvD. All three goals are closed by actions of TELLCS-B. Moreover, suppose
there are also two supports with formulas 0 < δ1 and 0 < δ2, which are passed to CoSIE by
actions of the method TELLCS-F, which is the analogous of TELLCS-B to pass constraints in
supports to CoSIE .7 From the resulting constraint store, CoSIE can compute min(δ1, δ2) as
suitable instantiation for mvD. Moreover, CoSIE provides traces of its computations, which can
be used to expand the applications of the actions of TELLCS-B.

Another method that establishes a connection to CoSIE is ASKCS-B. Similar to TELLCS-B,
this method is applicable to tasks whose goal formulas are of the form rel(a, b). But whereas
TELLCS-B demands that a or b contain some meta-variables, ASKCS-B covers the case that a
and b contain no meta-variables. An application condition of ASKCS-B passes the formula to
CoSIE and asks CoSIE whether the formula holds with respect to the constraints collected so
far. If this is the case, then ASKCS-B closes the goal. Since CoSIE can also handle formulas
on concrete real numbers, for instance, 1 < 2 or 0 ≤ 0, ASKCS-B can also close goals whose
formulas are expressions on concrete real numbers.

7The functionality of TELLCS-F is slightly extended as opposed to TELLCS-B. TELLCS-F also passes con-
straints to CoSIE that contain no meta-variables, whereas TELLCS-B handles only constraints with meta-variables.

18

Note that besides TELLCS-B and TELLCS-F also the methods ∀I-B and ∃E-F pass con-
straints to CoSIE . Actions of ∀I-B perform backward applications of the ND-rule ∀I by reducing
a task with task formula ∀x P [x] to a new task with task formula P [c], where the variable x is
replaced by a constant c. For each meta-variable mv in P [c] an action of ∀I-B also passes the
Eigenvariable constraint c6∈mv to CoSIE that states that the instantiation for mv is not allowed
to contain c. This constraint guarantees the adherence with the Eigenvariable conditions of the
∀I rule of the ND-calculus. Actions of the ∃E-F method perform a forward step with the ∃E

rule. Similar to action of ∀I-B they pass Eigenvariable constraints to CoSIE that demand the
adherence of the Eigenvariable conditions of the ∃E rule.

Applications of the SOLVE*-B method exploit transitivity of <, >,≤,≥ and reduce a goal
with formula a1 < b1 to a new task with formula b2σ ≤ b1σ in case a support a2 < b2 exists
and a1, a2 can be unified by the substitution σ. Then, also a further new task is created whose
formula is the conjunction of all mappings of the substitution σ (compare description of method
COMPLEXESTIMATE-B).

SIMPLIFY-B passes the formula of a given goal to the computer algebra system MAPLE and
asks MAPLE to simplify it. If MAPLE succeeds, then the given goal is reduced to a new goal
with the simplified formula. The analogous method SIMPLIFY-F derives a support with a simpler
formula from a given support by calling MAPLE. The method FACTORIALESTIMATE-B deals
with fractions in inequalities. It reduces a goal of the form | t

t′
| < t′′ to the three subgoals 0 <

mvF , mvF < |t′|, and |t| < t′′ ∗ mvF , where mvF is a new meta-variable.

3.3 Proof Planning Limit Problems with PLAN

When applied to an ε–δ–problem, PLAN first decomposes the initial task with a complex formula
into subtasks whose formulas are (in)equalities. This is done by actions that decompose formulas
in tasks, e.g., actions of the methods ∧I-B, ∀I-B, ∃I-B etc.

When faced with an inequality goal, PLAN first tries to apply the methods TELLCS-B
and ASKCS-B, which both employ CoSIE . TELLCS-B passes the goal to CoSIE , whereas
ASKCS-B asks CoSIE whether the goal is entailed by its current constraints. If an inequality is
too complex to be handled by CoSIE , then PLAN tries to apply methods that reduce an inequal-
ity to simpler inequalities. So, PLAN successively produces simpler inequalities, until it reaches
inequalities that are accepted by CoSIE . This approach – handle with CoSIE or simplify – is
guided by the control rule prove-inequality given in Figure 2 in section 2.2, which is the
central control rule to accomplish ε-δ-proofs with PLAN. In its IF-part prove-inequality
checks whether the current goal is an inequality. If this is the case, it prefers the methods
TELLCS-B, TELLCS-F, ASKCS-B, SIMPLIFY-B, SIMPLIFY-F, SOLVE*-B, COMPLEXESTIMATE-B,
FACTORIALESTIMATE-B, and SETFOCUS-B in this order.

In order to apply methods such as COMPLEXESTIMATE-B and SOLVE*-B unwrapping of
(in)equality supports from the initial assumptions is necessary. This is realized as follows: First,
PLAN applies SETFOCUS-B to highlight a promising subformula in a support (the application of
SETFOCUS-B is suggested by prove-inequality if no other method is applicable, promis-
ing subformulas are chosen by another control rule guiding the supports and parameters choice
point). Next, the highlighted subformula is unwrapped by actions that decompose supports, e.g.,
actions of the methods ∧E-F, ∀E-F, ∃E-F etc.

19

Finally, when no task is left and PLAN invokes the function employ-CS , CoSIE computes
instantiations for the meta-variables that are consistent with the collected constraints.

Next, we briefly discuss the application of PLAN to the LIM+ problem.8 PLAN first decom-
poses the initial theorem to tasks with the formulas 0 < mvδ and |(f(cx)+g(cx))− (l1 + l2)| < cε

where mvδ is a meta-variable introduced for δ and cx and cε are constants that replace x and ε,
respectively. Moreover, the assumptions 0 < cε, |cx − a| > 0, and |cx − a| < mvδ are created
during the decomposition of the initial theorem and become supports of the new tasks. 0 < mvδ

can be passed directly to CoSIE by an action of TELLCS-B. |(f(cx) + g(cx)) − (l1 + l2)| < cε

cannot be passed to CoSIE directly. This triggers the decomposition of one of the two ini-
tial assumptions. If the initial assumption on f is decomposed, then PLAN obtains as new
supports 0 < cδ1 and |f(mvx1

) − l1| < mvε1 . Now PLAN can compute and introduce an ac-
tion of COMPLEXESTIMATE-B using the latter new support line. During the evaluation of the
application conditions of COMPLEXESTIMATE-B the substitution mvx1

7→ cx is created and
the computer algebra system MAPLE computes a decomposition (f(cx) + g(cx)) − (l1 + l2) =
1 ∗ (f(cx)− l1) + (g(cx) + l2) (that is, the variables k and l of COMPLEXESTIMATE-B are bound
to 1 and g(cx) − l2, respectively). Thus, the action of COMPLEXESTIMATE-B introduces new
tasks with formulas mvε1 < cε

2∗mv
, |1| ≤ mv, 0 < mv, |g(cx) − l2| < cε

2
, and mvx1

.
=cx. The

formulas of the first three (new) tasks and of the last one can all be passed directly to CoSIE by
actions of TELLCS-B. To deal with the remaining task with formula |g(cx) − l2| < cε

2
PLAN

decomposes the second initial assumption (on g) and derives new support lines with formulas
0 < cδ2 and |g(mvx2

) − l2| < mvε2 . An action of SOLVE*-B reduces the goal with respect to
the second new support to two new tasks with formulas mvε2 ≤ cε

2
and mvx2

.
=cx. Both tasks are

closed by actions of TELLCS-B and their formulas are passed to CoSIE .

The decomposition of the initial assumptions results not only in the used support lines but
also in tasks with the formulas 0 < mvε1 , |mvx1

− a| > 0, |mvx1
− a| < cδ1 from the assumption

on f and the analogue tasks from the assumption on g. The task 0 < mvε1 is closed by the
introduction of an action of TELLCS-B, which passes the formula to CoSIE . To close the other
tasks PLAN introduces actions of the method SOLVE*-B that use the supports with formulas
|cx − a| < mvδ and |cx − a| > 0 (from the decomposition of the initial goal). The application of
SOLVE*-B to the task |mvx1

− a| < cδ1 and the support |cx − a| < mvδ results in two new tasks
with formulas mvδ ≤ cδ1 and mvx1

.
=cx. The application of SOLVE*-B to the task |mvx1

−a| > 0
and the support |cx − a| > 0 results also in two new tasks with formulas 0 ≤ 0 and mvx1

.
=cx.

Whereas 0 ≤ 0 is closed by an actions of ASKCS-B the other three tasks are closed by actions of
TELLCS-B, which pass their formulas to CoSIE . The corresponding tasks from the assumption
on g are handled in the same way. Thereby the constraints mvδ ≤ cδ2 , mvx2

.
=cx, and mvx2

.
=cx

are passed to CoSIE . Moreover, some actions of the TELLCS-F method during the planning
process pass constraints in support lines to CoSIE : 0 < cδ1 , 0 < cδ2 , 0 < cε.

After propagating constraints, CoSIE has the final constraint store in Figure 7. When asked
for suitable instantiations for the meta-variables, CoSIE provides the bindings
mvx1

7→ cx, mvx2
7→ cx, mv 7→ 1, mvε1 7→ cε

2
, mvε2 7→ cε

2
, and mvδ 7→ min(cδ1 , cδ2). These

instantiations computed by CoSIE are exactly the solutions that standard textbooks use for δ, ε1,
and ε2 for LIM+.

PLAN can successfully plan all the challenge problems of BLEDSOE [6], i.e., the limit the-
orems LIM+, LIM-, LIM*, the theorems Continuous+, Continuous−, Continuous*, lim

x→a
x = a,

8A detailed description on how MULTI solves this problem is given in section 4.

20

mvx1
= cx

mvx2
= cx

0 < cδ1 < +∞
0 < cδ2 < +∞
0 < cε < +∞
0 < mvε1 ≤ cε

2
, cε

2∗mv

0 < mvε2 ≤ cε

2

0 < mvδ ≤ cδ1 , cδ2

1 ≤ mv ≤ cε

2∗mvε1

Figure 7: The final constraint store of CoSIE for LIM+.

lim
x→a

c = c, and the theorem that the composition of continuous functions is again continuous.
Moreover, we tried to apply PLAN to tackle systematically the limit problems recorded in the
textbook of BARTLE and SHERBERT “Introduction to Real Analysis” [2]. A summary of these
experiments can be found in the master thesis of Jürgen Zimmer [50].

3.4 Drawbacks of PLAN

It turned out that PLAN failed to plan several theorems from [2]. This is not due to missing
or inappropriate methods but due to PLAN’s inadequate algorithm. This observation (among
others) motivated the development of the MULTI system. We illustrate the drawbacks of PLAN
with the discussion of two examples.

3.4.1 Flexible Meta-Variable Instantiation

PLAN instantiates meta-variables only if all tasks are closed. This restriction causes that PLAN
fails on some problems since it cannot flexibly instantiate meta-variables during the planning
process whenever needed or beneficial (even if there are still tasks) guided by meta-reasoning.

For instance, consider exercise 4.1.3 in the analysis textbook [2].

Exercise 4.1.3 Let f : IR → IR and let c ∈ IR. Show that lim
x1→c

f(x1) = l if and only if

lim
x→0

f(x + c) = l.

Two implications have to be proof planned for solving this exercise:

lim
x1→c

f(x1) = l ⇒ lim
x→0

f(x + c) = l (1)

and
lim
x→0

f(x + c) = l ⇒ lim
x1→c

f(x1) = l (2)

With respect to the definition of limit given in section 3.1 for (1) we need to show that

21

∀ε (0 < ε ⇒ ∃δ (0 < δ ∧ ∀x (|x − 0| > 0 ∧ |x − 0| < δ ⇒ |f(x + c) − l| < ε)))

holds under the assumption that

∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧ ∀x1 (|x1 − c| > 0 ∧ |x1 − c| < δ1 ⇒ |f(x1) − l| < ε1))).

PLAN first decomposes the task formula. This results in new tasks with formulas 0 < mvδ

and |f(cx + c) − l| < cε and new supports with formulas |cx − 0| < mvδ and |cx − 0| > 0 where
mvδ is a meta-variable and cx and cε are constants. The new task with formula 0 < mvδ can be
directly closed with an action of TELLCS-B. The formula |f(cx + c)− l| < cε of the other task is
too complex to be sent to CoSIE directly. Hence PLAN unwraps the assumption which results
in a new support with formula |f(mvx1

) − l| < mvε1 as well as two new tasks with formulas
|mvx1

− c| < cδ and |mvx1
− c| > 0. Now the task with formula |f(cx + c) − l| < cε can be

closed by an action of SOLVE*-B that uses the new support. This action yields new tasks with
the formulas mvε1 ≤ cε and mvx1

.
=cx + c, which both can be closed and passed to CoSIE by

actions of TELLCS-B.

The tasks with formulas |mvx1
− c| < cδ1 and |mvx1

− c| > 0 should be closed by the
method SOLVE*-B using the supports |cx − 0| < mvδ and |cx − 0| > 0. However, SOLVE*-B
is not applicable and hence proof planning is blocked because (mvx1

− c) and (cx − 0) cannot
be unified. If PLAN could use the information that cx + c is the (only) suitable instantiation
for mvx1

available in the constraint store, then an eager instantiation of mvx1
by cx + c would

unblock the planning because the formulas of the task would be instantiated to |cx + c − c| < cδ1

and |cx + c − c| > 0. Then, the tasks could be reduced to tasks with the simplified formulas
|cx| < cδ1 and |cx| > 0 to which SOLVE*-B would be applicable using the simplified supports
|cx| < mvδ and |cx| > 0 that are implied by |cx − 0| < mvδ and |cx − 0| > 0.

3.4.2 Flexible Backtracking and Reasoning on Failures

If a task occurs for which PLAN fails to compute an applicable action (we call this situation
a failure), then PLAN’s only remedy is dependency directed backtracking by deleting the ac-
tion that introduced this task. Moreover, failures are the only events that trigger backtracking in
PLAN. These restrictions cause that PLAN fails on some limit problems and that it cannot make
use of knowledge of how to deal and productively make use of failures.

For instance, IRELAND and BUNDY describe in [24, 25] how to patch failed proof attempts of
the proof planner CLAM by exploiting information on failures. We encountered situations in the
limit domain where failures can be productively used. The Cont-If-Deriv theorem states that a
function f is continuous at point a if it has a derivative f ′ at point a. In the proof planning process
the definition of continuous and derivative in both, the task and the assumption, is replaced first
by its ε–δ–definition. Further decomposition of the task formula results in a task with formula
|f(cx) − f(a)| < cε where cε and cx are constants. The decomposition of the assumption results
in a new support with formula |

f(mvx′)−f(a)

mvx′−a
− f ′| < mvε′ where mvx′ and mvε′ are new meta-

variables. Indeed, the task can be proved under this assumption. This results — among others
— in a task with the formula mvx′

.
=cx, which is closed by an action of the method TELLCS-B

that passes the formula to CoSIE . Unfortunately, another task with formula |mvx′ − a| > 0 is
also created during the decomposition of the assumption. This task can be reduced to a task with

22

the formula mvx′ 6= a. Suppose, we use the information mvx′

.
=cx by eager instantiation of meta-

variables such that this tasks results in cx 6= a. Nevertheless, proof planning reaches a dead end
at this task since there is no support available to close it. How can we deal with this failure? The
analysis of this and similar situations indicates that a case-split is needed on cx 6= a∨cx

.
=a, which

has to be introduced before the task |f(cx)−f(a)| < cε is tackled. Then, this task has to be proved
for two cases: In the first case, cx 6= a is assumed and the task |f(cx)− f(a)| < cε can be proved
from the assumption as described above. Obviously the problematic subtask cx 6= a can now be
closed directly by the assumption cx 6= a of the case-split. In the second case, cx

.
=a is assumed

and the task follows since |f(cx) − f(a)| < cε can be simplified to |f(a) − f(a)| = 0 < cε by
an action of =SUBST-B. The resulting task is satisfied by a support with the same formula that
resulted from the decomposition of the original task. When should the case-split be introduced?
By mathematical intuition it should be introduced when the task cx 6= a is created and cannot be
closed. This demands reasoning about this failure, to backtrack to a certain point in the search
space, and to introduce the case-split. An a priori introduction of a case-split is not possible since
neither the need for a case-split nor the elements for the cases are given.

