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Abstract

We present the proof representation language to be used by the mediator between an environ-
ment for writing mathematical documents and proof assistants. This language is an updated
version of the one introduced in [1].

1 Motivation

We present an updated version of the proof representation language introduced in [1]. This lan-
guage was introduced for the DIALOG project [2] as a user-oriented proof representation language
which allows for under-specification. This updated version allows one to represent a greater vari-
ety of proofs; for example, proofs in which the user introduces an intermediary goal and decom-
poses that, and then proceeds with the proof. The representation language has been implemented
in LISP.

The motivation was to give a formal representation of informal proofs. The representation
aims to capture how proofs are constructed by humans. One key aspect of informal proof con-
struction is under-specification; many references in a proof will not be specified by the user, and it
is important to have a representation structure which allows for proofs in which some information
is missing. The proof steps of the data structure correspond to the linguistically characterizable
proofs steps done by humans. For example, one might work forward and give a new fact which
has been derived from existing facts, or decompose the goal into subgoals, or introduce an as-
sumption in order to start a subproof which will allow one to assert some additional formula. A
proof is thus a set of linearized proof steps—one step follows from one or more other steps until
the goal has been asserted. These proof steps may correspond to branches or backward work
in a proof; the steps are linearized although some steps may point to subproofs or goal decom-
positions. There is a tension between informal and formal representations; we intend to give a
representation which is formal enough to bridge the gap to the formal representations used by
arbitrary proof assistants, but general enough to account for the expected linguistic assertions,
which will be less precise than those generated by automated processes.

This updated proof language is presented in Fig. 1.

The updated proof checking rules are given in Fig. 2.
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Step S ::= .

| Trivial
| Fact N : F from R∗;S
| Subgoals (N : F)+ in S+ to obtain N ′ : F ′ by R∗;S′

| Assume H∗ prove N : F in S to obtain N ′ : F ′ by R∗;S′

| Assign (SUBST | ABBRV);S
| Or(S1 ‖ . . . ‖ Sn);S′

| Cases F+ : (Case N : F : S End)+ to obtain N ′ : F ′;S′

Hypotheses H ::= N : F | CONST : TYPE? | VAR : TYPE?
Substitutions SUBST ::= Let VAR := TERM
Abbreviations ABBRV ::= Let CONST := TERM
Constants CONST ::= const N
Variables VAR ::= var N
Types TYPE ::= . . .

Figure 1: Proof representation language

P : Γ =⇒Triv ∆
Γ〈Trivial〉∆ Trivial

Γ〈Si,S′〉∆
Γ〈Or(S1 ‖ . . . ‖ Sn);S′〉∆ Or

P(R∗) : Γ =⇒Fact F,∆ Γ,N : F〈S〉∆
Γ〈Fact N : F from R∗;S〉∆ Fact

P(R∗) : Γ,(F1 ∧ . . .∧Fk) =⇒Subgoal F ′
,∆ Γ〈S1〉N1 : F1,∆ . . . Γ〈Sk〉Nk : Fk,∆ Γ,N ′ : F ′〈S′〉∆

Γ〈Subgoals N1 : F1, . . . ,Nk : Fk in S1 | . . . | Sk to obtain N ′ : F ′ by R∗;S′〉∆
Subgoals

P(R∗) : Γ,F =⇒Focus F ′
,∆ P′(R∗) : Γ =⇒Hyp H1 ∧ . . .∧Hn,F ′

,∆ Γ,H1, . . . ,Hn〈S〉N : F,∆ Γ,N ′ : F ′〈S′〉∆
Γ〈Assume H1, . . . ,Hn prove N : F in S to obtain N ′ : F ′ by R∗;S′〉∆ Assume

var x : τ ∈ Γ Γ =⇒Type t : τ P : Γ =⇒Subst x = t,∆ Γ, . : x = t〈S〉∆
Γ〈Assign var x := t;S〉∆

Assign-Subst

Γ =⇒Type t : τ c 6∈ Γ∪∆ Γ, . : const c : τ, . : c = t〈S〉∆
Γ〈Assign const c := t;S〉∆

Assign-Abbrv

P : Γ =⇒Case F1 ∨ . . .∨Fn,F ′
,∆ Γ,N1 : F1〈S1〉N′ : F ′

,∆ . . . Γ,Nn : Fn〈Sn〉N′ : F ′
,∆ Γ,N ′ : F ′〈S′〉∆

Γ〈Cases F1, . . . ,Fn : Case N1 : F1 : S1 End . . .Case Nn : Fn : Sn End to obtain N ′ : F ′;S′〉∆ Case

Figure 2: Proof Checking Rules
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2 Explanation