Another situation where we could make use of failures in a productive way arises in examples
like exercise 4.1.3 (see last section). We have to show that

∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧ ∀x1 (|x1 − c| > 0 ∧ |x1 − c| < δ1 ⇒ |f(x1) − l| < ε1)))

holds under the assumption that

∀ε (0 < ε ⇒ ∃δ (0 < δ ∧ ∀x (|x − 0| > 0 ∧ |x − 0| < δ ⇒ |f(x + c) − l| < ε))).

The decomposition of the task formula results — among others — in a task with formula
|f(cx1

)− l| < cε1 . Unwrapping the assumption yields a new support line with formula |f(mvx +
c) − l| < mvε. Actually, SOLVE*-B should be applied to this task. However the computation of
a corresponding action of this method fails since cx1

and mvx + c cannot be unified. How can we
deal with this failure? We analyzed this situation and similar ones and found that the application
of methods is sometimes blocked because unifications of terms do not succeed but have a residue
t1 = t2. For some examples this residue t1 = t2 can be collected by CoSIE since it is not
inconsistent with CoSIE ’s current constraint store. The analysis of these examples indicates that,
if (1) a method application is blocked because of a failed unification with a residue t1 = t2 and (2)
CoSIE states that this residue t1 = t2 is not inconsistent with its current constraint store, then we
can speculate the lemma t1 = t2 as new open task and rewrite the task on which the planner failed
with this equation. Afterwards the speculated lemma can be closed by an action of TELLCS-B
and the rewritten task can be solved since the unification becomes unblocked.9 In our example
we would speculate the lemma mvx + c

.
= cx1

and would reduce the task with respect to this
equation to a new task with formula |f(cx1

) − l| < mvε. Then, SOLVE*-B is applicable with
respect to the rewritten task and the support |f(cx1

) − l| < cε1 . Similar to the introduction of a
case-split, the lemma t1 = t2 cannot be speculated a priori. First, the application of methods such
as SOLVE*-B has to fail. Then, the analysis of this failure can provide suitable t1 and t2 such that
t1 = t2 can be speculated.

9In general, the introduction of unification residues as new tasks opens a Pandora’s box: whenever we deal with
a residue we introduce some new residues, which in turn must be dealt with. How we restrict the introduction of
residues in tasks in order to avoid this problem is described in section 5.2.

23

4 ε-δ-Proof Plans with MULTI

In this section, we describe the general approach to tackle limit problems with MULTI. First,
we introduce the employed strategies and their cooperation in section 4.1 and section 4.2. Then,
we discuss the application of MULTI to the LIM+ problem in section 4.3. Finally, we explain
how MULTI solves problems such as exercise 4.1.3 (on which PLAN fails, see section 3.4) by
enabling eager instantiation. When illustrating the application of MULTI with examples, we try
to avoid the tedious details. In particular, we skip the technical details of the constructed strategic
proof plans. Rather, we use the PDS as a means to display and discuss the constructed proof
plans.

4.1 The Strategies

PPLANNER Strategies
The methods and control rules for ε-δ-proofs are structured into the three PPLANNER strategies

NormalizeLineTask, UnwrapHyp, and SolveInequality.

The strategy SolveInequality, see Table 2, is central for accomplishing ε-δ-proofs with MULTI.
It is applicable to prove line-tasks whose formulas are inequalities or whose formulas can be re-
duced to inequalities. A formula is reducible to inequalities if it contains defined terms whose
unfolding will result in inequalities, for instance, lim, limseq, cont, and deriv. SolveInequality
mainly comprises methods that deal with inequalities such as COMPLEXESTIMATE-B, TELLCS-B,
TELLCS-F, ASKCS-B, and SOLVE*-B. To unfold occurrences of defined concepts it employs
the methods DEFNUNFOLD-B and
DEFNUNFOLD-F. DEFNUNFOLD-B is the method for unfolding defined concepts in goals,
whereas DEFNUNFOLD-F unfolds defined concepts in supports. The list of control rules of
SolveInequality contains the rules prove-inequality and eager-instantiate. The
strategy terminates, when there are no further line-tasks whose formulas are inequalities or whose
formulas can be reduced to inequalities.

Strategy: SolveInequality
Condition inequality-task

Action

Algorithm PPLANNER
Methods COMPLEXESTIMATE-B, TELLCS-B,

TELLCS-F, SOLVE*-B, ASKCS-B, DEFNUNFOLD-F,
DEFNUNFOLD-B . . .

C-Rules prove-inequality, eager-instantiate,
. . .

Termination no-inequalities

Table 2: The SolveInequality strategy.

The central idea of SolveInequality to tackle inequality goals is similar to the approach of
PLAN when accomplishing ε-δ-proofs (see section 3.3): pass to CoSIE or simplify. Hence,
also similar to PLAN’s approach, the control rule prove-inequality given in Figure 2 in
section 2.2 is central in SolveInequality.

24

SolveInequality comprises the knowledge of how to deal with inequalities and with prob-
lems that can be reduced to inequalities. As opposed thereto, the strategies NormalizeLineTask
and UnwrapHyp comprise the domain-independent, general knowledge of how to decompose
complex formulas with logical connectives and quantifiers.

NormalizeLineTask (see Table 3) is used to decompose line-tasks whose goals are complex
formulas with logical connectives and quantifiers. Typical methods in NormalizeLineTask are
∧I-B and ∀I-B (see section 3.2). NormalizeLineTask terminates, when all complex line-tasks
are decomposed to literal line-tasks.

Strategy: NormalizeLineTask
Condition complex-line-task

Action

Algorithm PPLANNER
Methods ∀I-B, ∃I-B, ∧I-B,

. . .
C-Rules
Termination literal-line-tasks-only

Table 3: The NormalizeLineTask strategy.

The aim of UnwrapHyp (see Table 4) is to unwrap a focused subformula of an assumption in
order to make it available for proving a line-task. The list of its methods includes, for instance,
∀E-F and ∧E-F. The control rule tackle-focus determines that, if UnwrapHyp is applied,
then the actions of the available methods can be used only if they use a support in their premises
that carries a focus and when their conclusions do not tackle the focused subformula. For instance,
if a line-task has the supports B1∧B2 and A1∧ (A2∧ focus(A3∧A4)), then only actions of ∧E-F
that use the second support with the focus are allowed. The introduction of two actions of ∧E-F
derive the new support focus(A3 ∧A4) to which no further action of ∧E-F can be applied since it
would decompose the focused subformula. Similar to NormalizeLineTask and SolveInequality,
UnwrapHyp terminates as soon as all focused formulas are unwrapped.

Strategy: UnwrapHyp
Condition focus-in-subformula

Action

Algorithm PPLANNER
Methods ∀E-F, ∃E-F, ∧E-F, . . .
C-Rules tackle-focus
Termination focus-at-top

Table 4: The UnwrapHyp strategy.

INSTMETA Strategies
In order to instantiate meta-variables that occur in constraints collected by CoSIE , we imple-

mented the two INSTMETA strategies InstIfDetermined and ComputeInstFromCS (see Table 5).
InstIfDetermined is applicable only, if CoSIE states that a meta-variable is already determined
by the constraints collected so far. Then, the computation function connects to CoSIE and re-
ceives this unique instantiation for the meta-variable. ComputeInstFromCS is applicable to all
meta-variables for which constraints are stored in CoSIE . The computation function of this strat-
egy requests from CoSIE to compute an instantiation for a meta-variable that is consistent with
all constraints collected so far.

25

Strategy: InstIfDetermined
Condition determined-in-cs

Action
Algorithm INSTMETA
Function get-determined-instantiation

Strategy: ComputeInstFromCS
Condition mv-in-cs

Action
Algorithm INSTMETA
Function compute-consistent-instantiation

Table 5: The INSTMETA strategies InstIfDetermined and ComputeInstFromCS.

BACKTRACK Strategies
Simple backtracking of one action as in PLAN is realized by the BACKTRACK strategy Back-

TrackActionToTask (see Table 6). BackTrackActionToTask instantiates the BACKTRACK algo-
rithm with the function step-to-line-task , which computes the action that introduced a line-task.
The application of BackTrackActionToTask then deletes this actions as well as all actions that
may depend on this action. BackTrackActionToTask is applicable to each line-task. We will
introduce further BACKTRACK strategies as we go along.

Strategy: BackTrackActionToTask
Condition line-task

Action
Algorithm BACKTRACK
Function step-to-line-task

Table 6: The BackTrackActionToTask strategy.

4.2 Cooperation of the Strategies

As stated above, SolveInequality is the central strategy to accomplish ε-δ-proofs. Normalize-
LineTask or UnwrapHyp are employed when complex formulas have to be decomposed. Tech-
nically, the cooperation between SolveInequality and NormalizeLineTask and UnwrapHyp
works as follows. For line-tasks whose goals are complex formulas that contain inequality sub-
formulas (e.g., goals that arise from unfolding lim, limseq, cont, or deriv) SolveInequality
interrupts and places a demand for the strategy NormalizeLineTask on the control blackboard.
Guided by this demand, MULTI invokes NormalizeLineTask, which decomposes the complex
goal. When re-invoked by MULTI, SolveInequality can tackle the inequalities in the result-
ing goals. The switch from SolveInequality to UnwrapHyp is driven by missing support in-
equalities, which are needed for the application of the methods COMPLEXESTIMATE-B and
SOLVE*-B. If the other methods preferred by prove-inequality fail, then the application
of SETFOCUS-B highlights a subformula in an existing support. Afterwards, SolveInequality
interrupts and places a demand for the invocation of UnwrapHyp to unwrap the highlighted sub-
formula. When the subformula is unwrapped, SolveInequality can continue with a new support

26

that may enable further steps. The application of SETFOCUS-B (i.e., the selection of the support
and the subformula to highlight) is guided by the control rule choose-unwrap-support for
the supports and parameters choice point. choose-unwrap-support analyzes the supports
of the task on which the other methods are not applicable. It searches for inequality subformulas
in the supports that are similar to the goal of the task. The idea is that similar formulas are likely
to unify with the goal such that COMPLEXESTIMATE-B and SOLVE*-B become applicable.

The invocation of ComputeInstFromCS is delayed by the strategic control rule
delay-ComputeInstCosie until all line-tasks are closed. This delay of the computation
of instantiations for meta-variables is sensible, since the instantiations should not be computed
before all constraints are collected, that is, not before all line-tasks are closed (see discussion in
section 3.4.1). However, when the current constraints already determine a meta-variable, then a
further delay of the corresponding instantiation is not necessary. Rather, immediate instantiations
of determined meta-variables can simplify a problem as we shall see in section 4.4 (see also the
discussion of PLAN’s drawbacks in section 3.4.1).

To enable the flexible instantiation of determined meta-variables SolveInequality cooper-
ates with the strategy InstIfDetermined. Technically, this works as follows. When CoSIE
signals that a meta-variable is determined, then the control rule eager-instantiate in
SolveInequality fires. It interrupts SolveInequality and places a demand for InstIfDetermined
with respect to the determined meta-variable. After the introduction of a binding for the meta-
variable by InstIfDetermined MULTI re-invokes SolveInequality.

The cooperation with the BACKTRACK strategy BackTrackActionToTask is guided by the
general strategic control rule prefer-backtrack-if-failure (see section 2.3). Further
BACKTRACK strategies and their guidance by failure reasoning are explained in section 5.

4.3 The LIM+ Example

In this section, we shall discuss the application of MULTI to the LIM+ problem with the strategies
described in the previous section. The LIM+ problem states that the limit of the sum of two
functions f and g equals the sum of their limits. That is, the problem states that

LIM+: lim
x→a

(f(x) + g(x)) = lf + lg

follows from Limf : lim
x→a

f(x) = lf

and Limg: lim
x→a

g(x) = lg.

Figure 8 and Figure 9 show the interesting parts, i.e., the parts created by SolveInequality, of
the resulting PDS . We indicate the contributions of NormalizeLineTask and UnwrapHyp by
justifications in the PDS such as (UnwrapHyp L3) in line L49, which abbreviate the proof seg-
ments created by these strategies. The complete PDS is given in appendix A. Note that we
describe the proof planning process in progress. Hence, we introduce meta-variables, when they
arise. When there is a binding for a meta-variable during the proof planning process, then the
proof lines created after the introduction of the binding use the instantiation of the meta-variable
in order to clarify the following computations.

The proof planning process starts with the invocation of SolveInequality on the initial task
LIM+ J {Limf , Limg}. SolveInequality first unfolds the occurrences of lim. Afterwards, it

27

Limf . Limf ` lim
x→a

f(x) = lf (Hyp)

Limg. Limg ` lim
x→a

g(x) = lg (Hyp)

L2. Limf `∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧
∀x1 (|x1 −a| < δ1∧|x1−a| >

0
⇒ |f(x1) − lf | < ε1)))

(DEFNUNFOLD-F Limf)

L3. Limg `∀ε2 (0 < ε2 ⇒ ∃δ2 (0 < δ2 ∧
∀x2 (|x2 −a| < δ2∧|x2−a| >

0
⇒ |g(x2) − lg | < ε2)))

(DEFNUNFOLD-F Limg)

L21. L21 ` 0 < cδ1
∧ ∀x1 (|x1 − a| < cδ1

∧ |x1 −
a| > 0

⇒ |f(x1) − lf | < mvε1)

(Hyp)

L42. L42 ` 0 < cδ2
∧ ∀x2 (|x2 − a| < cδ2

∧ |x2 −
a| > 0

⇒ |g(x2) − lg| < mvε2)

(Hyp)

L11. L11 ` |cx − a| > 0 ∧ |cx − a| < mvδ (Hyp)
L5. L5 ` 0 < cε (Hyp)
L52. H2 `mvx2

.
=cx (TELLCS-B)

L53. H2 `mvε2 ≤ 1
2 ∗ cε (TELLCS-B)

L49. H2 ` |g(mvx2
) − lg | < mvε2 (UnwrapHyp L3)

L48. H2 ` |g(cx) − lg| < 1
2 ∗ cε (SOLVE*-B L49 L52 L53)

L37. H1 ` |g(cx) − lg| < 1
2 ∗ cε (UnwrapHyp

L3 L48 L39 L50 L51)
L31. H1 ` |1| ≤ mv (TELLCS-B)
L32. H1 `mvε1 ≤ cε

2∗mv
(TELLCS-B)

L33. H1 ` |g(cx) − lg| < cε

2 (SIMPLIFY-B L37)
L34. H1 ` 0 < mv (TELLCS-B)
L35. H1 `mvx1

.
=cx (TELLCS-B)

L28. H1 ` |f(mvx1
) − lf | < mvε1 (UnwrapHyp L2)

L27. H1 ` |((f(cx) + g(cx)) − lf) − lg | < cε (COMPLEXESTIMATE-B
L28 L31 L32 L33 L34 L35)

L16. H3 ` |((f(cx) + g(cx)) − lf) − lg | < cε (UnwrapHyp

L2 L27 L18 L29 L30)
L12. H3 ` |(f(cx) + g(cx)) − (lf + lg)| < cε (SIMPLIFY-B L16)
L8. H4 ` 0 < mvδ (TELLCS-B)
L1. Limf , Limg`∀ε (0 < ε ⇒ ∃δ (0 < δ ∧

∀x (|x − a| < δ ∧ |x − a| > 0
⇒ |(f(x) + g(x)) − (lf + lg)| < ε)))

(NormalizeLineTask L8 L12)

LIM+. Limf , Limg` lim
x→a

(f(x) + g(x)) = lf + lg (DEFNUNFOLD-B L1)

H1 = {Limf , Limg , L5, L11, L21}, H2 = {Limf , Limg , L5, L11, L21, L42}

H3 = {Limf , Limg , L5, L11}, H4 = {Limf , Limg , L5}

Figure 8: ε-δ-proof for LIM+ (part I).

switches to NormalizeLineTask, which decomposes the resulting complex goal in line L1 into
the goals |(f(cx) + g(cx)) − (lf + lg)| < cε in L12 and 0 < mvδ in L8 where cε and cx are
constants introduced for the universally quantified variables ε and x in L1 and mvδ is a meta-
variable introduced for the existentially quantified variable δ.

Both new goals are inequalities and SolveInequality tackles them guided by the control rule
prove-inequality. It closes 0 < mvδ directly by an application of TELLCS-B, which
passes the formula to CoSIE . |(f(cx) + g(cx)) − (lf + lg)| < cε is not accepted by CoSIE

28

and therefore TELLCS-B is not applicable. SolveInequality simplifies this goal to |((f(cx) +
g(cx)) − lf) − lg| < cε in line L16 but then fails to solve this goal with the given supports.
choose-unwrap-support detects the subformula |f(x1) − lf | < ε1 of L2 as a promising
support and guides the application of the method SETFOCUS-B to highlight the subformula.10

This triggers the interruption of SolveInequality and the invocation of UnwrapHyp for this
subformula. The application of UnwrapHyp yields the new support |f(mvx1

)−lf | < mvε1 in line
L28, but also the three new goals 0 < mvε1 in line L18, |mvx1

−a| < cδ1 in L29, and |mvx1
−a| > 0

in L30. Here UnwrapHyp introduces the constant cδ1 for the existentially quantified variable δ1

and the meta-variables mvε1 and mvx1
for the universally quantified variables ε1 and x1 in L2.

When SolveInequality is re-invoked, it can apply COMPLEXESTIMATE-B to the goal
|((f(cx) + g(cx)) − lf) − lg| < cε and the new support |f(mvx1

) − lf | < mvε1 . This results
in the five new goals |1| ≤ mv in L31, mvε1 ≤ cε

2∗mv
in L32, |g(cx) − lg| < cε

2
in L33, 0 < mv

in L34, and mvx1

.
=cx in L35. Except L33 all goals are closed by applications of TELLCS-B,

which pass the respective formulas as constraints to CoSIE . Since mvx1

.
=cx determines mvx1

in CoSIE the control rule eager-instantiate fires and interrupts SolveInequality. Its
demand causes MULTI to invoke InstIfDetermined on the instantiation-task of mvx1

. InstIfDe-
termined introduces the binding mvx1

:=b cx into the strategic proof plan.

The re-invoked SolveInequality simplifies |g(cx) − lg| < cε

2
to |g(cx) − lg| < 1

2
∗ cε in L37

but then fails on this goal with the existing supports. choose-unwrap-support detects the
subformula |g(x2) − lg| < ε2 of L3 as a promising support and guides the corresponding appli-
cation of the method SETFOCUS-B to highlight this subformula. Afterwards, SolveInequality
interrupts and MULTI switches to UnwrapHyp, which unwraps the subformula and yields the
new support |g(mvx2

) − lg| < mvε2 in line L49. The unwrapping yields also the three new goals
0 < mvε2 in line L39, |mvx2

−a| < cδ2 in L50, and |mvx2
−a| > 0 in L51. UnwrapHyp introduces

the constant cδ2 for the existentially quantified variable δ2 and the meta-variables mvε2 and mvx2

for the universally quantified variables ε2 and x2 in L3.

When re-invoked, SolveInequality applies SOLVE*-B to the goal |g(cx) − lg| < 1
2
∗ cε and

the new support |g(mvx2
) − lg| < mvε2 . This results in the new goals mvx2

.
=cx in L52 and

mvε2 ≤ 1
2
∗ cε in L53, which SolveInequality closes by TELLCS-B. mvx2

.
=cx determines the

meta-variable mvx2
in CoSIE . Thus, the control rule eager-instantiate suggests a switch

from SolveInequality to InstIfDetermined, which introduces the binding mvx2
:=b cx into the

strategic proof plan.

Afterwards, SolveInequality has to deal with the remaining goals L18, L29, L30, and L39, L50,
L51, which resulted from the applications of the UnwrapHyp strategy. Figure 9 gives the PDS
segment created by SolveInequality for these goals. It closes L18 and L39 directly by TELLCS-B.
The inequalities in the other goals cannot be passed to CoSIE directly because TELLCS-B is not
applicable to them. Instead, SolveInequality applies SOLVE*-B to these goals with supports
that stem from the decomposition of the initial goal by NormalizeLineTask. The applications of
SOLVE*-B result in inequality goals, which SolveInequality closes either with TELLCS-B or
ASKCS-B.

After closing all line-tasks, SolveInequality terminates. Next, MULTI invokes ComputeIn-
stFromCS on the instantiation-tasks and CoSIE provides instantiations for the meta-variables

10Note that SETFOCUS-B and TELLCS-F are special methods: they do not produce new proof lines but only
highlight subformulas and handle the communication with CoSIE , respectively. Since they do not produce new
proof lines they are not visible in the PDS .

29

L18. H3 ` 0 < mvε1 (TELLCS-B)
L39. H3 ` 0 < mvε2 (TELLCS-B)
L11. L11 ` |cx − a| > 0 ∧ |cx − a| < mvδ (Hyp)
L14. L11 ` |cx − a| > 0 (∧E-F L11)
L13. L11 ` |cx − a| < mvδ (∧E-F L11)
L61. H1 ` 0 ≤ 0 (ASKCS-B)
L59. H1 `mvδ ≤ cδ1

(TELLCS-B)
L57. H2 ` 0 ≤ 0 (ASKCS-B)
L55. H2 `mvδ ≤ cδ2

(TELLCS-B)
L29. H1 ` |mvx1

− a| < cδ1
(SOLVE*-B L13 L59)

L30. H1 ` |mvx1
− a| > 0 (SOLVE*-B L14 L61)

L50. H2 ` |mvx2
− a| < cδ2

(SOLVE*-B L13 L55)
L51. H2 ` |mvx2

− a| > 0 (SOLVE*-B L14 L57)
H1 = {Limf , Limg , L5, L11, L21}, H2 = {Limf , Limg , L5, L11, L21, L42}

H3 = {Limf , Limg , L5, L11}, H4 = {Limf , Limg , L5}

Figure 9: ε-δ-proof for LIM+ (part II).

that are consistent with the collected constraints (see Figure 7 in section 3.1). ComputeInst-
FromCS inserts these instantiations as the bindings

mv:=b 1, mvε1 :=
b cε

2
, mvε2 :=

b cε

2
, and mvδ:=

b min(cδ1 , cδ2)

into the strategic proof plan.

4.4 Eager Instantiation

We discussed already in section 3.4.1 that PLAN fails to solve some limit problems that require
the eager instantiation of meta-variables. In the following, we shall see how MULTI solves those
problems since it performs eager instantiation guided by the control rule eager-instantiate.

We illustrate MULTI’s eager meta-variable instantiation with the first part of exercise 4.1.3 in
the analysis textbook [2], which states that

Thm: lim
x→0

f(x + c) = l follows from Ass: lim
x1→c

f(x1) = l,

Figure 10 and Figure 11 show the PDS segments created by SolveInequality for this problem.
As in the previous section, we indicate and abbreviate the proof parts generated by Normalize-
LineTask and UnwrapHyp by justifications in the PDS .

When invoked on the initial task Thm J {Ass}, SolveInequality unfolds the occurrences of
lim in the goal and the supports and then switches to NormalizeLineTask, which decomposes
the resulting complex goal. This results in the two goals 0 < mvδ in L7 and |f(cx + c) − l| < cε

in L11 where cε and cx are constants introduced for the universally quantified variables ε and x in
L1 and mvδ is a meta-variable introduced for the existentially quantified variable δ.

SolveInequality closes 0 < mvδ by TELLCS-B but fails to tackle |f(cx + c) − l| < cε with
the current supports. A promising support is the subformula |f(x1) − l| < ε1 of L2. Thus, after
highlighting the subformula with SETFOCUS-B, SolveInequality switches to UnwrapHyp. The
application of UnwrapHyp yields the new support |f(mvx1

)−l| < mvε1 in L26 and the new goals

30

Ass. Ass ` lim
x1→c

f(x1) = l (Hyp)

L2. Ass `∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧
∀x1 (|x1−c| < δ1∧|x1 −c| > 0

⇒ |f(x1) − l| < ε1)))

(DEFNUNFOLD-F Ass)

L19. L19 ` 0 < cδ1
∧∀x1 (|x1−c| < cδ1

∧|x1−c| >

0
⇒ |f(x1) − l| < mvε1)

(Hyp)

L4. L4 ` 0 < cε (Hyp)
L29. H1 `mvx1

.
=cx + c (TELLCS-B)

L30. H1 `mvε1 ≤ cε (TELLCS-B)
L26. H1 ` |f(mvx1

) − l| < mvε1 (UnwrapHyp L2)
L25. H1 ` |f(cx + c) − l| < cε (SOLVE*-B L26 L29 L30)
L11. H2 ` |f(cx + c) − l| < cε (UnwrapHyp

L2 L25 L16 L27 L28)
L7. Ass,L4 ` 0 < mvδ (TELLCS-B)
L1. Ass `∀ε (0 < ε ⇒ ∃δ (0 < δ ∧

∀x (|x − 0| < δ ∧ |x − 0| > 0
⇒ |f(x + c) − l| < ε)))

(NormalizeLineTask L7 L11)

Thm. Ass ` lim
x→0

f(x + c) = l (DEFNUNFOLD-B L1)

H1 = {Ass,L4, L10, L19}, H2 = {Ass,L4, L10}

Figure 10: ε-δ-proof for first part of exercise 4.1.3 (part I).

0 < mvε1 in L16, |mvx1
− c| < cδ1 in L27, and |mvx1

− c| > 0 in L28. UnwrapHyp introduces
the constant cδ1 for the existentially quantified variable δ1 and the meta-variables mvε1 and mvx1

for the universally quantified variables ε1 and x1 in L2.

When re-invoked, SolveInequality applies SOLVE*-B to |f(cx + c) − l| < cε and the new
support |f(mvx1

) − l| < mvε1 . This results in the new goals mvx1

.
=cx + c in L29 and mvε1 ≤ cε

in L30, which SolveInequality both closes by TELLCS-B. Since mvx1

.
=cx + c determines the

meta-variable mvx1
in CoSIE , SolveInequality switches to InstIfDetermined, which introduces

the binding mvx1
:=b cx + c into the strategic proof plan.

L10. L10 ` |cx − 0| > 0 ∧ |cx − 0| < mvδ (Hyp)
L13. L10 ` |cx − 0| > 0 (∧E-F L10)
L12. L10 ` |cx − 0| < mvδ (∧E-F L10)
L36. L10 ` |cx| > 0 (SIMPLIFY-F L13)
L32. L10 ` |cx| < mvδ (SIMPLIFY-F L12)
L34. H1 `mvδ ≤ cδ1

(TELLCS-B)
L31. H1 ` |cx| < cδ1

(SOLVE*-B L32 L34)
L35. H1 ` |cx| > 0 (WEAKEN-B L36)
L27. H1 ` |mvx1

− c| < cδ1
(SIMPLIFY-B L31)

L28. H1 ` |mvx1
− c| > 0 (SIMPLIFY-B L35)

L16. H2 ` 0 < mvε1 (TELLCS-B)
H1 = {Ass,L4, L10, L19}, H2 = {Ass,L4, L10}

Figure 11: ε-δ-proof for first part of exercise 4.1.3 (part II).

Afterwards, SolveInequality has to deal with the remaining goals L16, L27, and L28, which
resulted from the application of UnwrapHyp. Figure 11 gives the PDS segment created by
SolveInequality for these goals. It closes L16 by TELLCS-B. The goals in L27 and L28 become
|(cx+c)−c| < cδ1 and |(cx+c)−c| > 0 with respect to the binding mvx1

:=b cx+c in the strategic

31

proof plan. Applications of SIMPLIFY-B reduce these two goals to the |cx| < cδ1 in L31 and |cx| >
0 in L35. SolveInequality closes these new goals with the supports |cx| > 0 and |cx| < mvδ that
are derived from L10, which was introduced during the application of NormalizeLineTask.

CoSIE has the final constraint store depicted in Figure 12. It computes instantiations for
the meta-variables that are consistent with these constraints. ComputeInstFromCS inserts these
instantiations as the bindings mvδ:=

b cδ1 and mvε1:=
b cε into the strategic proof plan.

mvx1
= cx + c

0 < cδ1 < +∞
0 < cε < +∞
0 < mvε1 ≤ cε

0 < mvδ ≤ cδ1

Figure 12: The final constraint store of CoSIE for the first part of exercise 4.1.3.

Responsible for the success of SolveInequality on L27 and L28 is the eager introduction of the
binding mvx1

:=b cx + c. This binding changes the formulas of L27 and L28 and so SIMPLIFY-B
becomes applicable.11

Another problem from the limit domain that requires eager meta-variable instantiation is ex-
ercise 4.1.12 in [2], which states that

Thm: lim
x→0

f(a ∗ x) = l follows from Ass: lim
x1→0

f(x1) = l for a > 0.

First, MULTI reduces the initial goal lim
x→0

f(a ∗ x) = l to |f(a ∗ cx) − l| < cε. Then, it unwraps

the support |f(mvx1
) − l| < mvε1 . The application of SOLVE*-B to this goal and this sup-

port results in the goal mvx1

.
=a ∗ cx, which is passed to CoSIE . Since this formula determines

mvx1
the binding mvx1

:=b a ∗ cx is introduced into the strategic proof plan. The remaining goals
|mvx1

− 0| < cδ1 and |mvx1
− 0| > 0 that result from the unwrapping of the support become

|a ∗ cx| < cδ1 and |a ∗ cx| > 0 with respect to this binding. They are then solved by applications
of COMPLEXESTIMATE-B with the supports |cx| > 0 and |cx| < mvδ.12 See also section 5.2 for
further examples that require eager meta-variable instantiation.

5 Failure Reasoning in the Limit Domain

In this section, we shall discuss three types of situations we encountered when tackling limit
problems whose solution requires meta-reasoning on failures. In two situations the failures can

11PLAN, which does not allow for eager meta-variable instantiation, would fail on the goals L27 and L28 since it
cannot close |mvx1

− c| < cδ1
and |mvx1

− c| > 0 from |cx| < mvδ and |cx| > 0 derivable from L10.
12PLAN would fail on these goals since without eager meta-variable instantiation it cannot apply

COMPLEXESTIMATE-B to solve |mvx1
| < cδ1

and |mvx1
| > 0 with |cx| > 0 and |cx| < mvδ, respectively.

Rather, it would apply SOLVE*-B to these goals and supports. This results in the subgoal mvx1

.
=cx, which CoSIE

rejects since it is not consistent with the already collected constraint mvx1

.
=a∗cx. Thus, TELLCS-B is not applicable

and PLAN fails.

32

be exploited to guide the introduction of case-splits and the speculation of lemmas, two eureka
steps whose necessity is difficult to spot and whose introduction is difficult to guide in general. In
the third situation we guide backtracking by meta-reasoning on desirable but blocked strategies.
All three types of situations have in common that failures in the proof planning process can be
productively used and hold the key to discover a solution proof plan.

5.1 Guiding Case-Splits

A well-known technique from mathematics to deal with complex problems is to split the problem
into cases and to solve the cases separately.13 But how should the eureka step case-split be con-
trolled? That is, when should MULTI decide for a case-split and which cases should it consider?
We found a type of situations in which the need for a case-split and its construction can be spotted
by failure reasoning.

As example consider the Cont-If-Deriv problem. This problem states that a function f is
continuous at point a if it has a derivative f ′ at point a. That is,

Thm: cont(f, a) follows from Ass: deriv(f, a) = f ′.

We give the PDS segment created by SolveInequality before the failure occurs in Figure 13.
As in the previous sections we abbreviate the proof parts generated by NormalizeLineTask and
UnwrapHyp by strategic justifications in the PDS .

As usual, SolveInequality unfolds the defined concepts and then switches to NormalizeLine-
Task for the decomposition of the complex goal. The resulting main goal is |f(cx) − f(a)| < cε.
SolveInequality fails to tackle this goal with the current supports. Since the control rule
choose-unwrap-support detects the subformula | f(x1)−f(a)

x1−a
− f ′| < ε1 in L3 as a promis-

ing support SolveInequality switches to UnwrapHyp whose application yields the new support
|
f(mvx1

)−f(a)

mvx1
−x

− f ′| < mvε1 in line L25 and the three new goals 0 < mvε1 in L18, |mvx1
− a| < cδ1

in L26, and |mvx1
− a| > 0 in L27. With the new support SolveInequality closes the main goal

|f(cx) − f(a)| < cε in several steps as described in Figure 13 (in between SolveInequality in-
terrupts once and switches to InstIfDetermined to introduce the binding mvx1

:=b cx). Then, it
tackles the new goals from the application of UnwrapHyp (see the region between the dashed
lines in Figure 13). It succeeds to solve L18 and L26 but fails to solve L27 whose formula becomes
|cx − a| > 0 with respect to the binding mvx1

:=b cx meanwhile introduced.