One asserts the step Trivial when the current proof or subproof is complete. A proof, or
subproof, is not complete unless the last step is a trivial step, indicating that the proven or obtained
fact is the goal of the open proof or subproof. The step Fact N : F from R∗;S indicates that fact
F , named N, has been derived using facts in R∗, and this step is followed by step S. Any of
these fields may be under-specified. A proof step Subgoals (N : F)+ in S+ to obtain N ′ :
F ′ by R∗;S′ indicates that we have introduced a list of subgoals (N : F)+, each of which has a
proof in the corresponding list of subproofs S+, and the facts given in R∗ show that this allows
us to obtain fact F ′, named N ′. Fact F ′ is a goal which we have decomposed into subgoals, but
is not necessarily our original goal. S′ indicates the following step in the proof, which will be a
trivial step in the case where F ′ is the original goal, and otherwise this step will continue the proof
of the original goal, with fact F ′ available as a valid fact. A proof step Assume H∗ prove N :
F in S to obtain N ′ : F ′ by R∗;S′ introduces hypotheses H∗ in order to prove fact F (named
N) in subproof S. By reference to facts in R∗, this allows us to obtain fact F ′ in the original
proof, and continue the proof with step S′. For example, we might introduce some hypothesis
F1 in order to prove a contradiction within the subproof, and by referencing the appropriate rules
of logic in R∗, this will allow to obtain the negation of F1 at the level of the assumption step.
A proof step Assign (SUBST | ABBRV);S substitutes a variable for a term or abbreviates a
term as a constant, and is followed by proof step S. The step Or(S1 ‖ . . . ‖ Sn);S′ indicates that
there are different possible proofs, or subproofs, for some part of a proof, and these branches are
followed by the subsequent step S′, which will be a trivial step in the situation where the different
branches are possible proofs of the original goal. Case distinctions are introduced with a case
step, Cases F+ : (Case N : F : S End)+ to obtain N ′ : F ′;S′, where for each case Fx there
is a subproof in Sx which allows us to obtain the formula F ′. The case split is followed by step S′.

2.1 Proof Checking

This representation is designed to be general and abstract, and thus does not assume a particular
logic which establishes validity. Thus, proof checking is parameterized over the choice of a logic.
A proof is checked by checking the individual proof steps of which it is composed. The proof
checking rules give the lemmas that arise when one asserts a proof step of each category, and
these lemmas must then be checked in the specific logic of choice to verify the proof step.

In these rules, the visible hypotheses are denoted by Γ and the previous goals by ∆. These rules
not only check that some proof of a step’s validity exists, but that such a proof uses the given ref-
erences. For example, checking the step Fact N : F from R∗;S generates a Fact lemma, which
ensures the validity of deriving fact F from proof P using the references in R∗, and generates a
call to check if the following step, S, is valid.

3 Example

In [1], a student worked through a proof with the goal:

K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D))

(where “K” stands for “complement”.)
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Here are the student’s utterances:

S1: by deMorgan-Rule-2 K((A∪B)∩ (C∪D)) = (K(A∪B)∪K(C∪D)) holds

S2: K(A∪B) is K(A)∩K(B) according to deMorgan-1

S3: and K(C∪D) is also K(C)∩K(D) according to deMorgan-1

S4: hence follows finally: K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪ (K(C)∩K(D)).

Here is a print-out of the representation of this proof:

GOAL (K ((A V B) & (C V D)) = (K (A) & K (B)) V (K (C) & K (D)))

| |

NAME S1

FACT (K ((A V B) & (C V D)) = K (A V B) V K (C V D))

FROM DEMORGAN2

| |

NAME S2

FACT (K (A V B) = K (A) & K (B))

FROM DEMORGAN1

| |

NAME S3

FACT (K (C V D) = K (C) & K (D))

FROM DEMORGAN1

| |

NAME S4

FACT (K ((A V B) & (C V D)) = (K (A) & K (B)) V (K (C) & K (D)))

FROM (SUB S1 S2 S3)

TRIVIAL LABELNIL

The first line corresponds to the goal of the proof, and the four fact steps correspond to the user’s
four utterances. In the first three steps, the user only referenced the rule name (the different
deMorgan rules). In the fourth fact step, the user did a substitution using the facts from the three
previous steps (S1, S2, and S3). However, there was under-specification in the utterance, for the
user’s only justification was “hence follows finally.”

In this proof, the user worked forward asserting facts which were derived from previous facts.
A fact step is represented with certain characteristics—a label, the derived fact and its name,
references to used facts, and references to the subsequent step. The proof itself has a goal and a
first step, which points to the subsequent step, and so on. This proof is completed when the next
step property of a fact step is a trivial step, indicating that the proven fact is the goal.
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