MULTI succeeded to solve the goal |f(cx) − f(a)| < cε with the derived support
|
f(mvx1

)−f(a)

mvx1
−x

− f ′| < mvε1 . However, it failed to prove |cx − a| > 0, one of the conditions of the

support | f(mvx1
)−f(a)

mvx1
−x

− f ′| < mvε1 . The partial success, i.e., the solution of the initial goal, gives
rise to consider to patch the proof attempt by introducing a case-split |cx−a| > 0∨¬(|cx−a| > 0)
on the failing condition.

In general, the failure and its solution follow this pattern: there is a goal G, which MULTI can
solve with a support G′ that has some conditions Conds. When MULTI uses G′, then it introduces
the conditions Conds as new goals. Afterwards, it fails to prove some of these new goals. We
call such a goal a failing condition, whereas we call the initial goal G the main goal. The failure

13SCHOENFELD mentions this technique as a frequently used heuristic: “Decompose the domain of the problem
and work on it case by case.” ([41] p. 109)

33

Ass. Ass ` deriv(f, a) = f ′ (Hyp)
L2. Ass ` lim

x1→a

f(x1)−f(a)
x1−a

= f ′ (DEFNUNFOLD-F Ass)

L3. Ass `∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧
∀x1 (|x1−a| < δ1∧|x1−a| > 0

⇒ | f(x1)−f(a)
x1−a

− f ′| < ε1)))

(DEFNUNFOLD-F L2)

L15. L15 ` 0 < cδ1
∧∀x1 (|x1−a| < cδ1

∧|x1−a| >

0
⇒ | f(x1)−f(a)

x1−a
− f ′| < mvε1)

(Hyp)

L11. L11 ` |cx − a| < mvδ (Hyp)
L7. L7 ` 0 < cε (Hyp)
−−
L27. H1 ` |mvx1

− a| > 0 (Open)
L44. H1 `mvδ ≤ cδ1

(TELLCS-B)
L26. H1 ` |mvx1

− a| < cδ1
(SOLVE*-B L11 L44)

L18. H2 ` 0 < mvε1 (TELLCS-B)
−−

L42. H1 ` 0 <
cε
2

2 (ASKCS-B)
L37. H1 ` |f ′| ≤ mv′ (TELLCS-B)
L38. H1 `mvδ ≤

cε
2

2∗mv′
(TELLCS-B)

L39. H1 ` |0| <
cε
2

2 (SIMPLIFY-B L42)
L40. H1 ` 0 < mv′ (TELLCS-B)
L36. H1 `mvδ ≤ mv (TELLCS-B)
L28. H1 ` |x − a| ≤ mv (SOLVE*-B L11 L36)
L29. H1 `mvε1 ≤ cε

2∗mv
(TELLCS-B)

L30. H1 ` |f ′ ∗ cx − f ′ ∗ a| < cε

2 (COMPLEXESTIMATE-B
L11 L37 L38 L39 L40)

L31. H1 ` 0 < mv (TELLCS-B)
L32. H1 `mvx1

.
=cx (TELLCS-B)

L25. H1 ` |
f(mvx1

)−f(a)

mvx1
−x

− f ′| < mvε1 (UnwrapHyp L3)
L24. H1 ` |f(cx) − f(a)| < cε (COMPLEXESTIMATE-B

L25 L28 L29 L30 L31 L32)
L12. H2 ` |f(cx) − f(a)| < cε (UnwrapHyp

L3 L24 L18 L26 L27)
L9. Ass,L7 ` 0 < mvδ (TELLCS-B)
L1. Ass `∀ε (0 < ε ⇒ ∃δ (0 < δ ∧

∀x (|x − a| < δ

⇒ |f(x) − f(a)| < ε)))

(NormalizeLineTask L9 L12)

Thm. Ass ` cont(f, a) (DEFNUNFOLD-B L1)
H1 = {Ass,L7, L11, L15}, H2 = {Ass,L7, L11}

Figure 13: ε-δ-proof for CONT-IF-DERIV (part I).

“failing condition while main goal is solved” can be productively used by introducing a case-split
on the failing condition. Then, the main goal G has to be proved several times under different
case-split hypotheses.

We shall elaborate this idea with our example. If SolveInequality fails to prove a condition
of a support that was used to prove the main goal, then a strategic control rule triggers the back-
tracking of the unwrapping and the use of the support. In our example, this control rule guides
the backtracking of the application of UnwrapHyp and all actions that depend on it such that
the resulting proof plan consists only of the unfolding of the defined concepts and the applica-
tion of NormalizeLineTask. In particular, L12 becomes open again. When MULTI re-invokes

34

SolveInequality, then a control rule in SolveInequality fires that checks whether the last step
was backtracking triggered by a failing condition. This control rule then suggests the application
of the method CASESPLIT-B on the re-opened main goal L12 with respect to the failing condition
|cx − a| > 0 and its negation ¬(|cx − a| > 0). This results in the PDS in Figure 14.

Ass. Ass ` deriv(f, a) = f ′ (Hyp)
L2. Ass ` lim

x1→a

f(x1)−f(a)
x1−a

= f ′ (DEFNUNFOLD-F Ass)

L3. Ass `∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧
∀x1 (|x1−a| < δ1∧|x1−a| > 0

⇒ | f(x1)−f(a)
x1−a

− f ′| < ε1)))

(DEFNUNFOLD-F L2)

L11. L11 ` |cx − a| < mvδ (Hyp)
L7. L7 ` 0 < cε (Hyp)
L45. L45 ` |cx − a| > 0 ∨ ¬(|cx − a| > 0) (TERTIUMNONDATUR)
L48. L48 `¬(|cx − a| > 0) (Hyp)
L49. H4 ` |f(cx) − f(a)| < cε (Open)
L46. L46 ` |cx − a| > 0 (Hyp)
L47. H3 ` |f(cx) − f(a)| < cε (Open)
L12. H2 ` |f(cx) − f(a)| < cε (CASESPLIT-B L45 L47 L49)
L9. Ass,L7 ` 0 < mvδ (TELLCS-B)
L1. Ass `∀ε (0 < ε ⇒ ∃δ (0 < δ ∧

∀x (|x − a| < δ

⇒ |f(x) − f(a)| < ε)))

(NormalizeLineTask L9 L12)

Thm. Ass ` cont(f, a) (DEFNUNFOLD-B L1)
H3 = {Ass,L7, L11, L45, L46}, H2 = {Ass,L7, L11}

H4 = {Ass,L7, L11, L45, L46}

Figure 14: ε-δ-proof for CONT-IF-DERIV (part II).

Afterwards, SolveInequality has to prove |f(cx)−f(a)| < cε twice: once in L47 with hypoth-
esis |cx−a| > 0 and once in L49 with hypothesis ¬(|cx−a| > 0). To tackle L47 SolveInequality
does not again perform proof search from the scratch. The subplan that was backtracked in order
to enable the introduction of case-split at the right place is exactly a proof plan for this case;
except the last missing step that derives the failing condition directly from the hypothesis of this
case. Hence, triggered by a control rule, SolveInequality switches for this subproblem to the
CPLANNER strategy TaskDirectedAnalogy, which transfers the backtracked proof segment to a
proof plan for L47. The second case in L49 has to be solved differently by SolveInequality.14

First, it simplifies the hypothesis ¬(|cx − a| > 0) to cx
.
=a. Afterwards, it applies this equation

with =SUBST-B to |f(cx) − f(a)| < cε in L49. The resulting goal |f(a) − f(a)| < cε can be
simplified with SIMPLIFY-B to 0 < cε, which follows from L7.

Cont-If-Lim=f and Lim-If-Both-Sides-Lim are other problems that require this kind of failure
reasoning. Cont-If-Lim=f states that a function f is continuous at point a if the limit at point a
is f(a). The unfolding of the definitions and the application of NormalizeLineTask result in the
main goal |f(cx) − f(a)| < cε that can be solved by unwrapping |f(mvx1

) − f(a)| < mvε1 from
the assumption. However, the subgoal |cx − a| > 0 that is created by UnwrapHyp cannot be
solved. This failing condition triggers the same case-split and the same solution of the resulting
two cases as in the Cont-If-Deriv problem. The Lim-If-Both-Sides-Lim problem states that a

14To transfer again the backtracked proof segment would not result in a solution of the subproblem since the
hypothesis of this case is not suitable to solve the remaining failing condition.

35

function f has a limit l at point a, if both the right-hand and the left-hand limit of f at a are l.15

Unfolding of the definitions and the application of NormalizeLineTask result in the main goal
|f(cx) − l| < cε. A support to solve the main goal can be unwrapped either from the right-hand
limit assumption or from the left-hand limit assumption. However, in both cases the application of
UnwrapHyp yields an condition that cannot be closed. For instance, when UnwrapHyp unwraps
the right-hand limit assumption, then there is the failing condition cx − a > 0. This failing
condition triggers the case-split into the cases cx − a > 0 and ¬(cx − a > 0) for the main
goal |f(cx) − l| < cε. Whereas the first case can be solved by unwrapping the right-hand limit
assumption, the second case requires to unwrap the left-hand limit.

5.2 Lemma Speculation

It is common mathematical practice to speculate lemmas during a proof attempt and to prove the
lemmas separately. Since technically arbitrary formulas can be introduced, lemma speculation
introduces an infinite branching point into the search space that is difficult to control in automated
theorem proving. We found a type of situations in which suitable (and necessary) lemmas can be
speculated by failure reasoning.

As example consider the second part of exercise 4.1.3 from the analysis textbook [2]. This
problem states that

Thm: lim
x1→c

f(x1) = l follows from Ass: lim
x→0

f(x + c) = l.

Figure 15 depicts the PDS segment created by SolveInequality until the failure occurs. As in the
previous section, we indicate and abbreviate the proof parts generated by NormalizeLineTask
and UnwrapHyp by strategic justifications.

SolveInequality unfolds the defined concepts and then switches to NormalizeLineTask,
which decomposes the complex goal. This results in the goal |f(cx1

) − l| < cε1 in L11, which
SolveInequality cannot tackle with the given supports. Hence, it switches to UnwrapHyp in
order to decompose the subformula |f(x + c) − l| < ε in L2. The application of UnwrapHyp
yields the new support |f(mvx + c)− l| < mvε in line L26 and the three additional goals 0 < mvε

in L16, |mvx − 0| < cδ in L27, and |mvx − 0| > 0 in L28.

Next, SolveInequality should apply SOLVE*-B to tackle |f(cx1
) − l| < cε1 with the new

support |f(mvx+c)−l| < mvε. However, this fails since SOLVE*-B fails to unify |f(mvx+c)−l|
and |f(cx1

)−l|, which is one of the application conditions of SOLVE*-B. Since no other method is
applicable and there is also no further promising subformula to unwrap, MULTI would backtrack
next. The analysis that |f(mvx + c)− l| and |f(cx1

)− l| are quite similar and that the unification
is blocked only because of the residue mvx + c = cx1

give rise to consider to patch the proof
attempt by speculating the residue mvx + c = cx1

as lemma.

In general, the failure and its solution follow this pattern: A method tests in its application
conditions for a unifier or a matching of two terms t and t′. The unification or matching of t and

15Right-hand and left-hand limit are defined as follows:

limR(νν)ννo≡
λfνν λaν λlν ∀εν (0 < ε ⇒

∃δν (0 < δ ∧ ∀xν (x − a > 0 ∧ x − a < δ ⇒ |f(x) − l| < ε)))

limL(νν)ννo≡
λfνν λaν λlν ∀εν (0 < ε ⇒

∃δν (0 < δ ∧ ∀xν (a − x > 0 ∧ a − x < δ ⇒ |f(x) − l| < ε)))

36

Ass. Ass ` lim
x→0

f(x + c) = l (Hyp)

L2. Ass `∀ε (0 < ε ⇒ ∃δ (0 < δ ∧
∀x (|x − 0| < δ ∧ |x − 0| > 0

⇒ |f(x + c) − l| < ε)))

(DEFNUNFOLD-F Ass)

L19. L19 ` 0 < cδ ∧ ∀x (|x− 0| < cδ ∧ |x− 0| > 0
⇒ |f(x + c) − l| < mvε)

(Hyp)

L4. L4 ` 0 < cε1 (Hyp)
L10. L10 ` |cx1

− c| > 0 ∧ |cx1
− c| < mvδ (Hyp)

L27. H1 ` |mvx − c| < cδ1
(Open)

L28. H1 ` |mvx − c| > 0 (Open)
L16. H2 ` 0 < mvε (Open)
L26. H1 ` |f(mvx + c) − l| < mvε (UnwrapHyp L2)
L25. H1 ` |f(cx1

) − l| < cε1 (Open)
L11. H2 ` |f(cx1

) − l| < cε1 (UnwrapHyp

L2 L25 L16 L27 L28)
L7. Ass,L4 ` 0 < mvδ1

(TELLCS-B)
L1. Ass `∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧

∀x1 (|x1−c| < δ1∧|x1 −c| > 0
⇒ |f(x1) − l| < ε1)))

(NormalizeLineTask L7 L11)

Thm. Ass ` lim
x1→c

f(x1) = l (DEFNUNFOLD-B L1)

H1 = {Ass,L4, L10, L19}, H2 = {Ass,L4, L10}

Figure 15: ε-δ-proof for second part of exercise 4.1.3 (part I).

t′ fails because of some residues. If these residues look promising to be provable in the current
context, then they are speculated as lemmas. The lemmas are used to rewrite the initial terms
such that afterwards the unification or matching succeeds and the method becomes applicable.

The question is, when is a residue promising to be provable in the current context? In the limit
domain, we exploit the constraint solver CoSIE to decide whether residues are promising lem-
mas. Whereas the employed unification and matching are decidable procedures that depend on
no domain-specific knowledge, CoSIE employs domain knowledge of inequalities and equations
over the field of real numbers. To exploit this domain knowledge as well as the context informa-
tion passed to CoSIE so far we query CoSIE whether it accepts the residues before we speculate
them as lemmas. In this way, we combine the domain-independent unification and matching with
the domain knowledge contained in CoSIE .16

Technically, the described productive use of failing unifications and matchings for lemma
speculation is encoded in the control rule choose-equation-residues in SolveInequal-
ity. This control rule analyzes the residues of blocked unifications and matchings and queries
CoSIE whether it accepts the residues. If this is the case, choose-equation-residues
fires and suggests the application of the method =SUBST*-B. This method is similar to the
method =SUBST-B. However, it rewrites a goal by simultaneously applying a set of equations,
whereas =SUBST-B applies only one equation. Moreover, the equations are given as parameters
to =SUBST*-B and become new goals, i.e., are speculated as lemmas, whereas the application of
=SUBST-B requires one equation as derived assumption.

16An alternative to this combination is theory unification, which incorporates domain-specific equations into the
unification procedures. However, the decidability of theory unification is difficult to determine and depends on the
concrete set of domain equations (e.g., see [5]). We prefer decidable unification and matching procedure in order to
avoid undecidable application conditions whose evaluation can block the complete proof planning process.

37

We shall elaborate this approach with our example. When SolveInequality fails to tackle
|f(cx1

) − l| < cε1 with the new support |f(mvx + c) − l| < mvε, then MULTI creates the failure
record

applcondfailure(unify(|f(mvx + c) − l|, |f(cx1
) − l|), SOLVE*-B , A′)

for the method SOLVE*-B. This failure record states that the unification of the two terms
|f(mvx+c)−l| and |f(cx1

). The analysis of the failure record by the control rule choose-equation-residues
yields the residue mvx + c = cx1

, which is accepted by CoSIE . Hence, the control rule
choose-equation-residues fires and guides the application of =SUBST*-B with mvx +
c

.
=cx1

as new lemma.

L30. H1 `mvx + c
.
=cx1

(TELLCS-B)
L31. H1 `mvε ≤ cε1 (TELLCS-B)
L26. H1 ` |f(mvx + c) − l| < mvε (UnwrapHyp L2)
L29. H1 ` |f(mvx + c) − l| < cε1 (SOLVE*-B L26 L31)
L25. H1 ` |f(cx1

) − l| < cε1 (=SUBST*-B L29 L30)

Figure 16: ε-δ-proof for second part of exercise 4.1.3 (part II).

Figure 16 displays the application of =SUBST*-B and the following PDS segment computed
by SolveInequality for our example. The application of =SUBST*-B to the goal |f(cx1

) − l| <
cε1 in L25 results in the new goals |f(mvx + c) − l| < cε1 in L29 and mvx + c

.
=cx1

in L30.
SolveInequality closes mvx + c

.
=cx1

with TELLCS-B, which passes the constraint to CoSIE .
|f(mvx +c)− l| < cε1 is closed by SOLVE*-B with respect to the support |f(mvx +c)− l| < mvε

in L26. This is now possible since the unification became unblocked. The resulting goal in L31 is
closed by TELLCS-B.

CoSIE derives mvx
.
=cx1

− c from the given formula mvx + c
.
=cx1

. This determines mvx, so
that SolveInequality switches to InstIfDetermined, which introduces the binding mvx:=

b cx1
−c

into the strategic proof plan. With respect to this binding the remaining goals in L27 and L28

become |(cx1
− c)− 0| < cδ and |(cx−1 − c)− 0| > 0. Applications of SIMPLIFY-B reduce these

goals to |cx1
− c| < cδ and |cx−1 − c| > 0, which SolveInequality closes with supports derived

from line L10.

Another problem from the limit domain, which requires a similar speculation of lemmas is
the reverse of exercise 4.1.12 from [2], which states that

Thm : lim
x1→0

f(x1) = l follows from Ass : lim
x→0

f(a ∗ x) = l and a > 0.

Unfolding of lim and normalization result in the goal |f(cx1
) − l| < cε1 . Unwrapping of the

assumption yields |f(a ∗ mvx) − l| < mvε. The application of SOLVE*-B with respect to these
two terms is blocked since the unification has the residue a∗mvx = cx1

. Since CoSIE accepts the
constraint a ∗ mvx

.
=cx1

SolveInequality can unblock the unification and can apply SOLVE*-B.
CoSIE yields cx1

a
as instantiation for mvx.17

17This is another example that needs eager meta-variable instantiation. Since a ∗ mvx
.
=cx1

determines mvx, the
binding mvx:=b cx1

a
is introduced into the proof plan. The unwrapping of the support also yields the two goals

|mvx − 0| < cδ and |mvx − 0| > 0, which are simplified with respect to the binding to |
cx1

a
| < cδ and |

cx1

a
| >

0. Whereas MULTI can solve these two goals from the supports |cx1
| > 0 ∧ |cx1

| < mvδ by applications of
COMPLEXESTIMATE-B, PLAN fails to prove the goals without the eager instantiation.

38

5.3 Goal-Directed Backtracking

Goal-directed reasoning selects and applies steps in order to achieve some given goals. That is,
a step is either chosen since it directly achieves some of the current goals or since its effects
enable some other desirable steps that are likely to help to achieve the given goals. Typically,
in search procedures backtracking is not a goal-directed operation in its own right but only a
necessary operation to traverse the search space. MULTI provides the freedom to backtrack any
actions in the proof plan under construction. This allows for goal-directed backtracking, that is,
backtracking that is not just part of the traversal of the search space but that aims to work towards
the current goals by enabling desirable steps. In this section, we shall discuss a type of situation
in which goal-directed backtracking is suggested by meta-reasoning on a highly desirable but
blocked strategy.

As example problem consider the problem LIM-DIV-1-X, which states that

Thm: lim
x→c

1
x

= 1
c

for c > 0.

Figure 17 depicts the PDS that is created for this problem before the highly desirable but blocked
strategy occurs.

Ass. Ass ` 0 < c (Hyp)
L8. L8 ` |cx − c| < mvδ ∧ |cx − c| > 0 (Hyp)
L4. L7 ` 0 < cε (Hyp)
L10. L8 ` |cx − c| < mvδ (∧E-F L8)
L11. L8 ` |cx − c| > 0 (∧E-F L8)
L13. H1 ` 0 < mvf (TELLCS-B)
L14. H1 ` |cx ∗ c| > mvf (TELLCS-B)
L15. H1 ` |c − cx| < mvf ∗ cε (TELLCS-B)
L12. H1 ` | c−cx

cx∗c
| < cε (FACTORIALESTIMATE-B

L13 L14 L15)
L9. H1 ` | 1

cx
− 1

c
| < cε (SIMPLIFY-B L12)

L6. Ass,L7 ` 0 < mvδ (TELLCS-B)
L1. Ass `∀ε (0 < ε ⇒ ∃δ (0 < δ ∧

∀x (|x − c| < δ ∧ |x − c| > 0
⇒ | 1

x
− 1

c
| < ε)))

(NormalizeLineTask L6 L9)

Thm. Ass ` lim
x→c

1
x

= 1
c

(DEFNUNFOLD-B L1)

H1 = {Ass,L4, L8}

Figure 17: ε-δ-proof for LIM-DIV-1-X before failure.

The unfolding of the defined symbol lim and the normalization of the resulting complex goal
results in the two goals 0 < mvδ in L6 and | 1

cx
− 1

c
| < cε in L9. SolveInequality closes the first

goal by an application of TELLCS-B whereas it simplifies the second goal to | c−cx

cx∗c
| < cε in L12.

An application of FACTORIALESTIMATE-B to this goal results in the three goals 0 < mvf in L13,
|cx ∗ c| > mvf in L14, and |c − cx| < mvf ∗ cε in L15. SolveInequality closes these three goals
with TELLCS-B.

Since then all line-tasks are closed CoSIE is supposed to provide instantiations for the meta-
variables mvδ and mvf that are consistent with the collected constraints. That is, the strategy
ComputeInstFromCS, which asks CoSIE to compute the instantiations, becomes a highly de-

39

sirable strategy. However, CoSIE fails to compute instantiations in this situation and Compute-
InstFromCS does not succeed.

What is the problem? So far, CoSIE did collect the constraints

|cx−c|
cε

< mvf , 0 < mvf , mvf < |cx ∗ c|, 0 < mvδ, 0 < c, and 0 < cε.

The critical constraints are the constraints on mvf that state that |cx−c|
cε

has to be less than mvf ,
which has to be less than |cx ∗ c|. So far, these constraints are not inconsistent. However, these
constraints are consistent and a solution for mvf exists only, if |cx−c|

cε
< |cx ∗ c| holds. This,

however, does not follow from the constraints collected so far.18 In particular, the constraints
collected so far are not sufficient for an ε-δ-proof since they do not establish a connection between
the ε and the δ.

A possibility to overcome this problem is to refine and extend the set of constraints in order
to obtain a set of constraints for which a solution can be computed. To do so, applications of
TELLCS-B can be backtracked in a goal-directed manner in order to enable the applications of
other methods that further refine the selected constraints.

We encoded the described idea in the strategic control rule backtrack-to-unblock-
cosie. When all line-tasks are closed, but ComputeInstFromCS is not applicable since CoSIE
fails to compute instantiations, then this control rule analyzes the constraints passed to CoSIE by
TELLCS-B. It triggers the backtracking of actions of TELLCS-B that pass complex inequalities
to CoSIE that can be further refined.19 When SolveInequality tackles the re-opened proof lines,
it cannot close them again with TELLCS-B but has to refine them. Afterwards, it can pass the
refined goals to CoSIE .

We shall elaborate this idea with our example. Triggered by the strategic control rule
backtrack-to-unblock-cosieMULTI backtracks the application of TELLCS-B that closes
L15. SolveInequality reduces the re-opened goal L15 with COMPLEXESTIMATE-B. Afterwards,
it passes the resulting inequality goals by applications of TELLCS-B to CoSIE . Since CoSIE
also fails on this extended constraint set MULTI backtracks the application of TELLCS-B that
closes L14. Again, SolveInequality reduces the re-opened goal with COMPLEXESTIMATE-B
and passes the resulting inequalities to CoSIE . The new PDS segments for L14 and L15 are
shown in Figure 18.

This results in the following constraint store:

cε > 0 c > 0 mvf ≥ mv′ ∗ mvδ mv′ > c
mvf > 0 mv > 1

cε∗mvf

2
> 0 mvδ > 0

mvδ ≤
cε∗mvf

2∗mv
mvf ∗ 2 ≤ c2

18Note that the application condition test-CS of TELLCS-B does not ask CoSIE to establish consistency for a new
constraint, i.e., to check the existence of a solution binding of the meta-variables. Rather, CoSIE checks only whether
it derives an inconsistency. In this case a new constraint is rejected. If no inconsistency is detected, then CoSIE
collects the constraint. Hence, it can happen – a quite common situation in constraint solving – that the available
information is not sufficient to compute a solution binding of the constraint variables, although inconsistency is not
detected.

19Currently, the critical constraints are chosen by some heuristics encoded in
backtrack-to-unblock-cosie. It would be more convenient, if CoSIE would directly point out
what the critical constraints are. However, this kind of information is not provided by the current CoSIE system.

40

L10. L8 ` |cx − c| < mvδ (∧E-F L8)
L11. L8 ` |cx − c| > 0 (∧E-F L8)
L22. H1 ` 0 < mv′ (TELLCS-B)
L23. H1 ` |c| < mv′ (TELLCS-B)
L24. H1 ` |c ∗ c| ≥ mvf ∗ 2 (TELLCS-B)
L25. H1 `mvδ ≤

mvf

mv′
(TELLCS-B)

L14. H1 ` |cx ∗ c| > mvf (COMPLEXESTIMATE-B
L10 L22 L23 L24 L25)

L17. H1 ` | − 1| ≤ mv (TELLCS-B)
L18. H1 `mvδ ≤

cε∗mvf

2∗mv
(TELLCS-B)

L19. H1 ` |0| <
cε∗mvf

2 (TELLCS-B)
L20. H1 ` 0 < mv (TELLCS-B)
L15. H1 ` |c − cx| < mvf ∗ cε (COMPLEXESTIMATE-B

L10 L17 L18 L19 L20)

Figure 18: Extended ε-δ-proof for LIM-DIV-1-X.

Bindings that are consistent with these constraints are: mv:=b 2, mv′:=b c + 1, mvf :=
b c2

2
,

and mvδ:=
b min(cε∗c2

8
, c2

2∗(c+1)
). Unfortunately, the solution of the above constraint system is not

in the scope of the current CoSIE system. That is, CoSIE fails to provide instantiations although
a solution that is consistent with all constraints exists and establishes a connection between the
ε and the δ of our ε-δ-proof.20 Since backtrack-to-unblock-cosie detects no further
inequality goals that probably can be further refined MULTI terminates without bindings for the
meta-variables. Despite the successful failure analysis that triggered goal-directed backtracking,
the problem cannot be solved completely because of drawbacks of the current CoSIE system.

All problems of the limit domain that result in absolute values of fractions that are tack-
led with FACTORIALESTIMATE-B need the described failure reasoning. For instance, exercises
4.1.10(a) − (d) in [2]:

lim
x→2

1
1−x

= −1, lim
x→1

x
x+1

= 1
2
, lim

x→0

x2

|x|
= 0, lim

x→1

x2−x+1
x+1

= 1
2
,

and problems on the derivative of functions such as theorem 6.1.3(a) and (b) in [2]:

deriv(f, a) = f ′ ⇒ deriv(α ∗ f, a) = α ∗ f ′,
deriv(f, a) = f ′ ∧ deriv(g, a) = g′ ⇒ deriv(f + g, a) = f ′ + g′.

Note that the current CoSIE system fails for all these problems to compute suitable instantiations.

6 Results and Discussion

This report presents the application of MULTI to the limit domain. MULTI can solve all problems
that PLAN can solve21 and it successfully plans various problems that are beyond the capabilities

20The reason for CoSIE failing to find this solution is the mutual dependency of the variables mvf and mvδ. mvf

occurs in an upper bound of mvδ , and in turn mvδ occurs in a lower bound of mvf . The search procedure of the
current CoSIE system is not complete in a sense that it can not resolve all dependencies of this kind.

21In particular, all challenge problems that BLEDSOE proposed in 1990 [6], among them the limit theorems LIM+,
LIM-, LIM*, the theorems Continuous+, Continuous-, Continuous*, lim

x→a
x = a, and lim

x→a
c = c (see [36]).

41

of PLAN. In particular, MULTI can solve problems that require eager meta-variable instantiations
as well as problems that require meta-reasoning on failures to introduce case-splits, to speculate
lemmas, and to guide goal-directed backtracking.

The discussed speculation of lemmas is not possible in PLAN since it does not create and
maintain suitable information on failures such as the failure records of MULTI. All other problems
are beyond the capabilities of PLAN since it cannot flexibly combine planning, backtracking, and
meta-variable instantiation based on meta-reasoning.

We conclude the report with a discussion of related work and an evaluation of the realized
proof planning approach.

6.1 Related Work

Related Work on Proving Limit Theorems
Some of the knowledge encoded in the methods of the SolveInequality strategy is similar

to ideas implemented in the theorem prover IMPLY [7] developed by BLEDSOE. For instance,
COMPLEXESTIMATE-B is inspired by BLEDSOE’s limit heuristic. BLEDSOE and HINES devel-
oped a resolution-based prover for inequalities [9], which can prove, for instance, the Continu-
ous+ problem. BEESON worked on ε-δ-proofs automatically created by the systems MATHPERT
and WEIERSTRASS [3]. All these systems rely on special-purpose routines that are implemented
into the systems. As opposed thereto, only the strategies, methods, and control rules are domain-
specific in ΩMEGA’s knowledge-based proof planning, the representational techniques and rea-
soning procedures are general-purpose.

With a particular control setting the automated theorem prover OTTER [29] can solve a simple
version of LIM+ (simplified by the provision of additional lemmas that “encode” necessary com-
putations etc.). However, this setting is tailored to LIM+ and does not work for LIM* or other
limit theorems. In auto-mode OTTER is not able to prove the simple version of LIM+. In con-
trast, our strategies, methods, and control rules cover the mathematical knowledge in a form that
is general enough to solve all limit problems in Appendix B. More theorems could be formulated.

The LIM+ problem was also proved in CLAM [46] with a special heuristic called colored
rippling. But LIM* and other theorems of the limit domain turned out to be too difficult for
CLAM.

Related Work on Failure Reasoning
Failure reasoning in the proof planner CLAM is closely related to the lemma speculation and

the introduction of case-splits in MULTI. Since a detailed comparison of the failure reasonings
requires some technical details of CLAM we shall discuss it in the subsequent section 6.2.

The speculation of residue lemmas has something in common with HUETS constrained reso-
lution [22]. Since unification is undecidable in higher-order logics constrained resolution inter-
twines resolution steps with unification. Instead of solving the unification problem t = t′ as a
precondition of a resolution step, the resolution step is performed and t = t′ becomes part of the
resolution problem. This process is difficult to control since the introduced unification residue
t = t′ can be as difficult to solve as the rest of the proof. We also intertwine unification with the
main proof process by speculating unification residues as lemmas. But, as opposed to constrained

42

unification, we strictly control the speculation of the lemmas since we allow only for such lemmas
that are directly accepted by CoSIE .

Related to goal-directed backtracking in MULTI is the goal-directed reasoning in elaborate
blackboard systems such as HEARSAY-III and BB1 (e.g., see [16, 26]). One approach to in-
tegrate goal-directed reasoning in blackboard systems is the construction (and modification) of
meta-plans of highly desirable knowledge source applications that guide the following solution
process [17]. When a highly desirable knowledge source is not applicable, then reasoning on
the failure can suggest the invocation of knowledge sources that unblock the desired knowledge
source. When performing goal-directed backtracking, we do not construct meta-plans of strat-
egy applications but we also exploit knowledge of when the application of particular strategies is
highly desirable and how to unblock a highly desirable but blocked strategy.

6.2 Failure Reasoning in CLAM

In the following, we shall first describe the use of critics in CLAM and then compare failure
reasoning with critics with our failure reasoning encoded in control rules.

Critics in CLAM

BUNDY and IRELAND propose critics as a means to patch failed proof attempts by exploiting
information on failures in [24] and [25]. The motivation for the introduction of critics is similar to
our motivation for failure reasoning: failures in the proof planning process, in particular, failures
occurring after partially successful operations, often hold the key to discover a solution proof
plan.

Critics in CLAM extend the hierarchy of inference rules, tactics, and methods. They are intro-
duced in order to complement proof methods. A critic is associated with one method and captures
patchable exceptions to the application of the method. Since the application of a method can fail
in various ways, each method may be associated with a number of critics. Critics are expressed
in terms of preconditions and patches. The preconditions analyze the reasons why the method
has failed to apply. The proposed patch suggests a change to the proof plan. This change can be
a manipulation of the whole proof plan or the change can be a local manipulation of goals.

To describe the failure reasoning in CLAM we have to consider the construction of inductive
proofs in CLAM in some detail. Proof construction in CLAM relies on the domain-independent
rippling heuristic [13, 23]. The rippling heuristic is based upon the observation that the induction
hypothesis is syntactically similar to the induction conclusion. In order to derive the induction
conclusion from the induction hypothesis the ripple method tries to rewrite the induction con-
clusion, such that the induction hypothesis can be used. The ripple method iterates over the
wave method, which applies conditional rewrite rules of the form Conds → (LHS ⇒ RHS),
where LHS is the left hand side, RHS is the right hand side, and Conds are the conditions
of the rewrite rule. When Hyps and Conc denote the current hypotheses and the conclusion,
respectively, then the preconditions of the wave method are:22

1. There is a subterm Sub of the conclusion Conc, which should be rewritten.
22Actually, there are different wave methods for different kinds of rippling (e.g., longitudinal-rippling and

transverse-rippling), which have some more preconditions that differ slightly among the different wave methods,
see [13, 25] for details. For the sake of simplicity we discuss here only the relevant preconditions.

43

2. There is a conditional rewrite rule Conds → (LHS ⇒ RHS) such that LHS matches
with Sub.

3. The conditions Conds are satisfied by the hypotheses Hyps (i.e., Hyps ` Conds is a
tautology).

The application of the wave method fails, when one of its preconditions is not satisfied.
BUNDY and IRELAND realized two patches for the method, which are implemented as critics
associated with the method:

1. A failure of precondition 2, i.e., there is no rewrite rule that can be applied, triggers the
lemma-discovery critic. The preconditions for the application of this critic are: (1)
precondition 1 of the wave method holds and (2) preconditions 2 and 3 fail. The patch of
the critic involves the speculation and proof of a rewrite rule to unblock this situation. This
process may involve backtracking, when a speculated rewrite rule cannot be proved.

2. A failure of precondition 3, i.e., the condition of a matching rewrite rule is not satisfied in
the current context, triggers the missing-condition critic. The preconditions for the
application of this critic are: (1) precondition 1 of the wave method holds, (2) precondi-
tion 2 of the wavemethod holds with respect to a rewrite rule Conds → (LHS ⇒ RHS),
and (3) precondition 3 fails for Conds. The patch of the critic is to perform a case analysis
based upon the unprovable conditions Conds.

These two critics are tailored to the possible failures of the application of the wave method.
The general ideas behind the critics are:

Lemma Speculation: When no methods are applicable with respect to the current context, the
controlled speculation (and the proof) of new lemmas can unblock the proof planning pro-
cess.

Case Analysis: Splitting a problem into different cases can unblock the proof planning process,
when no methods are applicable.

Bundy and Ireland describe also critics of other methods that patch the selection of the induc-
tion schemata and generalize conjectures in order for an inductive proof to succeed (see [25]).

Comparison with Failure Reasoning in MULTI

The situations that trigger lemma speculation and case-splits in CLAM and MULTI are very
similar: missing premises in the current context (i.e., missing rewrite rules in CLAM or missing
supports in MULTI) trigger lemma speculation; unprovable premises of conditional facts from
the context (i.e., conditional rewrite rules in CLAM or conditional supports in MULTI) cause case-
splits. However, the critics mechanism in CLAM and failure reasoning in MULTI considerably
differ not only in minor technical issues but also in their conceptual design.

Critics in CLAM are an extra concept introduced for failure reasoning. A critic reasons on
failures of the one method it is directly associated with, i.e., it reasons on failing preconditions of
the method. Part of a critic is a patch of the failure. Technically, this patch is a special procedure
that can change the complete proof plan.

44

In contrast, failure reasoning in MULTI is conducted by control rules. The control rules are not
associated with a particular method but rather test for particular situations that can occur during
the proof planning process (independent from which strategy or method caused the situation).
The control rules reason on the current proof plan and on all other available information such as
the history. The patch of a failure is not implemented into special procedures but is carried out by
methods and strategies whose application is suggested by the control rules.

The advantage of MULTI’s approach is that control rules allow for method- and strategy-
independent reasoning on failures. For instance, the rule choose-equation-residues,
which guides the lemma speculation can deal with failing unifications and matchings in the appli-
cation conditions of any employed method. It is domain-independent since it could be employed
in cooperation with other constraint solvers similar to the cooperation with CoSIE described in
section 5.2.

We decided to realize patches in MULTI by control rules that guide the application of existing
strategies and methods since procedural patches are difficult to maintain. Both the introduction
and the deletion of a patch for a desired manipulation requires the implementation of special pro-
cedures. For complex proof plan manipulations the cooperation of several methods and strategies
can be necessary and has to be guided by several control rules. For instance, when performing
case analysis, MULTI has to backtrack the application of the conditional support. Afterwards, it
has to introduce the case-split and finally it has to replay the backtracked parts again (in order to
avoid to prove again from the scratch). The necessary failure reasoning and the knowledge of how
to patch this failure is distributed among three control rules: one strategic control rule that guides
the backtracking, one control rule that guides the case split, and one control rule that guides the
replay of the backtracked parts. Although the failure reasoning is distributed we see the three
involved control rules as one meta-reasoning entity that is distributed for technical reasons.

6.3 Evaluation of the Proof Planning Approach

Knowledge-based proof planning relies on the acquisition, formalization, and use of domain-
specific knowledge in methods, control rules, and strategies. However, there is the constant dan-
ger to acquire over-specific knowledge as BUNDY points out:

A new method or critic may originally be inspired by only a handful of
examples. There is a constant danger of producing methods and critics
that are too find tuned to these initial examples. This can arise both
from a lack of imagination in generalizing from the specific situation
and from the temptation to get quick results in automation. Such over-
specificity leads to a proliferation of methods and critics with limited
applicability.

Bundy, [12]

BUNDY suggests in [12] and [11] the criteria generality and parsimony to evaluate the appro-
priateness of proof planning methods and critics. Generality means that each method or critic
should apply successfully in a wide range of situations, whereas parsimony means that a few
methods should generate a large number of proofs.

These criteria of BUNDY do not consider mathematical content, which is an important issue
in knowledge-based proof planning. The methods, control rules, and strategies in knowledge-

45

based proof planning should be rich in mathematical content. Thus, the art of knowledge-based
proof planning is to acquire domain knowledge that, on the one hand, comprises meaningful
mathematical techniques and powerful heuristic guidance, and, on the other hand, is general
enough to tackle a broad class of problems.

In the following, we shall evaluate proof planning limit theorems with MULTI. We discuss the
amount of mathematical and domain-specific knowledge in strategies, methods, and control rules
and discuss how general they are. We discuss generality not only in the sense of BUNDY, that
is, to how many problem classes a concrete strategy, method, or control rule applies. Rather, we
discuss also how general the encoded principle is and how it can be transfered to other domains.

SolveInequality

The approach to tackle inequality problems with the SolveInequality strategy fits into a much
more general heuristic strategy described by SCHOENFELD:

In a problem ‘to find’ or ‘to construct’, it may be useful to assume that
you have the solution to the given problem. With the solution (hypothet-
ically) in hand, determine the properties it must have. Once you know
what those properties are, you can find the object you seek.

Schoenfeld, [41] p. 23

When tackling inequality problems, SolveInequality assumes that solutions for existentially
quantified variables exist (e.g., for the δ in ε-δ-proofs) and substitutes the existentially quantified
variables by meta-variables. Afterwards, it collects constraints on the introduced meta-variables
in CoSIE , which at the end computes instantiations for the meta-variables.

Now that we know that SolveInequality fits into the general strategy “assume, collect prop-
erties, then compute”, could we encode a general version of this strategy that can tackle various
domains and subsumes SolveInequality? Probably not, since, as SCHOENFELD points out, such
a general heuristic strategy alone provides no adequate information on how to use this strategy in
a concrete case.

[. . .] that a typical heuristic strategy is very broadly defined — too
broadly, in fact, for the description of the strategy to serve as a use-
ful guide to its implementation.

Schoenfeld,[41] pp. 70 and 72

Rather, such general strategies have to be filled with domain-specific knowledge such that the
general strategy is only a summary label for a class of substrategies for different domains:

[. . .] the successful implementation of heuristic strategies in any partic-
ular domain often depends heavily on the possession of specific subject
matter knowledge.
[. . .] More often than not, a capsule description of a strategy is a sum-
mary label that includes under it a class of more precise substrategies
that may be only superficially related.

Schoenfeld,[41] pp. 92 and 95

46

Thus, in the sense of SCHOENFELD, SolveInequality is a substrategy of the general strategy
“assume, collect properties, then compute”. It instantiates this general principle with the specific
knowledge on how to apply it to inequalities over the reals.

The main control rule of SolveInequality, prove-inequality, encodes the essential idea
of how SolveInequality implements the general principle for inequalities over the reals: reduce
complex inequalities to simple inequalities and pass simple inequalities to the connected con-
straint solver. To tackle complex inequalities prove-inequality suggests domain-specific
methods such as SIMPLIFY-B, COMPLEXESTIMATE-B, and FACTORIALESTIMATE-B. The
methods encode mathematical knowledge of inequalities, real numbers, and the operations +,−, ∗, /
on real numbers. This knowledge is partially contained in the computer algebra system MAPLE

that is employed within COMPLEXESTIMATE-B and SIMPLIFY-B. Moreover, prove-inequality
suggests the methods TELLCS-B, TELLCS-F, and ASKCS-B that interface the constraint solver
CoSIE . These methods do not contain domain-specific mathematical knowledge but provide a
domain-independent interface to constraint solvers.

The domain-specific methods of SolveInequality are hardly reusable in another substrategy
of “assume, collect properties, then compute” for other domains. However, they could be use-
ful for other problem classes dealing with inequalities over the reals. Currently, the methods
TELLCS-B, TELLCS-F, and ASKCS-B interface only CoSIE . However, they provide general
functionalities, namely adding constraints and asking whether a constraint is entailed, that are
independent of a concrete constraint solver. Thus, they can be used also in other domains with
other constraint solvers (e.g., problems on sets with a constraint solver on sets).

The essence of the control rule prove-inequality could be reused in other substrate-
gies of the “assume, collect properties, then compute” strategy for other domains with con-
straint solvers. In such a domain, the adaption of prove-inequalitywould suggest domain-
specific methods to tackle complex expressions of this domain until TELLCS-B, TELLCS-F, and
ASKCS-B involve a constraint solver of the domain to handle the simple expressions.

SolveInequality also contains some logic-level methods, for instance, CONTRA-B to perform
indirect proofs and DEFNUNFOLD-B and DEFNUNFOLD-F for unfolding of defined concepts.
These methods are domain-independent and contain no particular mathematical knowledge. The
decision when to perform an indirect proof and which definitions to unfold and which not are
difficult problems in theorem proving in general (e.g., see [8, 49, 20] for discussions on unfolding
of defined concepts). Their application within SolveInequality is guided by control rules that
encode mathematical heuristics. For instance, since the purpose of SolveInequality is to tackle
inequalities it only unfolds defined concepts that result in inequalities. This knowledge is encoded
in the control rule select-unfold-defined-concept, which guides the application of
DEFNUNFOLD-B and DEFNUNFOLD-F. The meta-reason-ing to guide indirect proofs in the
limit domain is discussed in [35].

SolveInequality employs some further control rules that do not encode mathematically mean-
ingful heuristics but deal with technical peculiarities that occur during the search process. As
example for such a control rule consider block-simplify, which restricts applications of the
methods SIMPLIFY-F and SIMPLIFY-B. Both methods employ MAPLE to simplify arithmetic
terms. Unfortunately, it turned out that the normal form simplifications provided by MAPLE

sometimes result in terms that are not suitable for further proof planning with them (from the
proof plan perspective they are not simplified). To avoid this block-simplify rejects all
applications of SIMPLIFY-F and SIMPLIFY-B that are supporting the proof planning process.

47

Altogether, SolveInequality is not restricted to limit problems. Rather, its approach is general
enough to tackle also other inequality problems over the reals. However, since we did focus on
limit problems so far, the methods of SolveInequality are focused on inequalities with absolute
values. To extend the solvability horizon of the strategy some methods are needed that tackle com-
plex inequalities without absolute values, for instance, methods similar to COMPLEXESTIMATE-B
or methods that isolate subterms in complex inequalities (isolating x in (c− x) + a < ε results in
x > (c + a) − ε).23

NormalizeLineTask and UnwrapHyp

The PPLANNER strategies NormalizeLineTask and UnwrapHyp contain only logic-level meth-
ods to decompose complex formulas in goals and supports. Thus, they are very general in the
sense of BUNDY, but they do not encode any specific mathematical knowledge. However, they
implement operations that are important in mathematical problem solving in general since the
decomposition of complex goals and the unwrapping of subformulas of complex assumptions is
necessary in all mathematical domains where complex statements are composed from primitive
ones by logical connectives and quantifiers.

23An example theorem that requires the handling of complex inequalities without absolute values is the Squeeze-
Theorem. Although we employ this theorem when proving problems with the ReduceToSpecial strategy it currently
cannot be proved by MULTI.

48

INSTMETA Strategies
Similar to the methods TELLCS-B, TELLCS-F, and ASKCS-B the INSTMETA strategies In-

stIfDetermined and ComputeInstFromCS encode no particular mathematical knowledge but
provide interface functions to constraint solvers. Although, currently they interface only CoSIE ,
they provide functionalities, namely retrieving particular entailed constraints and computation of
instantiations, that are independent of a concrete constraint solver. Thus, they could be employed
also in other domains.

Failure Reasoning
The described mathematical knowledge to speculate lemmas and to introduce case-splits are

general meta-reasoning patterns, promising also for other domains. As evidence for this state-
ment consider that the corresponding critics in CLAM exploit very similar failures in a completely
different domain to guide similar proof modifications.

The domain-specific part of the lemma speculation described in section 5.2 is the decision
of which lemmas are promising and which not. To avoid the speculation of arbitrary lemmas
that cannot be proved in the current context, SolveInequality asks CoSIE whether it accepts a
potential lemma. This exploits the domain-specific information encoded in CoSIE as well as the
context information passed to CoSIE so far. The same approach could be performed in other
domains with constraint solvers that contain particular domain knowledge. Other domains may
need different kinds of guidance to decide whether lemmas are promising.

The domain-specific part of the case-split introduction discussed in section 5.1 is the decision
of which cases to consider. In the limit domain, the general case-split C ∨ ¬C was sufficient so
far to deal with a failing condition C. The case-split C∨¬C is domain-independent since it relies
only on the tertium-non-datur axiom of ΩMEGA’s underlying logic. However, it can be necessary
to construct domain-specific case-splits. For instance, when C equals a < b, then the case-split
a < b ∨ a = b ∨ a > b could be considered. Different domains maybe provide different kinds of
domain-specific case-splits.

The goal-directed backtracking discussed in section 5.3 is just one particular example of goal-
directed reasoning on failures. More generally stated the principle works as follows: Suppose
there is a meta-plan (either explicitly constructed somewhere or implicitly encoded in control
rules) of the desired solution process, and suppose that a step S of this meta-plan fails. Then,
the failure can be analyzed and further steps can be considered in order to unblock S. The
concrete pattern (unblock ComputeInstFromCS if there are no further goals) is restricted to the
limit domain (and maybe some other domains with constraint solvers). The general principle,
however, is a domain-independent, promising meta-reasoning pattern for any domain for which a
kind of meta-plan of the desired solution process exists.

Summary
Typical questions of referees of our papers on proof planning are, for instance:

• How many new methods are typically needed when a new chapter in a book is considered?

• How many of the methods can typically be reused, when a new chapter in a book is con-
sidered?

49

A general answer to those questions is not possible. When extending the domain of proof
planning, the crucial question is whether the knowledge acquired so far is sufficient to tackle the
new problems.

To illustrate this subtle point consider the following experiences in the limit domain. We
started to develop proof planning in the limit domain with examples from chapter 4 and chapter
5 in [2] on the limit of functions and the continuity of functions. On the one hand, we found that
the acquired knowledge was not sufficient to deal with several problems in chapter 4 and chapter
5. These problems need additional knowledge about particular functions involved. Currently,
MULTI cannot solve, for instance, problems involving the square-root function since the methods
and theorems do not contain appropriate knowledge of this function. On the other hand, we
found that with the knowledge acquired for chapter 4 and chapter 5 MULTI can solve problems
on the derivative of functions without any extensions in form of further methods, control rules, or
theorems although this is a new chapter (chapter 6) in [2].

These experiences demonstrate the success and the limitation of the current proof planning
for limit problems realized in MULTI:

1. The implemented methods, control rules, and strategies are not too fine tuned to our initial
examples. In particular, the control rules contain the necessary control knowledge in a form
that is general enough to deal also with new problems for which the domain knowledge in
the methods and strategies is sufficient.

2. The implemented methods, control rules, and strategies are not sufficient to deal with any
limit problems. They are mainly restricted to terms composed of +,−, ∗, /, ||. To deal with
further expressions such as square-root requires further specific knowledge.

50

A Lim+ Example

Limf . Limf ` lim
x→a

f(x) = lf (Hyp)

Limg. Limg ` lim
x→a

g(x) = lg (Hyp)

L2. Limf `∀ε1 (0 < ε1 ⇒ ∃δ1 (0 < δ1 ∧
∀x1 (|x1 −a| < δ1∧|x1 −a| >

0
⇒ |f(x1) − lf | < ε1)))

(DEFNUNFOLD-F Limf)

L3. Limg `∀ε2 (0 < ε2 ⇒ ∃δ2 (0 < δ2 ∧
∀x2 (|x2 −a| < δ2∧|x2 −a| >

0
⇒ |g(x2) − lg| < ε2)))

(DEFNUNFOLD-F Limg)

L17. Limf ` 0 < mvε1 ⇒ ∃δ1 (0 < δ1 ∧
∀x1 (|x1 −a| < δ1∧|x1 −a| >

0
⇒ |f(x1) − lf | < mvε1))

(∀E-F L2)

L18. H3 ` 0 < mvε1 (TELLCS-B)
L20. H3 `∃δ1 (0 < δ1 ∧ ∀x1 (|x1 − a| < δ1

∧ |x1 − a| > 0 ⇒ |f(x1) − lf | <

mvε1))

(⇒E L18 L17)

L21. L21 ` 0 < cδ1
∧ ∀x1 (|x1 − a| < cδ1

∧ |x1 −
a| > 0

⇒ |f(x1) − lf | < mvε1)

(Hyp)

L23. L21 ` 0 < cδ1
(∧E-F L21)

L24. L21 `∀x1 (|x1 − a| < cδ1
∧ |x1 − a| > 0

⇒ |f(x1) − lf | < mvε1)
(∧E-F L21)

L25. L21 ` |mvx1
− a| < cδ1

∧ |mvx1
− a| > 0

⇒ |f(mvx1
) − lf | < mvε1))

(∀E-F L24)

L38. Limg ` 0 < mvε2 ⇒ ∃δ2 (0 < δ2 ∧
∀x2 (|x2 −a| < δ2∧|x2 −a| >

0
⇒ |g(x2) − lg| < mvε2))

(∀E-F L3)

L39. H3 ` 0 < mvε2 (TELLCS-B)
L41. H3 `∃δ2 (0 < δ2 ∧ ∀x2 (|x2 − a| < δ2

∧|x2−a| > 0 ⇒ |g(x2)−lg| < mvε2))
(⇒E L39 L38)

L42. L42 ` 0 < cδ2
∧ ∀x2 (|x2 − a| < cδ2

∧ |x2 −
a| > 0

⇒ |g(x2) − lg| < mvε2)

(Hyp)

L44. L42 ` 0 < cδ2
(∧E-F L42)

L45. L42 `∀x2 (|x2 − a| < cδ2
∧ |x2 − a| > 0

⇒ |g(x2) − lg| < mvε2)
(∧E-F L42)

L46. L42 ` |mvx2
− a| < cδ2

∧ |mvx2
− a| > 0

⇒ |g(mvx2
) − lg| < mvε2))

(∀E-F L45)

L11. L11 ` |cx − a| > 0 ∧ |cx − a| < mvδ (Hyp)
L14. L11 ` |cx − a| > 0 (∧E-F L11)
L13. L11 ` |cx − a| < mvδ (∧E-F L11)
L5. L5 ` 0 < cε (Hyp)
L61. H1 ` 0 ≤ 0 (ASKCS-B)
L59. H1 `mvδ ≤ cδ1

(TELLCS-B)
L57. H2 ` 0 ≤ 0 (ASKCS-B)
L55. H2 `mvδ ≤ cδ2

(TELLCS-B)
L52. H2 `mvx2

= cx (TELLCS-B)

51

L53. H2 `mvε2 ≤ 1
2 ∗ cε (TELLCS-B)

L50. H2 ` |mvx2
− a| < cδ2

(SOLVE*-B L13 L55)
L51. H2 ` |mvx2

− a| > 0 (SOLVE*-B L14 L57)
L47. H2 ` |mvx2

− a| < cδ2
∧ |mvx2

− a| > 0 (∧I-B L50 L51)
L49. H2 ` |g(mvx2

) − lg | < mvε2 (⇒E L47 L46)
L48. H2 ` |g(cx) − lg| < 1

2 ∗ cε (SOLVE*-B L49 L52 L53)
L43. H2 ` |g(cx) − lg| < 1

2 ∗ cε (⇒E-F L47 L46 L48)
L40. H1 ` |g(cx) − lg| < 1

2 ∗ cε (∃E-F L41 L43)
L37. H1 ` |g(cx) − lg| < 1

2 ∗ cε (⇒E-F L39 L38 L40)
L31. H1 ` |1| ≤ mv (TELLCS-B)
L32. H1 `mvε1 ≤ cε

2∗mv
(TELLCS-B)

L33. H1 ` |g(cx) − lg| < cε

2 (SIMPLIFY-B L37)
L34. H1 ` 0 < mv (TELLCS-B)
L35. H1 `mvx1

= cx (TELLCS-B)
L29. H1 ` |mvx1

− a| < cδ1
(SOLVE*-B L13 L59)

L30. H1 ` |mvx1
− a| > 0 (SOLVE*-B L14 L61)

L26. H1 ` |mvx1
− a| < cδ1

∧ |mvx1
− a| > 0 (∧I-B L29 L30)

L28. H1 ` |f(mvx1
) − lf | < mvε1 (⇒E L26 L25)

L27. H1 ` |((f(cx) + g(cx)) − lf) − lg| < cε (COMPLEXESTIMATE-B
L28 L31 L32 L33 L34 L35)

L22. H1 ` |((f(cx) + g(cx)) − lf) − lg| < cε (⇒E-F L26 L25 L27)
L19. H3 ` |((f(cx) + g(cx)) − lf) − lg| < cε (∃E-F L20 L21)
L16. H3 ` |((f(cx) + g(cx)) − lf) − lg| < cε (⇒E-F L18 L17 L19)
L12. H3 ` |(f(cx) + g(cx)) − (lf + lg)| < cε (SIMPLIFY-B L16)
L10. H4 ` |cx − a| < mvδ ∧ |cx − a| > 0

⇒ |(f(cx) + g(cx)) − (lf + lg)| < cε

(⇒I-B L12)

L9. H4 `∀x (|x − a| < mvδ ∧ |x − a| > 0
⇒ |(f(x) + g(x)) − (lf + lg)| < cε)

(∀I-B L10)

L8. H4 ` 0 < mvδ (TELLCS-B)
L7. H4 ` 0 < mvδ∧∀x (|x−a| < mvδ∧|x−a| >

0
⇒ |(f(x) + g(x)) − (lf + lg)| < cε)

(∧I-B L8 L9)

L6. H4 `∃δ (0 < δ∧∀x (|x−a| < δ∧|x−a| > 0
⇒ |(f(x) + g(x)) − (lf + lg)| < cε))

(∃I-B L7)

L4. Limf , Limg` 0 < cε ⇒ ∃δ (0 < δ ∧
∀x (|x − a| < δ ∧ |x − a| > 0

⇒ |(f(x) + g(x)) − (lf + lg)| < cε))

(⇒I-B L6)

L1. Limf , Limg`∀ε (0 < ε ⇒ ∃δ (0 < δ ∧
∀x (|x − a| < δ ∧ |x − a| > 0

⇒ |(f(x) + g(x)) − (lf + lg)| < ε)))

(∀I-B L4)

LIM+. Limf , Limg` lim
x→a

(f(x) + g(x)) = lf + lg (DEFNUNFOLD-B L1)

H1 = {Limf , Limg , L5, L11, L21}, H2 = {Limf , Limg , L5, L11, L21, L42}

H3 = {Limf , Limg , L5, L11}, H4 = {Limf , Limg , L5}

52

B Limit Theorems

The following theorems from the limit domain can be proved by MULTI so far. We tested mainly
conjectures from [2]. Many similar theorems could be formulated. In the following, X, Y denote
sequences over the reals, f and g denote functions over the reals, and a, b denote arbitrary but fix
reals. For problems marked with (∗) CoSIE fails to compute instantiations for meta-variables for
the reasons discussed in section 5.3.

Limits of sequences

1. (Exercise 3.1.7 first part in [2])
If the sequence |X| = |(xn)| has the limit 0, then the sequence X = (xn) has also the limit
0:
limseq |X| = 0 ⇒ limseq X = 0

2. (Theorem 3.2.2 in [2])
If the sequence X = (xn) has an limit l, then the sequence X is bounded:
limseq X = l ⇒ ∃m 0 < m ∧ ∀n |xn| < m

3. (Theorem 3.2.3.a first part in [2])
If the sequence X = (xn) has the limit lx and the sequence Y = (yn) has the limit ly, then
the sequence X + Y = (xn + yn) has the limit lx + ly:
limseq X = lx ∧ limseq Y = ly ⇒ limseq X + Y = lx + ly

4. (Theorem 3.2.3.a second part in [2])
If the sequence X = (xn) has the limit lx and the sequence Y = (yn) has the limit ly, then
the sequence X − Y = (xn − yn) has the limit lx − ly:
limseq X = lx ∧ limseq Y = ly ⇒ limseq X − Y = lx − ly

5. (Theorem 3.2.3.a third part in [2])
If the sequence X = (xn) has the limit lx and the sequence Y = (yn) has the limit ly, then
the sequence X ∗ Y = (xn ∗ yn) has the limit lx ∗ ly:
limseq X = lx ∧ limseq Y = ly ⇒ limseq X ∗ Y = lx ∗ ly

6. (Theorem 3.2.3.a fourth part in [2])
If the sequence X = (xn) has the limit lx, then the sequence a ∗X = (a ∗ xn) has the limit
a ∗ lx:
limseq X = lx ⇒ limseq a ∗ X = a ∗ lx

7. (∗)(Theorem 3.2.3.b in [2])
If the sequence X = (xn) has the limit lx and the sequence Y = (yn) has the limit ly 6= 0
and yn 6= 0 for all n, then the sequence X

Y
= (xn

yn
) has the limit lx

ly
:

limseq X = lx ∧ limseq Y = ly ∧ ∀n yn 6= 0 ⇒ limseq X
Y

= lx
ly

8. (Theorem 3.2.4 in [2])
If the sequence X = (xn) has a limit l and xn ≥ 0 for all n, then l ≥ 0:
limseq X = l ∧ ∀n xn ≥ 0 ⇒ l ≥ 0

53

9. (Theorem 3.2.5 in [2])
If the sequence X = (xn) has a limit lx and the sequence Y = (yn) has a limit ly and
xn ≤ yn for all n, then lx ≤ ly:
limseq X = lx ∧ limseq Y = ly ∧ ∀n xn ≤ yn ⇒ lx ≤ ly

10. (Theorem 3.2.6 in [2])
If the sequence X = (xn) has a limit l and a ≤ xn ≤ b for all n, then a ≤ l ≤ b:
limseq X = l ∧ ∀n a ≤ xn ≤ b ⇒ a ≤ l ≤ b

Limits of functions

1. (LIMC: Example 4.1.7.a in [2])
The function f(x) = b has the limit b at a:
lim
x→a

b = b

2. (LIMV: Example 4.1.7.b in [2])
The function f(x) = x has the limit a at a:
lim
x→a

x = a

3. (Example 4.1.7.c in [2])
The function f(x) = x2 has the limit a2 at a:
lim
x→a

x2 = a2

4. (∗) (LIM-DIV-1-X: Example 4.1.7.d in [2])
The function f(x) = 1

x
has the limit 1

a
at a, if a > 0:

a > 0 ⇒ lim
x→a

1
x

= 1
a

5. (∗) (Example 4.1.7.e in [2])
lim
x→2

x3−4
x2+1

= 4
5

6. (Exercise 4.1.2 first part in [2])
If f has limit l at a, then the function |f(x) − l| has the limit 0 at a:
lim
x→a

f(x) = l ⇒ lim
x→a

|f(x) − l| = 0

7. (Exercise 4.1.2 second part in [2])
If the function |f(x) − l| has the limit 0 at a, then f has the limit l at a:
lim
x→a

|f(x) − l| = 0 ⇒ lim
x→a

f(x) = l

8. (Exercise 4.1.3 first part in [2])
If the function f(x) has the limit l at a, then the function f(x + a) has the limit l at 0:
lim
x→a

f(x) = l ⇒ lim
x→0

f(x + a) = l

9. (Exercise 4.1.3 second part in [2])
If the function f(x + a) has the limit l at 0, then the function f(x) has the limit l at a:
lim
x→0

f(x + a) = l ⇒ lim
x→a

f(x) = l

54

10. (Exercise 4.1.7 in [2])
If k > 0 and |f(x) − l| ≤ k ∗ |x − a| for all x, then f has the limit l at a:
k > 0 ∧ ∀x |f(x) − l| ≤ k ∗ |x − a| ⇒ lim

x→a
f(x) = l

11. (Exercise 4.1.8 in [2])
lim
x→a

x3 = a3

12. (∗) (Exercise 4.1.10.a in [2])
lim
x→2

1
1−x

= −1

13. (∗) (Exercise 4.1.10.b in [2])
lim
x→1

x
1+x

= 1
2

14. (∗) (Exercise 4.1.10.c in [2])
lim
x→0

x2

|x|
= 0

15. (∗) (Exercise 4.1.10.d in [2])
lim
x→1

x2−x+1
x+1

= 1
2

16. (Exercise 4.1.12 in [2])
If f(x) has limit l at 0 and a > 0, then f(a ∗ x) has the limit l at 0:
lim
x→0

f(x) = l ∧ a > 0 ⇒ lim
x→0

f(a ∗ x) = l

17. (Reverse of exercise 4.1.12)
If f(a ∗ x) has the limit l at 0 and a > 0, then f(x) has limit l at 0:
lim
x→0

f(a ∗ x) = l ∧ a > 0 ⇒ lim
x→0

f(x) = l

18. (Theorem 4.2.2 in [2])
If f has a limit at a, then f is bounded in a neighborhood of a:
lim
x→a

f(x) = l

⇒ ∃m, δ m > 0 ∧ δ > 0 ∧ ∀x (|x − a| < δ ∧ |x − a| > 0) ⇒ |f(x)| < m

19. (LIM+: Theorem 4.2.4.a first part in [2])
If f has limit lf at a and g has limit lg at a, then f + g has limit lf + lg at a:
lim
x→a

f(x) = lf ∧ lim
x→a

g(x) = lg ⇒ lim
x→a

f(x) + g(x) = lf + lg

20. (LIM-: Theorem 4.2.4.a second part in [2])
If f has limit lf at a and g has limit lg at a, then f − g has limit lf − lg at a:
lim
x→a

f(x) = lf ∧ lim
x→a

g(x) = lg ⇒ lim
x→a

f(x) − g(x) = lf − lg

21. (LIM*: Theorem 4.2.4.a third part in [2])
If f has limit lf at a and g has limit lg at a, then f ∗ g has limit lf ∗ lg at a:
lim
x→a

f(x) = lf ∧ lim
x→a

g(x) = lg ⇒ lim
x→a

f(x) ∗ g(x) = lf ∗ lg

22. (Theorem 4.2.4.a fourth part in [2])
If f has limit lf at a, then a ∗ f has limit a ∗ lf at a:
lim
x→a

f(x) = lf ⇒ lim
x→a

a ∗ f(x) = a ∗ lf

55

23. (∗) (Theorem 4.2.4.b in [2])
If f has limit lf at a and g has limit lg 6= 0 at a and g(x) 6= 0 for all x, then f

g
has limit lf

lg

at a:
lim
x→a

f(x) = lf ∧ lim
x→a

g(x) = lg ∧ ∀x g(x) 6= 0 ⇒ lim
x→a

f(x)
g(x)

=
lf
lg

24. (Example 4.2.5.b in [2])
lim
x→2

(x2 + 1) ∗ (x3 − 4) = 20

25. (Example 4.2.8.b in [2])
lim
x→0

sin(x) = 0

26. (Example 4.2.8.c in [2])
lim
x→0

cos(x) = 1

27. (Example 4.2.8.f in [2])
lim
x→0

x ∗ sin(1
x
) = 0

28. (Exercise 4.2.1 in [2])
lim
x→1

(x + 1) ∗ (2 ∗ x + 3) = 10

29. (Theorem 4.3.3 first part in [2])
If f has limit l at a, then f has the left-hand limit l at a:
lim
x→a

f(x) = l ⇒ limLx→af(x) = l

30. (Theorem 4.3.3 second part in [2])
If f has limit l at a, then f has the right-hand limit l at a:
lim
x→a

f(x) = l ⇒ limRx→af(x) = l

31. (Lim-If-Both-Sides-Lim: Theorem 4.3.3 third part in [2])
If f has the left-hand limit l and the right-hand limit l at a, then f has the limit l at a:
limLx→af(x) = l ∧ limRx→af(x) = l ⇒ lim

x→a
f(x) = l

Continuity of functions

1. (Example 5.1.5.a in [2])
The function f(x) = b is continuous at a:
cont(b, a)

2. (Example 5.1.5.b in [2])
The function f(x) = x is continuous at a:
cont(x, a)

3. (Example 5.1.5.b in [2])
The function f(x) = x2 is continuous at a:
cont(x2, a)

56

4. (Exercise 5.1.6 in [2])
If f is continuous at a, then for any ε > 0 there exists a δ-neighborhood of a such that if
x, y in this δ-neighborhood then |f(x) − f(y)| < ε:
cont(f, a) ⇒

∀ε (ε > 0 ⇒ ∃δ (δ > 0∧
∀x, y (|x − a| < δ ∧ |y − a| < δ ⇒ |f(x) − f(y)| < ε)))

5. (Exercise 5.1.11 in [2])
If k > 0 and |f(x) − f(y)| ≤ k ∗ |x − y| for all x,y, then f is continuous at a:
k > 0 ∧ ∀x, y |f(x) − f(y)| ≤ k ∗ |x − y| ⇒ cont(f, a)

6. (Continuous+: Theorem 5.2.1.a first part in [2])
If f is continuous at a and g is continuous at a, then f + g is continuous at a:
cont(f, a) ∧ cont(g, a) ⇒ cont(f + g, a)

7. (Continuous-: Theorem 5.2.1.a second part in [2])
If f is continuous at a and g is continuous at a, then f − g is continuous at a:
cont(f, a) ∧ cont(g, a) ⇒ cont(f − g, a)

8. (Continuous*: Theorem 5.2.1.a third part in [2])
If f is continuous at a and g is continuous at a, then f ∗ g is continuous at a:
cont(f, a) ∧ cont(g, a) ⇒ cont(f ∗ g, a)

9. (Theorem 5.2.1.a fourth part in [2])
If f is continuous at a, then a ∗ f is continuous at a:
cont(f, a) ⇒ cont(a ∗ f, a)

10. (∗) (Theorem 5.2.1.b in [2])
If f is continuous at a and g is continuous at a and g(x) 6= 0 for all x, then f

g
is continuous

at a:
cont(f, a) ∧ cont(g, a) ∧ ∀x g(x) 6= 0 ⇒ cont(f

g
, a)

11. (Theorem 5.2.7 in [2])
If f is continuous at a and g is continuous at f(a), then the composition g ◦ f is continuous
at a:
cont(f, a) ∧ cont(g, f(a)) ⇒ cont(g ◦ f, a)

12. (Exercise 5.2.6 in [2])
If f has the limit l at a and g is continuous at l, then the composition g ◦ f has the limit g(l)
at a:
lim
x→a

f(x) = l ∧ cont(g, l) ⇒ lim
x→a

g(f(x)) = g(l)

13. (Cont-If-Lim=f)
If f has the limit f(a) at a, then f is continuous at a:
lim
x→a

f(x) = f(a) ⇒ cont(f, a)

57

Derivatives of functions

1. (∗) (Theorem 6.1.3.a in [2])
If f has the derivative f ′ at a, then a ∗ f has the derivative a ∗ f ′ at a:
deriv(f, a) = f ′ ⇒ deriv(a ∗ f, a) = a ∗ f ′

2. (∗) (Theorem 6.1.3.b in [2])
If f has the derivative f ′ at a and g has the derivative g′ at a, then f + g has the derivative
f ′ + g′ at a:
deriv(f, a) = f ′ ∧ deriv(g, a) = g′ ⇒ deriv(f + g, a) = f ′ + g′

3. (∗) (Theorem 6.1.3.c in [2])
If f has the derivative f ′ at a and g has the derivative g′ at a, then f ∗ g has the derivative
f ′ ∗ g(a) + f(a) ∗ g′ at a:
deriv(f, a) = f ′ ∧ deriv(g, a) = g′ ⇒ deriv(f ∗ g, a) = f ′ ∗ g(a) + f(a) ∗ g′

4. (∗) (Cont-If-Deriv: Theorem 6.1.2 in [2])
If f has a derivative at a, then f is continuous at a:
deriv(f, a) = f ′ ⇒ cont(f, a)

58

References

[1] P.B. Andrews. Transforming Matings into Natural Deduction Proofs. In Bibel and Kowalski
[4], pages 281–292.

[2] R.G. Bartle and D.R. Sherbert. Introduction to Real Analysis. John Wiley& Sons, New
York, 1982.

[3] M. Beeson. Automatic generation of epsilon-delta proofs of continuity. In J. Calment and
J. Plaza, editors, Artificial Intelligence and Symbolic Computation, pages 67–83. Springer
VerlagGermany, 1998.

[4] W. Bibel and R.A. Kowalski, editors. Proceedings of the 5th Conference on Automated
Deduction (CADE–5), volume 87 of LNCS, Les ArcsFrance, June7–9 1980. Springer Ver-
lagGermany.

[5] K.H. Bläsius and H.J. Bürckert, editors. Deduktionssysteme. Oldenbourg, 1992.

[6] W.W. Bledsoe. Challenge Problems in Elementary Analysis. Journal of Automated Reason-
ing, 6:341–359, 1990.

[7] W.W. Bledsoe, R.S. Boyer, and W.H. Henneman. Computer Proofs of Limit Theorems.
Artificial Intelligence, 3(1):27–60, 1972.

[8] W.W. Bledsoe and P. Bruell. A Man-Machine Theorem Proving System. Artificial Intelli-
gence, 5(1):51–72, 1974.

[9] W.W. Bledsoe and L. Hines. Variable Elimination and Chaining in a Resolution-Based
Prover for Inequalities. In Bibel and Kowalski [4], pages 70 – 87.

[10] A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In E.L. Lusk and R.A. Over-
beek, editors, Proceedings of the 9th International Conference on Automated Deduction
(CADE–9), volume 310 of LNCS, pages 111–120, Argonne, Illinois, USA, 1988. Springer
VerlagGermany.

[11] A. Bundy. A science of reasoning. In Computational Logic: Essays in Honor of Alan
Robinson. 1991.

[12] A. Bundy. A Critique of Proof Planning. In Festschrift in Honour of Robort Kowalski. 2002.

[13] A. Bundy, A. Stevens, F. van Hermelen, A. Ireland, and A. Smaill. Rippling: A heuristic for
guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993.

[14] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam System. In Stickel
[44], pages 647–648.

[15] L. Cheikhrouhou and V. Sorge. PDS — A Three-Dimensional Data Structure for Proof
Plans. In Proceedings of the International Conference on Artificial and Computational In-
telligence for Decision, Control and Automation in Engineering and Industrial Applications
(ACIDCA’2000), Monastir, Tunisia, March22–24 2000.

59

[16] D.D. Corkill, V.R. Lesser, and E. Hudlicka. Unifying Data-Directed and Goal-Directed
Control. In D. Waltz, editor, Proceedings of the Second National Conference on Artificial
Intelligence (AAAI-82), pages 143 – 147, Carnegie-Mellon University / University of Pitts-
burgh, Pittsburgh, Pennsylvania, USA, August18–20 1982. AAAI Press, Menlo Park, CA,
USA.

[17] E.H. Durfee and V.R. Lesser. Incremental Planning to Control a Blackboard-Based Problem
Solver. In T. Kehler and S. Rosenschein, editors, Proceedings of the Fifth National Confer-
ence on Artificial Intelligence (AAAI-86), pages 58 – 64, Philadelphia, Pennsylvania, USA,
August11–15 1986. AAAI Press, Menlo Park, CA, USA.

[18] L.D. Erman, P. London, and S. Fickas. The Design and an Example Use of HEARSAY-III.
In B. Buchanan, editor, Proceedings of the 6th International Joint Conference on Artificial
Intelligence (ICJAI), pages 409–415, Tokyo, Japan, August20–23 1979. Morgan Kaufmann.

[19] G. Gentzen. Untersuchungen über das Logische Schließen I und II. Mathematische
Zeitschrift, 39:176–210, 405–431, 1935.

[20] F. Giunchiglia and T. Walsh. Theorem Proving with Definition. In Proceedings of AISB 89,
Society for the Study of Artificial Intelligence and Simulation of Behaviour, 1989.

[21] B. Hayes-Roth. A Blackboard Architecture for Control. Artificial Intelligence, 25:251–321,
1985.

[22] G.P. Huet. Constrained Resolution: A Complete Method for Higher Order Logic. PhD
thesis, Case Western Reverse University, 1972.

[23] D. Hutter. Guiding inductive proofs. In Stickel [44].

[24] A. Ireland. The Use of Planning Critics in Mechanizing Inductive Proofs. In A. Voronkov,
editor, Proceedings of the 3rd International Conference on Logic Programming and Auto-
mated Reasoning (LPAR’92), volume 624 of LNAI, pages 178 – 189, St. Petersburg, Russia,
July1992. Springer VerlagGermany.

[25] A. Ireland and A. Bundy. Productive Use of Failure in Inductive Proof. Journal of Automated
Reasoning, 16(1-2):79–111, 1996.

[26] M.V. Johnson Jr. and B. Hayes-Roth. Integrating Diverse Reasoning Methods in the BB1
Blackboard Control Architecture. In K. Forbus and H. Shrobe, editors, Proceedings of
the Sixth National Conference on Artificial Intelligence (AAAI-87), pages 30 – 35, Seattle,
Washington, USA, July13–17 1987. AAAI Press, Menlo Park, CA, USA.

[27] M. Kerber, M. Kohlhase, and V. Sorge. Integrating Computer Algebra Into Proof Planning.
Journal of Automated Reasoning, 21(3):327–355, 1998.

[28] H. Kirchner and C. Ringeissen, editors. Proceedings of Third International Workshop on
Frontiers of Combining Systems (FROCOS 2000), volume 1794 of LNCS, NancyFrance,
March22–24 2000. Springer VerlagGermany.

[29] W. McCune. Otter 3.0 Reference Manual and Guide. Technical Report ANL-94-6, Argonne
National Laboratory, Argonne, Illinois 60439, USA, 1994.

60

[30] A. Meier. The proof planners of ΩMEGA: A technical description. Seki Report SR-2004-03,
Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany, 2004.

[31] E. Melis. Progress in proof planning: Planning limit theorems automatically. Seki Re-
port SR-97-08, Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany,
1997.

[32] E. Melis. AI-Techniques in Proof Planning. In H. Prade, editor, Proceedings of of the 13th
European Conference on Artifical Intelligence, pages 494–498, Brighton, UK, August23–28
1998. John Wiley & Sons, Chichester, UK.

[33] E. Melis. The “Limit” Domain. In R. Simmons, M. Veloso, and S. Smith, editors, Pro-
ceedings of the Fourth International Conference on Artificial Intelligence Planning Systems
(AIPS-98), pages 199–206, Pittsburgh, PEN, USA, June7–10 1998. AAAI Press, Menlo
Park, CA, USA.

[34] E. Melis and A. Meier. Proof Planning with Multiple Strategies. In J. Loyd, V. Dahl,
U. Furbach, M. Kerber, K. Lau, C. Palamidessi, L.M. Pereira, and Y. Sagivand P. Stuckey,
editors, First International Conference on Computational Logic (CL-2000), volume 1861 of
LNAI, pages 644–659, London, UK, 2000. Springer-Verlag.

[35] E. Melis and M. Pollet. Domain Knowledge for Search Heuristics in Proof Planning. In
Proceedings of AIPS-2000 Workshop: Analyzing and Exploiting Domain Knowledge, pages
12–15, 2000.

[36] E. Melis and J. Siekmann. Knowledge-Based Proof Planning. Artificial Intelligence,
115(1):65–105, 1999.

[37] E. Melis, J. Zimmer, and T. Müller. Integrating Constraint Solving into Proof Planning. In
Kirchner and Ringeissen [28], pages 32–46.

[38] D. Redfern. The Maple Handbook: Maple V Release 5. Springer VerlagGermany, 1999.

[39] J.D.C. Richardson, A. Smaill, and I.M. Green. System description: Proof planning in
higher-order logic with λClam. In C. Kirchner and H. Kirchner, editors, Proceedings of
the 15th International Conference on Automated Deduction (CADE–15), volume 1421 of
LNAI, pages 129–133, LindauGermany, July5–10 1998. Springer VerlagGermany.

[40] S. Russell and P. Norvig. Artificial Intelligence - A Modern Approach. Prentice Hall, En-
glewood Cliffs, 1995.

[41] A.H. Schoenfeld. Mathematical Problem Solving. Academic Press, New York, 1985.

[42] J. Siekmann, C. Benzmüller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler, A. Franke, H. Ho-
racek, M. Kohlhase, A. Meier, E. Melis, M. Moschner, I. Normann, M. Pollet, V. Sorge,
C. Ullrich, C.P. Wirth, and J. Zimmer. Proof Development with OMEGA. In A. Voronkov,
editor, Proceedings of the 18th International Conference on Automated Deduction (CADE–
18), number 2392 in LNAI, pages 144–149, Kopenhagen, Denmark, 2002. Springer Verlag-
Germany.

[43] V. Sorge. Non-Trivial Symbolic Computations in Proof Planning. In Kirchner and Ringeis-
sen [28], pages 121–135.

61

[44] M. Stickel, editor. Proceedings of the 10th International Conference on Automated Deduc-
tion (CADE–10), volume 449 of LNAI, KaiserslauternGermany, 1990.

[45] A. Tate. Generating Project Networks. In R. Reddy, editor, Proceedings of the 5th Interna-
tional Joint Conference on Artificial Intelligence (ICJAI), pages 888–893, Cambridge, MA,
USA, August22–25 1977. Morgan Kaufmann, San Mateo, CA, USA.

[46] Y. Tetsuya, A. Bundy, I. Green, T. Walsh, and D. Basin. Coloured rippling: An extension
of a theorem proving heuristic. In A.G. Cohn, editor, Proceedings of of the 11th European
Conference on Artifical Intelligence, pages 85 – 89. John Wiley & Sons, Chichester, UK,
1994.

[47] M.M. Veloso, J. Carbonell, M.A. Perez, D. Borrajo, E. Fink, and J. Blythe. Integrating
Planning and Learning: The Prodigy Architecture. Journal of Experimental and Theoretical
Artificial Intelligence, 7(1):81–120, 1995.

[48] D.S. Weld. An Introduction to Least Commitment Planning. AI Magazine, 15(4):27–61,
1994.

[49] L. Wos. The Problem of Definition Expansion and Contraction. Journal of Automated
Reasoning, 3:433–435, 1987.

[50] J. Zimmer. Constraintlösen für Beweisplanung. Master’s thesis, Fachbereich Informatik,
Universität des Saarlandes, Saarbrücken, 2000.

